
Kiryl Kiryluk

1. Maximize the following y in 3-D cases.

y= x 1 *sin(|x 1 |)+ x 2 *sin(|x 2 |)

2. Create a population of 20 chromosomes at random, with fitness being y.

3. Evole this population till fitness dosen’t change

CODE:

#include <stdafx.h>

#include <fstream>

#include <iostream>

#include <vector>

#include <algorithm>

#include <time.h>

#include <math.h>

typedefvector<Chromosome> Population;

int Chromosome::getGen(int index)

{

return genes[index];

}

boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2);

Population distance(Population population);

voidsetGen(int index, intnewGen);

void mutation();

voidcurrentPosition();

intgetDistance();

intgetGen(int index);

void Chromosome::currentPosition()

for (int i = 0; i <genes.size(); i++)

switch (genes[i])

return distance;

}

Population uniformDistance(Population population);

int XY(inttmp);

void Chromosome::setGen(int index, intnewGen)

genes[index] = newGen;

void Chromosome::mutation()

{for (int i = 0; i <genes.size(); i++)

{inttmp = rand() % 100;

if (tmp == 0)

{

genes[i] = rand() % 4 + 1;

boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2)

class Gen { private List hromosom;

private double fitness; public Gen(Random rnd)

{ hromosom = new List(); for (int i = 0; i < 22; i++) hromosom.Add(rnd

.Next() % 2); List temp = new List(parse(hromosom));

 fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] * Math.Sin(Math.Abs(temp[1])); }

Population distance(Population population)

{

intdistancePoint;

intfirstParent, secondParent;

Population result;

for (int i = 0; i < 10; i++)

{

distancePoint = rand() % 1000;

firstParent = rand() % 10;

secondParent = rand() % 10;

while (firstParent != secondParent)

{

secondParent = rand() % 10;

}

Population uniformDistance(Population population)

{

intfirstParent, secondParent;

Population result;

for (int i = 0; i < 10; i++)

{firstParent = rand() % 10;

secondParent = rand() % 10;

while (firstParent != secondParent)

{

secondParent = rand() % 10;

}

intmain()

{

srand(time(NULL));

ofstream file("OutData.txt", ios::out);

ofstreamfileTable("Table.txt", ios::out);

Population population;

Population table;

for (int i = 0; i < 20; i++)

{

Chromosome tmp;

population.push_back(tmp);

}

for (int i = 0; i <population.size(); i++)

{

population[i].currentPosition();

}

sort(population.begin(), population.end(), sortPopulation);

for (int k = 0; k <= 400; k++)

{

if ((k % 100) == 0)

{

for (int i = 0; i < 3; i++)

{

table.push_back(population[i])}}

population = uniformDistance(population);

for (int i = 0; i <population.size(); i++)

{

population[i].currentPosition();

}

sort(population.begin(), population.end(), sortPopulation);

int min = population[0].getDistance();

int average = 0;

for (int i = 0; i <population.size(); i++)

{

average += population[i].getDistance();

}

average = average / 20;

file<< max << "\t" <<endl;

f or (int k = 0; k <= 400; k++)

{

if ((k % 100) == 0)

{

for (int i = 0; i < 3; i++)

table.push_back(population[i]);

}

population = Distance(population);

#1 Iteration

#25 Iteration

#50Iteration

#100 Iteration

