Task 3
Student —Polina Rachkovskaya

Algorithm:

1. Maximize 3D version of Schwefel's function;
2. Create a population of 20 chromosome with 22 binary genes;
3. Evolve this population till fitness of chromosomes doesn’t change, using fitness sharing algorithm;

Results:
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Iteration 45:
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Code:

def get average value (generation):
av_list = [ ]

for i in generation:

sum = fitness function(i)
av_list.append (sum)

average = reduce (lambda x, y: x + y, av_list) / len(av_list)
max value = max(av_list)

return (average, max value)

def fitness_ function (i) :

sum = 0O

for j in 1i:

sum += j * sin(abs(j))

return sum

def main () :

generation = [ ]

for i in range (0, 20):

hromosome = [ ]

for j in range (0, 20):
hromosome. append (random.uniform (-5, 5))
generation.append (hromosome)

max value = get average value(generation) [1]
print (max value)
count = 0

while count < 10:

generation.sort (key=lambda x: fitness function(x), reverse=False)
fathers = generation[0:10]

new_generation = []

for i in range (0, 10):

mother = random.randrange (0, 10)
father = random.randrange (0, 10)
rand index = random.randrange (0, 20)
first = fathers[mother] [0:rand index]

first.extend(fathers[father] [rand index:20])
second = fathers[father] [0:rand index]
second.extend (fathers[mother] [rand index:20])
new _generation.append (first)
new_generation.append (second)
new_generation.extend (fathers)

new max = get average value (new_generation)
print (new max)

if new max[l] < max value:

max value = new max[1]

count = 0

else:

count += 1

generation = new _generation

if name == " main ':

main ()

function sharedFitness (generation) {

var mem generation = generation;

for(var 1 = 0; 1 < 20; i++) {

for(var j = 0; 3 < 20; j++) {

var x = getX(generation [i]) -getX(generation [j]);
var y = getY(generation [i1]) -getY(generation [7]);}
var d = Math.sgrt (Math.pow(x, 2) + Math.pow(y, 2));

generation [i].fitness += getS(d);}

return generation;}

function mutation (population) {

return population.map (function(chromosome) {

return chromosome.map (function (gene) {

return Math.random() < 0.02 ? (gene + 1) % 2 : gene;});
1)}

function getX(chromosome) {

var x = 0;

for(var 1 = 1; i < 11; i++) {

X += chromosome[i] ? Math.pow(2, i -1) / 2048 * 5 : 0;}
x *= chromosome[0] ? -1 : 1;

return x;}

function getY (chromosome) {

var y = 0;

for(var 1 = 11; 1 < 22; 1i++){

y += chromosome[i] ? Math.pow (2, 1 -11) / 2048 * 5: 0;}
y *= chromosome[1l1l] ? -1 : 1;

return y;}



