

MINISTRY OF EDUCATION REPUBLIC OF BELARUS

ESTABLISHMENT OF EDUCATION

"BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №3

 «Evolutionary Computation»

Subject: «Lucky Dog Problem with Fithess Sharing Algorithm»

 Made by:

 Alexey Cherkasov

 Checked by:

 Pr. Akira Imada

2016

1. Create a population of N chromosomes of 1000 genes each of whose

values is 1, 2, 3 or 4. Chromosome represents 1000 steps of one dog.

2. Assuming fitness being {600 - distance to the nearest sausage}, apply Fitness

Sharing Algorithm with sigma= 5

Generation 1:

Population Location
Original
fitness

Shared
fitness

Graph of average and best fitness vs generation:

The route of highest fitness dogs in the 1st generations, two intermediate

generations, and the final generation:

Program code(c++): (not successful yet)

#include <iostream>

#include <Windows.h>

#include <vector>

#include <math.h>

#include <fstream>

#include "time.h"

using namespace std;

void NextG(int mas1[20][1000], int mas2[20][1000]);

void Mut(int mas1[20][1000]);

void Fit(int mas1[20][1000], int F[20]);

void OutCord(int mas[20][1000], int m, int c[20][2]);

void Sh_fit_sort(int mas1[20][1000], int c[20][2], int f[20], int F[20]);

void OutBCAF(vector<int> bc, vector<int> af);

int main()

{

 ofstream foutX("Xways.txt"); //making file of X cordinates

 ofstream foutY("Yways.txt"); //making file of Y cordinates

 srand(time(NULL));

 vector<int> bc; //

 vector<int> af;

 int ch[20][1000];

 int child[20][1000];

 int F[20];

 int f[20]; //massive shared fitness of chromosom

 int c[20][2]; //finish cordinates

 int y1 = 0, g = 1;

 for (int i = 0; i < 20; i++) //input 1-st generation

 {

 for (int f = 0; f < 1000; f++)

 {

 ch[i][f] = rand() % 4 + 1;

 }

 }

 Fit(ch, F);

 Sh_fit_sort(ch, c, f, F);

 OutCord(ch, 0, c);

 bc.push_back(f[0]); //calculating best and average fitness of generation

 y1 = 0;

 for (int i = 0; i < 20; i++)

 {

 y1 = y1 + f[i];

 }

 af.push_back(y1 / 20);

 cout << bc[0] << ' '; //display fitnes of best chromosom

 for (int end = 0; end == 0;)

 {

 //---1

 NextG(ch, child);

 Mut(child);

 Fit(child, F);

 Sh_fit_sort(child, c, f, F);

 OutCord(child, g, c);

 bc.push_back(f[0]); //calculating best and average fitness of generation 1

 y1 = 0;

 for (int i = 0; i < 20; i++)

 {

 y1 = y1 + f[i];

 }

 af.push_back(y1 / 20);

 cout << bc[g] << ' '; //display fitnes of best chromosom 1

 if (bc[g] == 0) end = 1; //stoping 1

 g++;

 //---2

 if (end == 0) {

 NextG(child, ch);

 Mut(ch);

 Fit(ch, F);

 Sh_fit_sort(ch, c, f, F);

 OutCord(ch, g, c);

 bc.push_back(f[0]); //calculating best and average fitness of generation 2

 y1 = 0;

 for (int i = 0; i < 20; i++)

 {

 y1 = y1 + f[i];

 }

 af.push_back(y1 / 20);

 cout << bc[g] << ' '; //display fitnes of best chromosom 2

 if (bc[g] == 0) end = 1; //stoping 2

 g++;

 }

 }

 OutBCAF(bc, af);

 std::cout << "(To see more information, check text files: BC.txt, AF.txt, GEN.txt, Xways.txt, Yways.txt)"

<< endl << endl;

 foutX << endl;

 foutY << endl;

 system("pause");

 return 0;

}

void NextG(int mas1[20][1000], int mas2[20][1000])

{

 srand(time(NULL));

 int x1, x2, e;

 for (int s = 0; s < 20; s++)

 {

 x1 = rand() % 10;

 x2 = rand() % 10;

 for (int i = 0; i < 1000; i++) //uniform crossover

 {

 e = rand() % 2;

 if (e == 1) { mas2[s][i] = mas1[x1][i]; }

 else { mas2[s][i] = mas1[x2][i]; }

 }

 }

}

void Mut(int mas1[20][1000])

{

 srand(time(NULL));

 for (int i = 0; i < 20; i++)

 {

 for (int f = 0; f < 1000; f++)

 {

 int mut = rand() % 20;

 if (mut == 2) {

 mas1[i][f] = rand() % 4 + 1;

 }

 }

 }

}

void Fit(int mas1[20][1000], int F[20])

{

 int X1 = 500, Y1 = 500, x1 = 0, y1 = 0, x2 = 0, y2 = 0, x3 = 0, y3 = 0, x4 = 0, y4 = 0, f1, f2, f3, f4;

 for (int i = 0; i < 20; i++)

 {

 F[i] = 1;

 X1 = 500;

 Y1 = 500;

 for (int f = 0; f < 1000; f++) // dog is moving 1

 {

 switch (mas1[i][f])

 {

 case 1: { Y1 = Y1 + 1; break; }

 case 2: { Y1 = Y1 - 1; break; }

 case 3: { X1 = X1 + 1; break; }

 case 4: { X1 = X1 - 1; break; }

 default: cout << "error" << endl;

 }

 if (X1 == 1001) { X1 = 0; }

 if (X1 == -1) { X1 = 1000; }

 if (Y1 == 1001) { Y1 = 0; }

 if (Y1 == -1) { Y1 = 1000; }

 if (X1 == 200 && Y1 == 200) { F[i] = 0; } // if dog find sausage 1

 if (X1 == 200 && Y1 == 800) { F[i] = 0; } // if dog find sausage 2

 if (X1 == 800 && Y1 == 800) { F[i] = 0; } // if dog find sausage 3

 if (X1 == 800 && Y1 == 200) { F[i] = 0; } // if dog find sausage 4

 }

 if (F[i] = !0)

 {

 x1 = 200 - X1;

 y1 = 200 - Y1;

 x2 = 200 - X1;

 y2 = 800 - Y1;

 x3 = 800 - X1;

 y3 = 800 - Y1;

 x4 = 800 - X1;

 y4 = 200 - Y1;

 f1 = fabs(x1) + fabs(y1);

 f2 = fabs(x2) + fabs(y2);

 f3 = fabs(x3) + fabs(y3);

 f4 = fabs(x4) + fabs(y4);

 if (f1 <= f2 && f1 <= f3 && f1 <= f4) F[i] = f1;

 if (f2 <= f1 && f2 <= f3 && f2 <= f4) F[i] = f2;

 if (f3 <= f2 && f3 <= f1 && f3 <= f4) F[i] = f3;

 if (f4 <= f2 && f4 <= f3 && f4 <= f1) F[i] = f4;

 }

 }

}

void OutCord(int mas[20][1000], int m, int c[20][2])

{

 ofstream foutX("Xways.txt", ios_base::app); //making file of X cordinates

 ofstream foutY("Yways.txt", ios_base::app); //making file of Y cordinates

 int X1 = 500, Y1 = 500;

 foutX << "-" << m + 1 << "----------------------------" << endl;

 foutY << "-" << m + 1 << "----------------------------" << endl;

 for (int i = 0; i < 20; i++)

 {

 foutX << i + 1 << "////" << endl;

 foutY << i + 1 << "////" << endl;

 X1 = 500;

 Y1 = 500;

 for (int f = 0; f < 1000; f++) // dog is moving 1

 {

 switch (mas[i][f])

 {

 case 1: { Y1 = Y1 + 1; break; }

 case 2: { Y1 = Y1 - 1; break; }

 case 3: { X1 = X1 + 1; break; }

 case 4: { X1 = X1 - 1; break; }

 default: cout << "error" << endl;

 }

 foutX << X1 << endl;

 foutY << Y1 << endl;

 c[i][1] = X1;

 c[i][2] = Y1;

 }

 foutX << endl;

 foutY << endl;

 }

}

