Kiryl Kiryluk

1. Maximize the following y in 3-D cases.

y=Xx1*sin(jx 1)+ x 2 *sin(|x 2 |)

2. Create a population of 20 chromosomes at random, with fitness being y.
3. Evole this population till fitness dosen’t change

CODE:

#include <stdafx.h>

#include <fstream>

#include <iostream>

#include <vector>

#include <algorithm>

#include <time.h>

#include <math.h>
typedefvector<Chromosome> Population;
int Chromosome::getGen(int index)

{

return genes[index];

}

boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2);
Population distance(Population population);
voidsetGen(int index, intnewGen);

void mutation();

voidcurrentPosition();

intgetDistance();

intgetGen(int index);

void Chromosome::currentPosition()

for (inti= 0; i <genes.size(); i++)

switch (genesl[i])

return distance;

}

Population uniformDistance(Population population);

int XY (inttmp);

void Chromosome::setGen(int index, intnewGen)
genes[index]| = newGen;

void Chromosome::mutation()

{for (inti= 0; i <genes.size(); i++)

{inttmp = rand() % 100;

if (tmp ==0)

{

genes[i] =rand() % 4 + 1;

boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2)

class Gen { private List hromosom;

private double fitness; public Gen(Random rnd)

{ hromosom = new List(); for (inti=0; i< 22; i++) hromosom.Add(rnd

Next() % 2); List temp = new List(parse(hromosom));

fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] * Math.Sin(Math.Abs(temp[1])); }

Population distance(Population population)
{

intdistancePoint;

intfirstParent, secondParent;
Population result;

for (inti=0;i<10; i++)

{

distancePoint = rand() % 1000;
firstParent = rand() % 10;
secondParent = rand() % 10;

while (firstParent != secondParent)

{

secondParent = rand() % 10;

}

Population uniformDistance(Population population)
{

intfirstParent, secondParent;

Population result;

for (inti=0;i<10; i++)

{firstParent = rand() % 10;
secondParent = rand() % 10;
while (firstParent != secondParent)

{

secondParent = rand() % 10;

}

intmain()

{

srand(time(NULL));

ofstream file("OutData.txt", ios::out);
ofstreamfileTable("Table.txt", ios::out);
Population population;

Population table;

for (inti=0;i<20; i++)

{

Chromosome tmp;
population.push_back(tmp);

}

for (inti = 0; i <population.size(); i++)
{

population[i].currentPosition();

}

sort(population.begin(), population.end(), sortPopulation);
for (intk = 0; k <= 400; k++)

{

if ((k % 100) == 0)

{

for (inti=0;i< 3;i++)

{

table.push_back(population[i])}}
population = uniformDistance(population);
for (inti = 0; i <population.size(); i++)

{

population[i].currentPosition();

}

sort(population.begin(), population.end(), sortPopulation);
int min = population[0].getDistance();
int average = 0;

for (inti = 0; i <population.size(); i++)
{

average += population[i].getDistance();
}

average = average / 20;

file<< max << "\t" <<endl;

for (intk = 0; k <= 400; k++)

{

if ((k % 100) == 0)

{

for (inti=0;i<3;i++)
table.push_back(population[i]);

}

population = Distance(population);

12

10

Fitness
o

best fitmess - generanon frnass

1 2 3 4 5 & 7 B % 10 11 12 13 14 15
Generation

#1 Iteration

3D GRAPH

e
il
ottty
i
e
N
sy

#25 Iteration

3D GRAPH

; /‘éz:%‘:w

L
i

e
it
i

Sl

i
e
SR
L
R

T

S

i

i
e
5

K
i
T

o
e
o
)
S

=
S22l

—

%
b

5
e
s
s

SEICTES
S
>
e
Ry
L AT
<

s
S
g
e
%

=5
5
S

#50lteration

LA
ot
$
it
R

i
B R ;
b a ety
R TR
T

e
o,
e

e
st
i

oy

RS
e
St
‘g‘\~¢‘~ s

!
T
st

#100 Iteration

3D GRAPH

N
Wttt
By
e
e
o
S
tiy
e e
e,

;

it
T

Seseny
S
e
e
S

<5
SEeS
s

5

“’
558

2
S
a2s
o

Soset.

%
50
2%

S5

s
3 o

et
e,
5

25
=
5
52

e

i
o
5ot
525
x50
s

il

ool

e
S

<5

.
5

Seavis

S
v

oo
i

T

Sose

oy
ok
o
a

st

2%

s
o
x5
>
s
2P
e
Spe
S
o

=
=
s

