MINISTRY OF EDUCATION REPUBLIC OF BELARUS
ESTABLISHMENT OF EDUCATION
"BREST STATE TECHNICHNICAL UNIVERSITY™"

Practice work Ne3
«Evolutionary Computationy
Subject: «Lucky Dog Problem with Fithess Sharing Algorithmy

Made by:

Alexey Cherkasov
Checked by:

Pr. Akira Imada

2016

1. Create a population of N chromosomes of 1000 genes each of whose
values is 1, 2, 3 or 4. Chromosome represents 1000 steps of one dog.
2. Assuming fitness being {600 - distance to the nearest sausage}, apply Fitness
Sharing Algorithm with sigma=5

Generation 1:

Original | Shared
Population | Location | fitness fitness

Graph of average and best fitness vs generation:

The route of highest fitness dogs in the 1st generations, two intermediate
generations, and the final generation:

Program code(c++): (not successful yet)

#include <iostream>
#include <Windows.h>
#include <vector>
#include <math.h>
#include <fstream>
#include "time.h"

using namespace std;

void NextG(int mas1[20][1000], int mas2[20][1000]);
void Mut(int mas1[20][1000]);
void Fit(int mas1[20][1000], int F[20]);
void OutCord(int mas[20][1000], int m, int c[20][2]);
void Sh_fit_sort(int mas1[20][1000], int c[20][2], int f[20], int F[20]);
void OutBCAF(vector<int> bc, vector<int> af);
int main()
{
ofstream foutX (" Xways.txt"); //making file of X cordinates
ofstream foutY ("Yways.txt"); //making file of Y cordinates
srand(time(NULL));
vector<int> bc; I
vector<int> af;
int ch[20][1000];
int child[20][21000];
int F[20];
int f[20]; /Imassive shared fitness of chromosom

int c[20][2]; [[finish cordinates
intyl=0,g=1,
for (inti=0;i<20; i++) //input 1-st generation
for (int f = 0; f < 1000; f++)
ch[i][f] = rand() % 4 + 1;

}
Fit(ch, F);
Sh_fit_sort(ch, c, f, F);
OutCord(ch, 0, ¢);
bec.push_back(f[0]); //calculating best and average fitness of generation
yl=0;
for (inti=0;i<20; i++)
{
yl =yl +f[i];

}
af.push_back(y1 / 20);
cout << bc[0] <<'"; [/display fitnes of best chromosom

for (intend = 0; end == 0;)
{
1 1
NextG(ch, child);
Mut(child);
Fit(child, F);
Sh_fit_sort(child, c, f, F);
OutCord(child, g, ¢);
bc.push_back(f[0]); /lcalculating best and average fitness of generation 1

yl=0;
for (inti=0;i<20;i++)
{
yl =yl +fi];
}
af.push_back(yl / 20);
cout << bc[g] <<'"; //display fitnes of best chromosom 1
if (bc[g] == 0) end = 1; //stoping 1
g+t
I 2
if (end ==0) {
NextG(child, ch);
Mut(ch);
Fit(ch, F);
Sh_fit_sort(ch, c, f, F);
OutCord(ch, g, ¢);
bec.push_back(f[0]); //calculating best and average fitness of generation 2
yl=0;
for (inti=0;i<20;i++)
{
yl =yl +f[i];
}
af.push_back(y1 / 20);
cout << bc[g] <<'"; //display fitnes of best chromosom 2
if (oc[g] ==0) end = 1; //stoping 2
g++;
}

}
OutBCAF(bc, af);

std::cout << "(To see more information, check text files: BC.txt, AF.txt, GEN.txt, Xways.txt, Yways.txt)"
<< endl << endl;

foutX << endl,

foutY << endl,

system("pause");

return O;

void NextG(int mas1[20][1000], int mas2[20][1000])

{
srand(time(NULL));
int x1, x2, e;
for (ints=0; s < 20; s++)
{
x1 =rand() % 10;
x2 = rand() % 10;
for (inti = 0; i < 1000; i++) //uniform crossover
{
e=rand() % 2;
if (e == 1) { mas2[s][i] = mas1[x1][i]; }
else { mas2[s][i] = mas1[x2][i]; }
}
}
}
void Mut(int mas1[20][1000])
{
srand(time(NULL));
for (inti=0;i<20; i++)
{
for (int f = 0; f < 1000; f++)
{
int mut = rand() % 20;
if (mut==2) {
masl[i][f] = rand() % 4 + 1;
}
}
}
void Fit(int mas1[20][1000], int F[20])
{

int X1 =500,Y1=500,x1=0,y1=0,x2=0,y2=0,x3=0,y3=0,x4=0,y4 =0, fl, f2, f3, f4;
for (inti=0;i<20;i++)
{
Fli1=1;
X1 =500;
Y1 =500;
for (int f = 0; f < 1000; f++) // dog is moving 1
{
switch (mas1[i][f])
{
case 1: { Y1=Y1+1; break; }
case 2: { Y1=Y1-1,; break; }
case 3: { X1 = X1 +1; break; }
case 4: { X1 = X1 - 1; break; }
default: cout << "error" << endl,
}
if (X1==1001) { X1=0;}
if (X1 ==-1) { X1 =1000; }
if(Y1==1001){Y1=0;}
if (Y1==-1){Y1=1000; }
if (X1==200 && Y1==200){F[i]
if (X1 ==200 && Y1 ==2800){FJi]
if (X1 ==800 && Y1 ==2800){FJi]
if (X1 ==800 && Y1 ==200){F[i]

=0;} //ifdog find sausage 1
=0;} //ifdog find sausage 2
=0;} //ifdog find sausage 3
=0;} //ifdog find sausage 4

}
if (F[i] = 10)
{

x1 =200 - X1;
yl1=200-Y1;
x2 =200 - X1;
y2 =800 - Y1;
x3 =800 - X1;
y3 =800 - Y1;
x4 =800 - X1;
y4 =200 - Y1;
f1 = fabs(x1) + fabs(y1);

¥

f2 = fabs(x2) + fabs(y2);
f3 = fabs(x3) + fabs(y3);
f4 = fabs(x4) + fabs(y4);
if (fl <=2 && f1 <=13 && 1 <=f4) F[i] = f1;
if (f2 <=1l && 12 <=13 && 2 <=f4) F[i] = 12;
if (f3<=12 && f3 <=1l && 3 <=14) F[i] = 13;
if (f4 <=2 && T4 <=13 && f4 <=f1) F[i] = f4;

void OutCord(int mas[20][1000], int m, int c[20][2])

{

ofstream foutX("Xways.txt", ios_base::app); //making file of X cordinates
ofstream foutY (""Yways.txt", ios_base::app); //making file of Y cordinates
int X1 =500, Y1 =500;

foutX <<"-"<<m+1<<" " << endl;
foutY <<"-"<<m+1<<" " << endl;
for (inti=0;i<20; i++)
{
foutX << i+ 1 <<"/lII" << endl;
foutY << i+ 1<<"//II" <<endl;
X1 =500;
Y1 =500;
for (int f = 0; f < 1000; f++) // dog is moving 1
{
switch (masl[i][f])
{
case 1: { Y1=Y1+1; break; }
case 2: { Y1=Y1-1,; break; }
case 3: { X1 = X1 + 1; break; }
case 4: { X1 = X1 -1, break; }
default: cout << "error" << endl;
}
foutX << X1 << endl;
foutY << Y1 << endl;
c[i][1] = X1;
c[il[2] = Y1,
}
foutX << endl;
foutY << endl;
}

