Task 3
Student —Polina Rachkovskaya

Algorithm:

1. Maximize 3D version of Schwefel's function;
2. Create a population of 20 chromosome with 22 binary genes;
3. Evolve this population till fitness of chromosomes doesn’t change, using fitness sharing algorithm;

Results:

FITNESS

35 .

2,5

1,5

0.3

10 20 30 40 50

ITERATION

60

Best

Average

Iteration 1:

.9 ‘(b.\
OO0
OO0
ALK XS
\\‘3\‘&%’0’0’0‘0’0’0‘0}’;’ 7

D

‘0.# L/

LA ()
e
Y

4905
AN
R

Iteration 15:

ﬁ#@oqu{ﬂ AL
AKX
() O
R .0’0‘0‘0’0.0'0’0'0':,2 oz
RO X7
N7
"%fﬁy

0
o

OO0
\ \‘_‘.‘\5,")
v »i.e‘m

AT
KO

e

Iteration 30:

phhh 4“,"; 0

OO0

(X ".’ OO0

LOAAAXK)

: O "%

.\\S':“\:“"“ ’...“‘."""‘:, /
) ",0‘000.0/,' et
.\\\“_.,-‘ L) "‘4’4’}' 35 4hrr
(X

.\,»//ﬁ":"m 1
i

,_—
=

O

AT

ff},'.:":WQO‘ it
A

—

) ‘,‘t‘;t‘%mm ‘

A
Y

Iteration 45:

OO

L

e ‘c”""o‘o‘o,"f":/
N,

ity

(I

AR AAKES
S
o /

AL
A v

Y
IO
i 0’0‘0’:‘\6“:\0

Iteration 60:

OO0

XX .“0‘0‘0‘9'.‘,.

000000

et

A ’0‘0‘0':4/1
()
i

I
RO
YL

i ""020?&‘:‘.‘}&}}33?

(N
] ," "

'11/![' '

i

A OANY

Code:

def get average value (generation):
av_list = []

for i in generation:

sum = fitness function(i)
av_list.append (sum)

average = reduce (lambda x, y: x + y, av_list) / len(av_list)
max value = max(av_list)

return (average, max value)

def fitness_ function (i) :

sum = 0O

for j in 1i:

sum += j * sin(abs(j))

return sum

def main () :

generation = []

for i in range (0, 20):

hromosome = []

for j in range (0, 20):
hromosome. append (random.uniform (-5, 5))
generation.append (hromosome)

max value = get average value(generation) [1]
print (max value)
count = 0

while count < 10:

generation.sort (key=lambda x: fitness function(x), reverse=False)
fathers = generation[0:10]

new_generation = []

for i in range (0, 10):

mother = random.randrange (0, 10)
father = random.randrange (0, 10)
rand index = random.randrange (0, 20)
first = fathers[mother] [0:rand index]

first.extend(fathers[father] [rand index:20])
second = fathers[father] [0:rand index]
second.extend (fathers[mother] [rand index:20])
new _generation.append (first)
new_generation.append (second)
new_generation.extend (fathers)

new max = get average value (new_generation)
print (new max)

if new max[l] < max value:

max value = new max[1]

count = 0

else:

count += 1

generation = new _generation

if name == " main ':

main ()

function sharedFitness (generation) {

var mem generation = generation;

for(var 1 = 0; 1 < 20; i++) {

for(var j = 0; 3 < 20; j++) {

var x = getX(generation [i]) -getX(generation [j]);
var y = getY(generation [i1]) -getY(generation [7]);}
var d = Math.sgrt (Math.pow(x, 2) + Math.pow(y, 2));

generation [i].fitness += getS(d);}

return generation;}

function mutation (population) {

return population.map (function(chromosome) {

return chromosome.map (function (gene) {

return Math.random() < 0.02 ? (gene + 1) % 2 : gene;});
1)}

function getX(chromosome) {

var x = 0;

for(var 1 = 1; i < 11; i++) {

X += chromosome[i] ? Math.pow(2, i -1) / 2048 * 5 : 0;}
x *= chromosome[0] ? -1 : 1;

return x;}

function getY (chromosome) {

var y = 0;

for(var 1 = 11; 1 < 22; 1i++){

y += chromosome[i] ? Math.pow (2, 1 -11) / 2048 * 5: 0;}
y *= chromosome[1l1l] ? -1 : 1;

return y;}

