
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace Siit_3
{
 class generation
 {

 static public int numChromo = 20;
 List<int[]> gens;
 List<int> fitness { get; }
 List<double> sharedFitness;
 List<float> probability { get; }
 List<int> chromSelect;
 List<int[]> location;
 List<int> arround;
 public int sousage_x1 = 800, sousage_x2 = 800, sousage_x3 = 200, sousage_x4 = 200;
 public int sousage_y1 = 800, sousage_y2 = 200, sousage_y3 = 800, sousage_y4 = 200;
 public double averagefitness = 0f;

 Random mutat = new Random();
 int rando = 0;

 public generation()
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();
 location = new List<int[]>();
 sharedFitness = new List<double>();
 arround = new List<int>();

 for (int j = 0; j < numChromo; j++)
 {
 int[] gen = new int[1000];
 location.Add(new int[] { 500,500});
 gens.Add(gen);
 fitness.Add(0);
 arround.Add(0);
 sharedFitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public generation(List<int[]> new_gens)
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();
 location = new List<int[]>();
 sharedFitness = new List<double>();
 arround = new List<int>();
 gens = new_gens;
 for (int j = 0; j < numChromo; j++)
 {
 location.Add(new int[] { 500, 500 });
 fitness.Add(0);

 sharedFitness.Add(0);
 arround.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public void randomize()
 {
 Random rand = new Random();
 for (int i = 0; i < numChromo; i++)
 {
 for (int j = 0; j < 1000; j++)
 {

 gens[i][j] = rand.Next() % 4 + 1;
 }
 }
 }
 public void setFitness()
 {
 for (int i = 0; i < numChromo; i++)
 {
 for (int j = 0; j < 1000; j++) //1 - up || y++
 { //2 - right || x++
 if (gens[i][j] == 1) location[i][1]++; //3 - down || y--
 else if (gens[i][j] == 2) location[i][0]++; //4 - left || x--
 else if (gens[i][j] == 3) location[i][1]--;
 else location[i][0]--;
 }
 List<int> fit = new List<int>();
 fit.Add(Math.Abs(sousage_x1 - location[i][0]) + Math.Abs(sousage_y1 - location[i][1]));
 fit.Add(Math.Abs(sousage_x2 - location[i][0]) + Math.Abs(sousage_y2 - location[i][1]));
 fit.Add(Math.Abs(sousage_x3 - location[i][0]) + Math.Abs(sousage_y3 - location[i][1]));
 fit.Add(Math.Abs(sousage_x4 - location[i][0]) + Math.Abs(sousage_y4 - location[i][1]));
 fitness[i] = fit.Min();
 }
 for(int i = 0; i < numChromo; i++)
 {
 double sum = 0;
 for(int j =0; j < numChromo; j++)
 {
 int tmp = Math.Abs(location[i][0] - location[j][0]) + Math.Abs(location[i][1] -
location[j][1]);
 if (tmp < 50)
 {
 arround[i]++;
 sum += 1 - (double)tmp / 50;
 }
 }
 sharedFitness[i] = (fitness[i])*sum;
 }

 }

 public void setProbability()
 {
 double mass = 0;
 for (int i = 0; i < numChromo; i++)
 {
 mass += sharedFitness[i];
 }
 averagefitness = mass / numChromo;
 for (int i = 0; i < numChromo; i++)
 {
 probability[i] = (float)fitness[i] / (float)mass;
 }
 }
 public int[] newChild()
 {

 Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);
 rando++;
 if (rando == 10000000) rando = 0;
 int rand_num = rand.Next(numChromo/2);
 float sum = 0f;
 int[] chrom_1 = new int[1000], chrom_2 = new int[1000];

 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * 1000000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_1 = gens[i];
 // break;
 // }

 //}
 chrom_1 = gens[rand_num]; // for truncate
 sum = 0f;
 rand_num = rand.Next(numChromo/2);
 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * 1000000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_2 = gens[i];
 // break;
 // }
 //}
 chrom_2 = gens[rand_num]; // for truncate

 int[] new_chrom = new int[1000];

 //uniform crossover
 for (int i = 0; i < 1000; i++)
 {
 if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
 else new_chrom[i] = chrom_2[i];
 }

 //one point crossover
 //int point = rand.Next() % 1000;
 //for (int i = 0; i < 1000; i++)
 //{
 // if (i < point) new_chrom[i] = chrom_1[i];
 // else new_chrom[i] = chrom_2[i];
 //}
 Mutation(new_chrom);
 return new_chrom;
 }
 public double bestFitness()
 {
 return sharedFitness.Min();
 }

 public void Sort()
 {
 for (int i = 0; i < numChromo - 1; i++)
 {
 bool swapped = false;
 for (int j = 0; j < numChromo - i - 1; j++)
 {
 if (sharedFitness[j] > sharedFitness[j + 1])
 {
 int[] tmp_gen = gens[j];
 gens[j] = gens[j + 1];
 gens[j + 1] = tmp_gen;

 int tmp_fit = fitness[j];
 fitness[j] = fitness[j + 1];
 fitness[j + 1] = tmp_fit;

 double tmp_shr_fit = sharedFitness[j];
 sharedFitness[j] = sharedFitness[j + 1];
 sharedFitness[j + 1] = tmp_fit;
 swapped = true;
 }

 }
 if (!swapped) break;
 }
 }

 public double getAverageFit()
 {
 return averagefitness;
 }
 public void WriteTable(StreamWriter file1, StreamWriter file2)
 {
 for (int i = 0; i < numChromo; i++)
 {
 file1.WriteLine(chromSelect[i].ToString());
 file2.WriteLine(i.ToString());
 }
 file1.WriteLine();
 file1.WriteLine();
 }
 public int[] GetMaxChromo()
 {
 return gens[0];
 }
 public int[] GetChromo(int index)
 {
 return gens[index];
 }

 private void Mutation(int[] chromo)
 {
 for(int i = 0;i<1000;i++)
 {
 if(mutat.Next()%100 == 1)
 {
 int tmp = mutat.Next() % 4 + 1;
 if (tmp == chromo[i]) chromo[i] = (tmp + 1) % 4 +1;
 }
 }
 }
 public int getBestArround()
 {
 return arround.Min();
 }

 }
}

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;

namespace Siit_3
{
 public partial class Form1 : Form
 {
 Bitmap bit = new Bitmap(1000, 1000);
 public Form1()
 {
 InitializeComponent();

 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;

 }

 private void button1_Click(object sender, EventArgs e)
 {
 StreamWriter avgFitFile = new StreamWriter("averageFit.txt");
 StreamWriter maxFitFile = new StreamWriter("maxFit.txt");
 StreamWriter numGenFile = new StreamWriter("numGen.txt");
 StreamWriter tableFile = new StreamWriter("Table.txt");
 StreamWriter tablenum = new StreamWriter("Num.txt");
 generation old_gens = new generation();
 old_gens.randomize();
 old_gens.setFitness();
 old_gens.setProbability();
 double maxFit = 0;
 int numGeneration = 0;
 for (int j = 0; (j < 1000) && (numGeneration<250); numGeneration++)
 {
 bit = new Bitmap(1000, 1000);
 //for (int i = 0; i < 100; i++)
 //{
 // PaintWay(old_gens.GetChromo(i));
 //}
 //MessageBox.Show("gav gav!");
 numGenFile.WriteLine(numGeneration.ToString());
 Console.WriteLine(old_gens.bestFitness() + " " + old_gens.getAverageFit() + " " +
old_gens.getBestArround());
 if (old_gens.bestFitness() == 0) break;
 List<int[]> new_tmp = new List<int[]>();
 //old_gens.Sort(); //for truncate
 for (int i = 0; i < generation.numChromo; i++)
 {
 new_tmp.Add(old_gens.newChild());
 }
 old_gens.WriteTable(tableFile, tablenum);
 generation new_gens = new generation(new_tmp);

 old_gens = new_gens;
 old_gens.setFitness();
 old_gens.setProbability();
 avgFitFile.WriteLine(old_gens.getAverageFit().ToString());
 maxFitFile.WriteLine(old_gens.bestFitness().ToString());
 if (old_gens.bestFitness() > maxFit)
 {
 maxFit = old_gens.bestFitness();
 j = 0;
 }
 else j++;

 }
 for (int i = 0; i < generation.numChromo; i++)
 {
 PaintWay(old_gens.GetChromo(i));
 }
 tablenum.Close();
 tableFile.Close();
 numGenFile.Close();
 avgFitFile.Close();
 maxFitFile.Close();
 }
 private void PaintWay(int[] chromo)
 {
 double location_x = 500, location_y = 500;

 bit.SetPixel(200, 200, Color.Red);
 bit.SetPixel(200, 800, Color.Red);
 bit.SetPixel(800, 200, Color.Red);
 bit.SetPixel(800, 800, Color.Red);
 Graphics graph = Graphics.FromImage(bit);
 Pen my_pen = new Pen(Color.Green);
 my_pen.Width = 10;
 graph.DrawEllipse(my_pen, 800 - 2, 800 - 2, 4, 4);
 graph.DrawEllipse(my_pen, 800 - 2, 200 - 2, 4, 4);
 graph.DrawEllipse(my_pen, 200 - 2, 800 - 2, 4, 4);
 graph.DrawEllipse(my_pen, 200 - 2, 200 - 2, 4, 4);
 foreach (int i in chromo)
 {
 if (i == 1)
 {
 location_y += 1;
 if (location_y == 1000) location_y = 1;
 bit.SetPixel((int)location_x,(int) location_y, Color.Red);
 }
 else if (i == 2)
 {
 location_x += 1;
 if (location_x == 1000) location_x = 1;
 bit.SetPixel((int)location_x, (int)location_y, Color.Red);
 }

 else if (i == 3)
 {
 location_y -= 1;
 if (location_y == 0) location_y = 999;
 bit.SetPixel((int)location_x, (int)location_y, Color.Red);
 }

 else
 {
 location_x -= 1;
 if (location_x == 0) location_x = 999;
 bit.SetPixel((int)location_x, (int)location_y, Color.Red);
 }

 }
 pictureBox1.Image = bit;
 }
 }
}

