#include <time.h>
#tinclude <math.h>
#include <algorithm>
#include <iostream>
#tinclude <math.h>
#include <fstream>
#include <vector>

using namespace std;

typedef vector<int> Chrm;
typedef vector<Chrm> Pplt;

Pplt population;

double fitness(Chrm Chrm)
{
int sum =0;
for (inti=1;i<11; i++)
{
sum += Chrm[i] * pow(2, (i - 1));
}
int x=sum /1023 * 5;

if (Chrm[0] ==0)

{

x=x*(-1);
}
sum =0;

for (inti=12;i<22;i++)
{
sum += Chrm[i] * pow(2, (i - 12));
}
inty =sum /1023 * 5;

if (Chrm[11] ==0)
{

y=y*(-1);

double z = x * sin(abs(x)) +y * sin(abs(y));

return z;

double distance(Chrm Chrm1, Chrm Chrm?2)
{
int sum =0;
for(inti=1;i<11;i++)
{
sum += Chrm1[i] * pow(2, (i - 1));
}
int x1 =sum /1023 * 5;

if (Chrm1[0] == 0)

{

x1=x1*(-1);
}
sum =0;

for (inti=12;i<22;i++)
{
sum += Chrm1[i] * pow(2, (i - 12));
}
intyl=sum/1023 *5;
if (Chrm1[11] ==0)
{
yl=y1*(-1);

sum = 0;
for (inti=1;i<11; i++)
{
sum += Chrm2[i] * pow(2, (i - 1));
}
int x2 =sum /1023 * 5;

if (Chrm2[0] ==0)

{

X2 =x2 * (-1);
}
sum =0;

for (inti=12;i<22;i++)
{
sum += Chrm2[i] * pow(2, (i - 12));
}
inty2 =sum /1023 * 5;
if (Chrm2[11] ==0)
{
y2=y2*(-1);

double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));

return dist;

Pplt makePplt()
{
Pplt result;
for (inti=0; i< 20; i++)

{

Chrm Chrm;
for (intj=0;j < 22; j++)
{
Chrm.push_back(rand() % 2);
}
result.push_back(Chrm);
}

return result;

Pplt makePplt();

double fitness(Chrm Chrm);

double s_function(Chrm Chrm);

bool sortPpl(const Chrm &Chrm1, const Chrm &Chrmz2);
Pplt newPplt();

double distance(Chrm Chrm1, Chrm Chrm?2);

double sharing_fitness(Chrm Chrm);

int main()
{
srand(time(NULL));

ofstream file("file.txt", ios::out);

population = makePplt();

sort(population.begin(), population.end(), sortPplt);

double aver = 0.0;
for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)
{

population = newPplt();

sort(population.begin(), population.end(), sortPplt);

double max = sharing_fitness(population[0]);
double average = 0.0;
for (inti=0;i<20;i++)
{

average += sharing_fitness(population[i]);
}
average = average / 20;

if (average == aver)

{

noChanged++;
}
else
{

noChanged = 0;
}

aver = average;

file << max << "\t" << average << end|;

file.close();

system("pause");

return O;

double s_function(Chrm Chrm)

{

double sigma = 1.0;

double s =0.0;

for (inti=0;i<20;i++)

double d = distance(Chrm, populationli]);

if (d < sigma)
{
s+=(1-(d/sigma));
}
}
return s;

double sharing_fitness(Chrm Chrm)

{

double f = fitness(Chrm) / s_function(Chrm);

return f;

bool sortPplt(const Chrm &Chrm1, const Chrm &Chrm?2)

{

return sharing_fitness(Chrm1) > sharing_fitness(Chrm2);

}

1%t iteration

5t iteration

10%™ iteration

15% iteration

20" iteration

3.5

2.5

Fitness
N

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

e=@==max ==@==ave

