
#include <time.h>

#include <math.h>

#include <algorithm>

#include <iostream>

#include <math.h>

#include <fstream>

#include <vector>

using namespace std;

typedef vector<int> Chrm;

typedef vector<Chrm> Pplt;

Pplt population;

double fitness(Chrm Chrm)

{

 int sum = 0;

 for (int i = 1; i < 11; i++)

 {

 sum += Chrm[i] * pow(2, (i - 1));

 }

 int x = sum / 1023 * 5;

 if (Chrm[0] == 0)

 {

 x = x * (-1);

 }

 sum = 0;

 for (int i = 12; i < 22; i++)

 {

 sum += Chrm[i] * pow(2, (i - 12));

 }

 int y = sum / 1023 * 5;

 if (Chrm[11] == 0)

 {

 y = y * (-1);

 }

 double z = x * sin(abs(x)) + y * sin(abs(y));

 return z;

}

double distance(Chrm Chrm1, Chrm Chrm2)

{

 int sum = 0;

 for (int i = 1; i < 11; i++)

 {

 sum += Chrm1[i] * pow(2, (i - 1));

 }

 int x1 = sum / 1023 * 5;

 if (Chrm1[0] == 0)

 {

 x1 = x1 * (-1);

 }

 sum = 0;

 for (int i = 12; i < 22; i++)

 {

 sum += Chrm1[i] * pow(2, (i - 12));

 }

 int y1 = sum / 1023 * 5;

 if (Chrm1[11] == 0)

 {

 y1 = y1 * (-1);

 }

 sum = 0;

 for (int i = 1; i < 11; i++)

 {

 sum += Chrm2[i] * pow(2, (i - 1));

 }

 int x2 = sum / 1023 * 5;

 if (Chrm2[0] == 0)

 {

 x2 = x2 * (-1);

 }

 sum = 0;

 for (int i = 12; i < 22; i++)

 {

 sum += Chrm2[i] * pow(2, (i - 12));

 }

 int y2 = sum / 1023 * 5;

 if (Chrm2[11] == 0)

 {

 y2 = y2 * (-1);

 }

 double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));

 return dist;

}

Pplt makePplt()

{

 Pplt result;

 for (int i = 0; i < 20; i++)

 {

 Chrm Chrm;

 for (int j = 0; j < 22; j++)

 {

 Chrm.push_back(rand() % 2);

 }

 result.push_back(Chrm);

 }

 return result;

}

Pplt makePplt();

double fitness(Chrm Chrm);

double s_function(Chrm Chrm);

bool sortPpl(const Chrm &Chrm1, const Chrm &Chrm2);

Pplt newPplt();

double distance(Chrm Chrm1, Chrm Chrm2);

double sharing_fitness(Chrm Chrm);

int main()

{

 srand(time(NULL));

 ofstream file("file.txt", ios::out);

 population = makePplt();

 sort(population.begin(), population.end(), sortPplt);

 double aver = 0.0;

 for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)

 {

 population = newPplt();

 sort(population.begin(), population.end(), sortPplt);

 double max = sharing_fitness(population[0]);

 double average = 0.0;

 for (int i = 0; i < 20; i++)

 {

 average += sharing_fitness(population[i]);

 }

 average = average / 20;

 if (average == aver)

 {

 noChanged++;

 }

 else

 {

 noChanged = 0;

 }

 aver = average;

 file << max << "\t" << average << endl;

 }

 file.close();

 system("pause");

 return 0;

}

double s_function(Chrm Chrm)

{

 double sigma = 1.0;

 double s = 0.0;

 for (int i = 0; i < 20; i++)

 {

 double d = distance(Chrm, population[i]);

 if (d < sigma)

 {

 s += (1 - (d / sigma));

 }

 }

 return s;

}

double sharing_fitness(Chrm Chrm)

{

 double f = fitness(Chrm) / s_function(Chrm);

 return f;

}

bool sortPplt(const Chrm &Chrm1, const Chrm &Chrm2)

{

 return sharing_fitness(Chrm1) > sharing_fitness(Chrm2);

}

1st iteration

5th iteration

10th iteration

15th iteration

20th iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

es
s

Iteration

max ave

