
 

 

 

 

 

 

 

 

0: 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15 20 25

fi
tn

e
ss

 

iteration 

Max

Average



 

------------------------------------------------------------------------------------------------------------- 

 

4: 

 



 

 

 

------------------------------------------------------------------------------------------------------------- 

8: 

 

 



 

 

-------------------------------------------------------------------------------------------------------------

12: 

 



 

-------------------------------------------------------------------------------------------------------------

16: 



 

 

 

 



 

CODE: 

#include <iostream> 

#include <vector> 

#include <time.h> 

#include <math.h> 

#include <algorithm> 

using namespace std; 

 

typedef vector<int> Chromosome; 

typedef vector<Chromosome> Population; 

 

Population population; 

Population population2; 

Population makePopulation(); 

double fitness(Chromosome chromosome); 

double s_function(Chromosome chromosome); 

bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2); 

Population newPopulation(); 

double distance(const Chromosome &chromosome1, int k); 

double sharing_fitness(Chromosome chromosome); 

 

int main() 

{ 

srand(time(NULL)); 

ofstream file("OutData.txt", ios::out); 

population = makePopulation(); 

population2 = population; 

sort(population.begin(), population.end(), sortPopulation); 



population2 = population; 

double aver = 0.0; 

for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++) 

{ 

population = newPopulation(); 

population2 = population; 

sort(population.begin(), population.end(), sortPopulation); 

population2 = population; 

double max = sharing_fitness(population[0]); 

double average = 0.0; 

for (int i = 0; i < 20; i++) 

{ 

average += sharing_fitness(population[i]); 

} 

average = average / 20; 

if (average == aver) 

{ 

noChanged++; 

} 

else 

{ 

noChanged = 0; 

} 

aver = average; 

file << max << "\t" << average << endl; 

} 

file.close(); 

system("pause"); 

return 0; 



} 

Population makePopulation() 

{ 

Population result; 

for (int i = 0; i < 20; i++) 

{ 

Chromosome chromosome; 

for (int j = 0; j < 22; j++) 

{ 

chromosome.push_back(rand() % 2); 

} 

result.push_back(chromosome); 

} 

return result; 

} 

double fitness(Chromosome chromosome) 

{ 

int sum = 0; 

for (int i = 1; i < 11; i++) 

{ 

sum += chromosome[i] * pow(2, (i - 1)); 

} 

double x = sum / 1023.0 * 5.0; 

if (chromosome[0] == 0) 

{ 

x = x * (-1.0); 

} 

sum = 0; 

for (int i = 12; i < 22; i++) 



{ 

sum += chromosome[i] * pow(2, (i - 12)); 

} 

double y = sum / 1023.0 * 5.0; 

if (chromosome[11] == 0) 

{ 

y = y * (-1.0); 

} 

double z = x * sin(abs(x)) + y * sin(abs(y)); 

return z; 

} 

double distance(const Chromosome &chromosome1, int k) 

{ 

int sum = 0; 

for (int i = 1; i < 11; i++) 

{ 

sum += chromosome1[i] * pow(2, (i - 1)); 

} 

double x1 = sum / 1023.0 * 5.0; 

if (chromosome1[0] == 0) 

{ 

x1 = x1 * (-1.0); 

} 

sum = 0; 

for (int i = 12; i < 22; i++) 

{ 

sum += chromosome1[i] * pow(2, (i - 12)); 

} 

double y1 = sum / 1023.0 * 5.0; 



if (chromosome1[11] == 0) 

{ 

y1 = y1 * (-1.0); 

} 

sum = 0; 

for (int i = 1; i < 11; i++) 

{ 

sum += population2[k][i] * pow(2, (i - 1)); 

} 

double x2 = sum / 1023.0 * 5.0; 

if (population2[k][0] == 0) 

{ 

x2 = x2 * (-1.0); 

} 

sum = 0; 

for (int i = 12; i < 22; i++) 

{ 

sum += population2[k][i] * pow(2, (i - 12)); 

} 

double y2 = sum / 1023.0 * 5.0; 

if (population2[k][11] == 0) 

{ 

y2 = y2 * (-1.0); 

} 

double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)); 

return dist; 

} 

double s_function(Chromosome chromosome) 

{ 



double sigma = 0.6; 

double s = 0.0; 

for (int i = 0; i < population.size(); i++) 

{ 

double d = distance(chromosome, i); 

if (d < sigma) 

{ 

s += (1 - (d / sigma)); 

} 

} 

return s; 

} 

double sharing_fitness(Chromosome chromosome) 

{ 

double f = fitness(chromosome) / s_function(chromosome); 

return f; 

} 

bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2) 

{ 

return sharing_fitness(chromosome1) > sharing_fitness(chromosome2); 

} 

Population newPopulation() 

{ 

int firstParent, secondParent; 

Population result; 

for (int i = 0; i < 10; i++) 

{ 

firstParent = rand() % 10; 

secondParent = rand() % 10; 



while (firstParent != secondParent) 

{ 

secondParent = rand() % 10; 

} 

Chromosome child1, child2; 

for (int j = 0; j < 22; j++) 

{ 

int mask = rand() % 2; 

if (mask == 0) 

{ 

child1.push_back(population[firstParent][j]); 

child2.push_back(population[secondParent][j]); 

} 

else 

{ 

child1.push_back(population[secondParent][j]); 

child2.push_back(population[firstParent][j]); 

} 

} 

result.push_back(child1); 

result.push_back(child2); 

} 

return result; 

} 

 


