
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package siit.lucky_dog;

import java.util.Random;

/**
 *
 * @author kil
 */
class GeneticAlgo{
 int[][] popln;
 int[][] crdnt;
 public enum SelectionType {

TOURNEY, ROULETTE_WHEEL, TRUNCATING
}
 public enum CrossingType {

ONE_POINT_RECOMBINATION, TWO_POINT_RECOMBINATION,
ELEMENTWISE_RECOMBINATION, ONE_ELEMENT_EXCHANGE
}
 private SelectionType slctp;
 private CrossingType crstp;
 private int genomLength; //Длина генома в битах
 private int generationCount; //Кол-во поколений
 private int individualCount; //Кол-во Геномов(Индивидов,Особей) в поколении
 private int[] chosenchromosom;
 private SelectionType selectionType; //Тип Селекции
 private CrossingType crossingType; //Тип Скрещивания
 public GeneticAlgo(String s, String c){
 slctp=SelectionType.valueOf(s);
 crstp =CrossingType.valueOf(c);
 popln=new int[20][1000];
 crdnt= new int[20][2];
 for(int i=0; i<20; i++)
 {
 crdnt[i][0]=500;
 crdnt[i][1]=500;
 }
 genomLength=1000;
 generationCount=20;
 individualCount=20;
 chosenchromosom=new int[20];
 }
 public boolean[][] run(){
 this.generateFirstGeneration();
 double ftnsmax=0.D;
 for(int i=0; i<100000000; i++)
 {
 this.selection();

 ftnsmax=fitnes(0);
 for(int j=1; j<20; j++)
 {
 ftnsmax=(ftnsmax>=fitnes(j))?fitnes(j):ftnsmax;
 }
 System.out.print(avgfitnes());
 System.out.print(":");
 System.out.print(ftnsmax);
 System.out.println();
// if(i==0||i==50||i==200||i==400||i==100000)
// {
// System.out.println("The " + i + " population");
// for(int j=0; j<20; j++)
// {
// System.out.print(this.x1(j));
// System.out.print(":");
// System.out.print(this.x2(j));
// System.out.print(":");
// System.out.print(this.fitnes(j));
// System.out.println();
// }
// }
 if(ftnsmax==1000)break;
 ftnsmax=0.D;
 }

 return (new boolean[20][1000]);
 }
 private void generateFirstGeneration() {
 Random rnd=new Random();
 for(int i=0; i<20; i++)
 {
 for(int j=0; j<1000; j++)
 {
 popln[i][j]=Math.abs(rnd.nextInt())%4 + 1;
 }
 }
 } //генерация первого поколения
 private void selection(){
 int[][] genomListOffsprings=new int[20][1000];
 Random rndd=new Random();
 switch(this.slctp)
 {
 case ROULETTE_WHEEL:{
 double[] wheel = new double[this.individualCount];

wheel[0] = fitnes(0);//Значение ФитнессФункции для 1-ого генома
 this.chosenchromosom[0]=0;

for (int i=1;i<this.individualCount;i++){
wheel[i] = wheel[i-1] + fitnes(i);//Значение ФитнессФункции для i-

ого генома
 this.chosenchromosom[i]=0;

}

double all = wheel[this.individualCount-1];

for (int i=0;i<this.individualCount;i++){
 double index = Math.abs(rndd.nextFloat())*all;
 int l = 0;
 int r = individualCount-1;
 int c = 0;
 while (l < r){

c = (l+r) >> 1;
if (index <= wheel[c])

 r = c;
 else

 l = c + 1;
 }
 int a=l;
 index = Math.abs(rndd.nextFloat())*all;

 l = 0;
 r = individualCount-1;
 c = 0;
 while (l < r){

c = (l+r) >> 1;
if (index <= wheel[c])

 r = c;
 else

 l = c + 1;
 }
 this.chosenchromosom[l]++;
 this.chosenchromosom[a]++;
 genomListOffsprings[i] = this.crossing(l,a);

}
 popln=genomListOffsprings;
 break;
 }
 case TOURNEY:
 {
 for (int i=0;i<this.individualCount;i++){
 int index1 = rndd.nextInt(individualCount);
 int index2 = rndd.nextInt(individualCount);
 int index3 = rndd.nextInt(individualCount);
 int index4 = rndd.nextInt(individualCount);
 double fr1 = fitnes(index1);
 double fr2 = fitnes(index2);
 index1=(fr1>fr2)?index1:index2;
 double fr3 = fitnes(index3);
 double fr4 = fitnes(index4);
 index2=(fr3>fr4)?index3:index4;
 genomListOffsprings[i] = this.crossing(index1, index2);

}
 popln=genomListOffsprings;
 break;
 }

 case TRUNCATING:
 {
 int percent=(Math.abs(rndd.nextInt())+2)%10+1;
 this.sort();
 for(int i=0; i<this.individualCount; i++)
 {
 genomListOffsprings[i] = this.crossing((Math.abs(rndd.nextInt()))%10,
(Math.abs(rndd.nextInt()))%10);
 }
 popln=genomListOffsprings;
 break;
 }
 default:
 break;

 }
 } //Процедура селекци
 private int[] crossing(int a, int b) {
 int[] vec=new int[1000];
 switch(crstp)
 {
 case ONE_ELEMENT_EXCHANGE:
 {
 for(int i=0; i<genomLength; i++)
 {
 Random rndd=new Random();
 //vec[i]=(rndd.nextBoolean())?popln[b][i]:popln[a][i];
 }
 break;
 }
 case ONE_POINT_RECOMBINATION:
 {
 Random rndd=new Random();
 int point=Math.abs(rndd.nextInt())%genomLength + 1;
 System.arraycopy(popln[a], 0, vec, 0, point);
 System.arraycopy(popln[b], point-1, vec, point-1, genomLength-point);
 break;
 }
 default:
 break;
 }

 //mutation
 Random rdd=new Random();
 for(int i=0; i<1000; i++)
 {
 vec[i]=((Math.abs(rdd.nextInt())%20)==1)?Math.abs(rdd.nextInt())%4 + 1:vec[i];
 }
 return vec;
 } //Процедура скрещивания
// private double x1(int nomber){
// double a=0.D;

// double i=0.D;
// for(int j=10; j>0; j--, i+=1.D)
// {
// a+=(this.popln[nomber][j])?Math.pow(2.D, i):0;
// }
// a*=(this.popln[nomber][0])?5:-5;
// a/=1023;
// return a;
// }
// private double x2(int nomber){
// double i=0.D;
// double b=0.D;
// for(int j=21; j>11; j--, i+=1.D)
// {
// b+=(this.popln[nomber][j])?Math.pow(2, i):0;
// }
// b*=(this.popln[nomber][11])?5:-5;
// b/=1023;
// return b;
// }
 private double fitnes(int nmb){
 int originalftns=Math.min(Math.min(dst(crdnt[nmb][0],crdnt[nmb][1], 200, 200),
dst(crdnt[nmb][0],crdnt[nmb][1], 800, 200)), Math.min(dst(crdnt[nmb][0],crdnt[nmb][1], 200,
800), dst(crdnt[nmb][0],crdnt[nmb][1], 800, 800)));
 double sumdij=1.D;
 for(int i=0; i<20; i++)
 {
 if(i==nmb)
 continue;
 sumdij+=((Math.abs(crdnt[nmb][0]-crdnt[i][0])<=25)&&(Math.abs(crdnt[nmb][1]-crdnt[i]
[1])<=25))?1+dst(crdnt[nmb][0],crdnt[nmb][1],crdnt[i][0],crdnt[i][1])/50:0;
 }
 return originalftns/sumdij;
 } //Фитнес функция
 private int dst(int x1, int y1, int x2, int y2)
 {
 return Math.abs(x1-x2 + y1-y2);
 }
 private double avgfitnes(){
 double ftns=0.D;
 for(int i=0; i<20; i++)
 ftns+=this.fitnes(i);
 return ftns/20;
 } //Фитнес функция
 private void crdntdog()
 {
 for(int i=0; i<20; i++)
 {
 for(int j=0; j<1000; j++)
 {
 switch(popln[i][j])
 {

 case 1:
 {
 crdnt[i][1]+=(crdnt[i][1]==1000)?-1000:1;
 break;
 }
 case 2:
 {
 crdnt[i][1]-=(crdnt[i][1]==0)?-1000:1;
 break;
 }
 case 3:
 {
 crdnt[i][0]+=(crdnt[i][0]==1000)?-1000:1;
 break;
 }
 case 4:
 {
 crdnt[i][0]-=(crdnt[i][0]==0)?-1000:1;
 break;
 }
 default:
 break;
 }
 }
 }
 }
 private void sort()
 {
 crdntdog();
 for(int i=0; i<this.individualCount; i++)
 {
 int[] amiba;
 amiba = new int[1000];
 amiba=popln[i];
 double fit=fitnes(i);
 for(int j=i; j<this.individualCount; j++)
 {
 if(fitnes(j)<fit){
 fit=fitnes(j);
 amiba=popln[j];
 popln[j]=popln[i];
 popln[i]=amiba;
 }
 }
 }
 }
}
public class SIITLucky_DOG {
 public static void main(String[] args) {
 GeneticAlgo p=new GeneticAlgo("TRUNCATING","ONE_ELEMENT_EXCHANGE");
 p.run();
 }

}

