
Source code on JS:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="style.css">

 <script src="jquery-3.1.0.js"></script>

 <title>To do list</title>

 </head>

 <body>

 <div id = "table"></div>

 <script type="text/javascript">

 var statistics = [];

 function randomInit() {

 return Math.random() > 0.5 ? 1 : 0;

 }

 function sort(population) {

 return population.sort(function(first, second){

 return (first.fitness > second.fitness) - (second.fitness > first.fitness);

 });

 }

 function init() {

 var population = [];

 for(var i = 0; i < 20; i++) {

 var chromosome = [];

 for(var j = 0; j < 10; j++) {

 chromosome.push(randomInit());

 }

 population.push(chromosome);

 }

 return population;

 }

 function getX(chromosome) {

 var x = 0;

 for(var i = 0; i < 10; i++) {

 x += chromosome[i] ? Math.pow(2, i) / 1024 : 0;

 }

 return x;

 }

 function fitness(population) {

 for(var i = 0; i < population.length; i++){

 var x = getX(population[i]);

 population[i].fitness = Math.pow(Math.sin(5 * Math.PI * x), 6);

 }

 return population;

 }

 function d(firstChromosome, secondChromosome){

 return getX(firstChromosome) - getX(secondChromosome);

 }

 function uniformCrossover(firstChromosome, secondChromosome) {

 var returnChromosomes = [];

 var returnChromosome1 = [];

 var returnChromosome2 = [];

 for(var i = 0; i < 10; i++){

 Math.random() < 0.5 ?

returnChromosome1.push(firstChromosome[i]) :

 returnChromosome1.push(secondChromosome[i]);

 Math.random() < 0.5 ?

returnChromosome2.push(secondChromosome[i]) :

 returnChromosome2.push(firstChromosome[i]);

 }

 returnChromosomes.push(returnChromosome1);

 returnChromosomes.push(returnChromosome2);

 return returnChromosomes;

 }

 function mutation(population) {

 return population.map(function(chromosome) {

 return chromosome.map(function(gene) {

 return Math.random() < 0.02 ? (gene + 1) % 2 : gene;

 });

 });

 }

 function nextGeneration(population) {

 var returnPopulation = population;

 var chromosomes = [];

 var statisticObj = [];

 for(var i = 0; i < 10; i++) {

 var firstChromosomeIndex = Math.floor(Math.random() * 20);

 var secondChromosomeIndex = Math.floor(Math.random() *

20);

 var p1 = returnPopulation[firstChromosomeIndex];

 var p2 = returnPopulation[secondChromosomeIndex];

 var children = uniformCrossover(p1, p2);

 children = fitness(children);

 var c1 = children[0];

 var c2 = children[1];

 chromosomes.push(c1.fitness);

 chromosomes.push(c2.fitness);

 chromosomes.push(p1.fitness);

 chromosomes.push(p2.fitness);

 if(d(p1, c1) + d(p2,c2) > d(p1, c2) + d(p2, c1)){

 if(c1.fitness < p1.fitness) {

 returnPopulation[firstChromosomeIndex] = c1;

 }

 if(c2.fitness < p2.fitness) {

 returnPopulation[secondChromosomeIndex] =

c2;

 }

 } else {

 if(c2.fitness < p1.fitness) {

 returnPopulation[firstChromosomeIndex] = c2;

 }

 if(c1.fitness < p2.fitness) {

 returnPopulation[secondChromosomeIndex] =

c1;

 }

 }

 }

 statisticObj.push(chromosomes);

 statisticObj.push(returnPopulation);

 statisticObj.push(averageFitness(returnPopulation));

 statistics.push(statisticObj);

 return returnPopulation;

 }

 function averageFitness(population){

 var average = 0;

 for(var i = 0; i < population.length; i++){

 average += population[i].fitness;

 }

 return average / population.length;

 }

 var population = init();

 population = fitness(population);

 for(var i = 0; i < 15; i++){

 population = nextGeneration(population);

 }

 function show(population) {

 for(var i = 0; i < 20; i++){

 console.log(getX(population[i]));

 }

 }

 function showStatistics(statistics){

 for(var i = 0; i < 15; i++){

 if(i % 3 === 0){

 for(var j = 0; j < 10; j++){

 console.log("c1: " + statistics[i][0][j *

4].toFixed(5) + " \tc2: " + statistics[i][0][j * 4 + 1].toFixed(5) + "\np1: " + statistics[i][0][j * 4 +

2].toFixed(5) + "\t\tp2: " + statistics[i][0][j * 4 + 3].toFixed(5));

 }

 }

 }

 for(var i = 0; i < 15; i++){

 if(i % 3 === 0){

 for(var k = 0; k < 20; k++){

 console.log("X:" +

getX(statistics[i][1][k]).toFixed(7) + "\t\tY: " + statistics[i][1][k].fitness.toFixed(7));

 }

 }

 }

 console.log("average: \n");

 for(var i = 0; i < 15; i++){

 console.log(statistics[i][2]);

 }

 console.log("min: \n");

 for(var i = 0; i < 15; i++){

 console.log(sort(statistics[i][1])[0].fitness);

 }

 }

 for(var i = 0; i < population.length; i++){

 console.log(getX(population[i]));

 }

 //showStatistics(statistics);

 </script>

 </body>

</html>

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

y=(sin(5*Pi*x))^6

