using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;

namespace lab3_siit_

{
class Dot
{
public List<double> chromo;
public double fit;
public Dot(List<double> chromo)
{
this.chromo = chromo;
fit = getFit(chromo);
private double getFit(List<double> chromo)
double fit = chromo.Count;
for (int i=0;i<chromo.Count;i++)
double temp = chromo[i]* chromo[i]
fit += temp;
return fit;
}
}
}
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_

{

}

class Population

{

}

public List<Dot> dots;

public double theBestFit;

public double avarageFit;

public Population(List<Dot> dogs)

{
this.dots = dogs;
theBestFit getTheBestFit(dogs);
avarageFit getAvarageFit(dogs);

public double getTheBestFit(List<Dot> dogs)
{
double bestFit = 9999;
for (int i = 0; i < dogs.Count; i++)
if (bestFit dogs[i].fit)
bestFit dogs[i].fit;
return bestFit;

v H

}
public double getAvarageFit(List<Dot> dogs)
{
double avarageFit = 0;
for (int i = 0; i < dogs.Count; i++)
avarageFit += dogs[i].fit;
avarageFit /= dogs.Count;
return avarageFit;

using System;
using System.Collections.Generic;
using System.Linq;

- Math.Cos(2 * Math.PI * chromo[i]);



using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3_siit_
{
class GA
{
Random random;
List<Population> histor;
public GA()
{

random = new Random();
List<Dot> dots = new List<Dot>();
for (int i = 0; i < 20; i++)
{
List<double> chromo = new List<double>();
for (int j = 0; j < 20; j++)
{
chromo.Add(random.NextDouble() % 2 -1);

dots.Add(new Dot(chromo));

}
//Sorting by fit
for (int i = 0; i < dots.Count; i++)

{
for (int j = dots.Count - 1; j > i; j--)
if (dots[j].fit > dots[j - 1].fit)
{
Dot tempDot = dots[j];
dots[j] = dots[]j - 1];
dots[j - 1] = tempDot;
}
}
}

Population startPopulation = new Population(dots);
histor = new List<Population>();
histor.Add(startPopulation);

int k = 0;
while (!isReady(histor))
{

Thread.Sleep(10);
histor.Add(getNextPupulation(histor[k]));

k++;
}
i .
private Population getNextPupulation(Population parent)
{

List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; i < 10; i++)
{

List<Dot> childrenDots = getChildren(
parent.dots[random.Next() % 10 + 10],
parent.dots[random.Next() % 10 + 10]

)i
childrenPopulationDots.AddRange(childrenDots);

}
//Sorting by fit
for (int i = 0; i < childrenPopulationDots.Count; i++)

{
for (int j = childrenPopulationDots.Count - 1; j > 1i; j--)
if (childrenPopulationDots[j].fit > childrenPopulationDots[j - 1].fit)
{
Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}

Population childrenPopulation = new Population(childrenPopulationDots);
return childrenPopulation;



}

Boolean isReady(List<Population> histor)

{
if (histor.Count < 100)
return false;
else
{
for (int i = histor.Count - 100; i < histor.Count; i++)
if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)
return false;
}
return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{

List<Dot> childrenDots = new List<Dot>();

int pointCross = random.Next()%20;

List<double> firstChromo = new List<double>();
List<double> secondChromo = new List<double>();
for (int j = 0; j < 20; j++)

if(j<pointCross)

firstChromo.Add(father.chromo[j]);
secondChromo.Add(mother.chromo[j]);

}
else
firstChromo.Add(mother.chromo[j]);
secondChromo.Add(father.chromo[j]);
}

}

childrenDots.Add(new Dot(firstChromo));
childrenDots.Add(new Dot (secondChromo));

//Mutation
for (int j = 0; j < childrenDots.Count; j++)

int prob = random.Next (@, 20);
if (prob == 7)
{
int number = random.Next(20);
childrenDots[j].chromo[number] = random.NextDouble() % 2 - 1;

}

return childrenDots;



