
Denis Ramskiy II 11

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;

namespace LakyDog
{
 public partial class Form1 : Form
 {
 int generationCount;
 Random rnd ;
 Generation work ;
 Points wPoint;
 public Form1()
 {
 InitializeComponent();
 generationCount = 0;
 wPoint = new Points();
 rnd = new Random(DateTime.Now.Millisecond);
 work = new Generation(rnd, wPoint);
 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;

 File.WriteAllText("BestFitness.txt","");
 File.WriteAllText("AveregFitness.txt", "");
 }

 private void button1_Click(object sender, EventArgs e)
 {
 generationCount++;
 Bitmap new_map = new Bitmap(1000,1000);
 Pen myPen = new Pen(Color.Red);
 Graphics graph = Graphics.FromImage(new_map);

 work.new_generation(rnd, wPoint);
 for (int i = 0; i < 20; i++)
 {
 int x = 500, y = 500;
 for (int j = 0; j < 1000; j++)
 {
 int nx = x, ny = y;
 switch (work.get(i).get()[j])
 {
 case 0: nx--; break;
 case 1: nx++; break;
 case 2: ny++; break;
 case 3: ny--; break;
 }
 graph.DrawLine(myPen, x, y, nx, ny);
 x = nx; y = ny;
 }
 }
 myPen.Color = Color.Green;
 myPen.Width = 8;

 for (int i = 0; i < wPoint.getCount(); i++)
 graph.DrawEllipse(myPen, wPoint.getPoint(i).getPoints()[0] - 2,
wPoint.getPoint(i).getPoints()[1] - 2, 4, 4);
 pictureBox1.Image = new_map;

 File.AppendAllText("BestFitness.txt",
work.get()[0].get_shFitness().ToString()+"\r\n");
 File.AppendAllText("AveregFitness.txt", work.get_fitness().ToString()
+ "\r\n");

 textBox1.Text = work.get_fitness().ToString();
 textBox2.Text = generationCount.ToString();
 }
 }
}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Gen
 {
 private List<int> hromosom;
 private double fitness;
 private double shFitness;
 private const int max=1000;

 public Gen(Random rnd,Points mypnt)
 {
 shFitness = 0;
 hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 hromosom.Add(rnd.Next() % 4);
 fitness = calcFit(mypnt);
 }
 public Gen(Gen obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 this.hromosom.Add(obj.get()[i]);
 this.fitness = obj.get_fitness();
 this.shFitness = obj.get_shFitness();
 }
 public Gen(List<int> obj, Points mypnt)
 {
 shFitness = 0;
 this.hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 this.hromosom.Add(obj[i]);
 fitness = calcFit(mypnt);
 }
 public void mutation(Random rnd)
 {
 for (int i = 0; i < max; i++)
 if (rnd.Next() % 1000 < 3)
 hromosom[i] = rnd.Next() % 4;
 }
 private int calcFit(Points mypnt)
 {
 int result = 1000;
 for (int i = 0; i < mypnt.getCount(); i++)
 {
 int temp1 = Math.Abs(mypnt.getPoint(i).getPoints()[0] -
corOfEnd()[0]);
 int temp2 = Math.Abs(mypnt.getPoint(i).getPoints()[1] -
corOfEnd()[1]);
 if (temp1 + temp2 < result)
 result = temp1 + temp2;
 }

 return result;
 }
 static public Gen operator +(Gen obj1, Gen obj2)
 {
 obj1.get().Clear();
 for (int i = 0; i < max; i++)
 obj1.get().Add(obj2.get()[i]);
 obj1.set_fitness(obj2.get_fitness());
 obj1.set_shFitness(obj2.get_shFitness());
 return obj1;
 }
 public void set_fitness(double a)
 {
 this.fitness = a;
 }
 public List<int> get()
 {
 return hromosom;
 }
 public double get_fitness()
 {
 return fitness;
 }
 public double get_shFitness()
 {
 return shFitness;
 }
 public void set_shFitness(double a)
 {
 shFitness = a;
 }
 public List<int> corOfEnd()
 {
 List<int> temp = new List<int>();
 int x = 500, y = 500;
 for (int i = 0; i < max; i++)
 {
 switch (hromosom[i])
 {
 case 0: x--; break;
 case 1: x++; break;
 case 2: y++; break;
 case 3: y--; break;
 }
 }
 temp.Add(x);
 temp.Add(y);

 return temp;
 }
 }
}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Generation
 {
 private List<Gen> generation;
 private double fitness;
 private const int max = 1000;

 public Generation(Random rnd, Points mypnt)
 {
 generation = new List<Gen>();
 for (int I = 0; I < 20; I++)
 {
 Gen temp = new Gen(rnd, mypnt);
 generation.Add(temp);
 fitness += (double)temp.get_fitness() / 20;
 }
 for (int I = 0; I < 20; I++)
 calcShFitness(rnd, mypnt, generation[I]);

 this.shSort();
 }
 public void calcShFitness(Random rnd, Points mypnt,Gen obj)
 {
 double temp=0;
 for (int j = 0; j < 20; j++)
 {
 int cor1 = Math.Abs(obj.corOfEnd()[0] -
generation[j].corOfEnd()[0]);
 int cor2 = Math.Abs(obj.corOfEnd()[1] -
generation[j].corOfEnd()[1]);
 if (cor1 + cor2 < 50)
 temp += Math.Abs(1 - (double)generation[j].get_fitness() /
(cor1 + cor2));
 }

 obj.set_shFitness((double)obj.get_fitness() / temp);
 }
 public void shSort()
 {
 for (int i = 0; i < 20; i++)
 for (int j = 0; j < 19; j++)
 if (generation[j].get_fitness() > generation[j +
1].get_fitness())
 {
 Gen temp = new Gen(generation[j]);
 generation[j] += generation[j + 1];
 generation[j + 1] += temp;
 }
 }
 public List<Gen> get_parents(Random rnd)
 {
 List<Gen> TEMP = new List<Gen>();
 TEMP.Add(generation[rnd.Next() % 10]);
 TEMP.Add(generation[rnd.Next() % 10]);
 return TEMP;
 }
 public Gen get_child(Random rnd, List<Gen> par, Points mypnt)
 {
 List<int> TEMP = new List<int>();
 for (int i = 0; i < max; i++)
 if (rnd.Next() % 2 == 0)
 TEMP.Add(par[0].get()[i]);
 else
 TEMP.Add(par[1].get()[i]);
 Gen child = new Gen(TEMP, mypnt);
 child.mutation(rnd);

 return child;
 }
 public void new_generation(Random rnd, Points mypnt)
 {
 List<Gen> ngeneration = new List<Gen>();
 double nfitness = 0;
 for (int i = 0; i < 20; i++)

 ngeneration.Add(this.get_child(rnd, this.get_parents(rnd),
mypnt));

 for (int I = 0; I < 20; I++)
 {
 calcShFitness(rnd, mypnt, ngeneration[I]);
 nfitness += (double)ngeneration[I].get_fitness() / 20;
 }
 for (int i = 0; i < 20; i++)
 this.generation[i] += ngeneration[i];
 this.fitness = nfitness;
 this.shSort();
 }
 public double get_fitness()
 {
 return fitness;
 }
 public List<Gen> get()
 {
 return generation;
 }
 public Gen get(int i)
 {
 return generation[i];
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Points
 {
 private List<Point> list;

 public Points()
 {
 list = new List<Point>();
 list.Add(new Point(200, 200));
 list.Add(new Point(200, 800));
 list.Add(new Point(800, 200));
 list.Add(new Point(800, 800));
 }
 public int getCount()
 {
 return list.Count;
 }
 public Point getPoint(int i)
 {
 return list[i];
 }
 public bool checkDistans(Gen obj)
 {
 for (int i = 0; i < list.Count; i++)
 if ((obj.corOfEnd()[0] - list[i].getPoints()[0] +
 obj.corOfEnd()[1] - list[i].getPoints()[1]) < 50)
 return true;

 return false;
 }
 }

}

-100

0

100

200

300

400

500

600

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

Ряд1

Ряд2

