
Task 3

 Student –Polina Rachkovskaya

Algorithm:

1. Maximize 3D version of Schwefel's function;

2. Create a population of 20 chromosome with 22 binary genes;

3. Evolve this population till fitness of chromosomes doesn’t change, using fitness sharing algorithm;

Results:

Iteration 1:

Iteration 15:

Iteration 30:

Iteration 45:

Iteration 60:

Code:
def get_average_value(generation):

av_list = []

for i in generation:

sum = fitness_function(i)

av_list.append(sum)

average = reduce(lambda x, y: x + y, av_list) / len(av_list)

max_value = max(av_list)

return (average, max_value)

def fitness_function(i):

sum = 0

for j in i:

sum += j * sin(abs(j))

return sum

def main():

generation = []

for i in range(0, 20):

hromosome = []

for j in range(0, 20):

hromosome.append(random.uniform(-5, 5))

generation.append(hromosome)

max_value = get_average_value(generation)[1]

print(max_value)

count = 0

while count < 10:

generation.sort(key=lambda x: fitness_function(x), reverse=False)

fathers = generation[0:10]

new_generation = []

for i in range(0, 10):

mother = random.randrange(0, 10)

father = random.randrange(0, 10)

rand_index = random.randrange(0, 20)

first = fathers[mother][0:rand_index]

first.extend(fathers[father][rand_index:20])

second = fathers[father][0:rand_index]

second.extend(fathers[mother][rand_index:20])

new_generation.append(first)

new_generation.append(second)

new_generation.extend(fathers)

new_max = get_average_value(new_generation)

print(new_max)

if new_max[1] < max_value:

max_value = new_max[1]

count = 0

else:

count += 1

generation = new_generation

if __name__ == '__main__':

main()

function sharedFitness(generation){

var mem generation = generation;

for(var i = 0; i < 20; i++) {

for(var j = 0; j < 20; j++) {

var x = getX(generation [i]) -getX(generation [j]);

var y = getY(generation [i]) -getY(generation [j]);}

var d = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));

generation [i].fitness += getS(d);}

return generation;}

function mutation(population){

return population.map(function(chromosome) {

return chromosome.map(function(gene) {

return Math.random() < 0.02 ? (gene + 1) % 2 : gene;});

});}

function getX(chromosome) {

var x = 0;

for(var i = 1; i < 11; i++) {

x += chromosome[i] ? Math.pow(2, i -1) / 2048 * 5 : 0;}

x *= chromosome[0] ? -1 : 1;

return x;}

function getY(chromosome){

var y = 0;

for(var i = 11; i < 22; i++){

y += chromosome[i] ? Math.pow(2, i -11) / 2048 * 5: 0;}

y *= chromosome[11] ? -1 : 1;

return y;}

