
Task 3

Neural Network for Even-n-Parity

Code:

using System;

using System.Collections.Generic;

using System.Linq;

namespace ConsoleApplication1

{

 public class Network

 {

 private double[,] weight = new double[generation, genes];

 private const int genes = 30;

 private const int generation = 100;

 private int[,] y = new int[100, 32];

 int[,] p = new int[100, 32];

 private int[] fitness = new int[100];

 private int[] e = new int[];

 private int[,] inputs = new int [,] ;

 public Network()

 {

 Random rand = new Random();

 for (int i = 0; i < generation; i++)

 {

 for (int j = 0; j < genes; j++)

 {

 weight[i, j] = rand.Next(-1, 2) * rand.NextDouble();

 }

 }

 int count = 0;

 for (int i = 0; i < 100; i++)

 {

 count = 0;

 for (int j = 0; j < 32; j++)

 {

 y[i, j] = Calculate(j);

 if (y[i, j] == e[j])

 count++;

 }

 fitness[i] = count;

 }

 }

 public int Calculate(int h)

 {

 double result = 0;

 int[] res = new int[5];

 for (int i = 0; i < 5; i++)

 {

 result = 0;

 for (int j = 0; j < 30; j++)

 {

 result += inputs[h, i] * weight[i, j];

 }

 if (result >= 0)

 res[i] = 1;

 else

 res[i] = -1;

 }

 for (int i = 0; i < 5; i++)

 {

 result = 0;

 for (int j = 0; j < 30; j++)

 {

 result += res[i] * weight[i, j];

 }

 }

 int r = 0;

 if (result >= 0)

 r= 1;

 else

 r = -1;

 return r;

 }

 public void Cross()

 {

 int[] keys = new int[32];

 int[,] newPopulation = new int[100 / 2, 32];

 for (int i = 0; i < 32; i++)

 keys[i] = i;

 Array.Sort(fitness, keys);

 for (int i = 0; i < 100 / 2; i++)

 {

 for (int j = 0; j < 32; j++)

 {

 newPopulation[i, j] = y[keys[i], j];

 }

 }

 Random rand = new Random();

 for (int i = 0; i < 100; i++)

 {

 int a = rand.Next(0, 100/ 2);

 int b = rand.Next(0, 100 / 2);

 for (int j = 0; j < 32; j++)

 {

 p[0, j] = newPopulation[a, j];

 p[1, j] = newPopulation[b, j];

 }

 for (int j = 0; j < 32; j++)

 {

 int c = rand.Next(0, 2);

 if (c == 0)

 {

 y[i, j] = p[0, j];

 }

 else

 {

 y[i, j] = p[1, j];

 }

 }

 }

 }

 public int Get_fitness()

 {

 return fitness.Max();

 }

 public void Mutation()

 {

 Random rand = new Random();

 for (int i = 0; i < 100; i++)

 {

 for (int j = 0; j < 32; j++)

 {

 int value = rand.Next(0, 32);

 if (value == 0)

 {

 weight[i, j] = rand.Next(-1, 2) * rand.NextDouble();

 }

 }

 }

 int count = 0;

 for (int i = 0; i < 100; i++)

 {

 count = 0;

 for (int j = 0; j < 32; j++)

 {

 y[i, j] = Calculate(j);

 if (y[i, j] == inputs[i, j])

 count++;

 }

 fitness[i] = count;

 }

 }

 }

}

//**********************

using System;

namespace ConsoleApplication1

{

 class Program

 {

 public class Conditional

 {

 public static bool Condit(int max)

 {

 if (max == 32)

 {

 return false;

 }

 else

 return true;

 }

 }

 static void Main(string[] args)

 {

 Network nw = new Network();

 int max = nw.Get_fitness();

 while (Conditional.Condit(max))

 {

 nw.Cross();

 nw.Mutation();

 max = nw.Get_fitness();

 Console.WriteLine(max);

 }

 }

 }

}

x1 x2 x3 x4 x5 y

1 1 1 1 1 -1

1 1 1 1 -1 1

1 1 1 -1 1 1

1 1 1 -1 -1 -1

1 1 -1 1 1 1

1 1 -1 1 -1 -1

1 1 -1 -1 1 -1

1 1 -1 -1 -1 1

1 -1 1 1 1 1

1 -1 1 1 -1 -1

1 -1 1 -1 1 -1

1 -1 1 -1 -1 1

1 -1 -1 1 1 -1

1 -1 -1 1 -1 1

1 -1 -1 -1 1 1

1 -1 -1 -1 -1 -1

-1 1 1 1 1 1

-1 1 1 1 -1 -1

-1 1 1 -1 1 -1

-1 1 1 -1 -1 1

-1 1 -1 1 1 -1

-1 1 -1 1 -1 1

-1 1 -1 -1 1 1

-1 1 -1 -1 -1 -1

-1 -1 1 1 1 -1

-1 -1 1 1 -1 1

-1 -1 1 -1 1 1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 1 1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

