First random generation:

5th iteration:

Crowding Algorithm with for function y = sin A 6 (5 pi x)

1.0

0.8 F

0.6 -

0.4+

0.0

1.0

0.2

0.4

0.6

1.0

0.8 |

0.6 |

0.2}

0.0

0.2

0.4

0.6

0.8

1.0

10th iteration

15th iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.4

0.6

1.0

1.0

0.8 |

0.6 -

0.4 +

0.0

0.0

0.2

0.4

0.6

0.8

1.0

Final 20th iteration:

1.0

0.6 -

0.4 -

0.2 -

0.0

0.0

0.4

0.6

Graph of average and minimum values VS iteration

0.40 .

0.8

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

10

15

20

25

30

1.0

Note: Minimum values is very small, that because at the graph its a little bit difficult to recognize it.

Table of replacement for 0, 5, 10, 15 and 20th iterations

Parent1 Parent2 Child1l Child?2 Result 1 Result 2
Iteration: 0

0.301075 0.639296 0.435973 0.645161 0.645161 0.435973
0.784946 0.829912 0.610948 0.788856 0.788856 0.610948
0.247312 0.169110 0.216031 0.169110 0.169110 0.216031
0.905181 0.130010 0.888563 0.151515 0.151515 0.130010
0.140762 0.142717 0.140762 0.205279 0.205279 0.142717
0.250244 0.784946 0.292278 0.265885 0.250244 0.784946
0.247312 0.301075 0.732160 0.801564 0.801564 0.732160
0.140762 0.784946 0.157380 0.758553 0.758553 0.784946
0.142717 0.250244 0.127077 0.098729 0.142717 0.250244
0.487781 0.493646 0.233627 0.235582 0.235582 0.233627
Iteration: 5

0.198436 0.786901 0.523949 0.773216 0.198436 0.786901
0.167155 0.012708 0.231672 0.042033 0.167155 0.012708
0.211144 0.633431 0.246334 0.633431 0.211144 0.633431
0.167155 0.783969 0.419355 0.877810 0.167155 0.783969
0.197458 0.169110 0.043988 0.197458 0.197458 0.197458
0.198436 0.169110 0.231672 0.133920 0.198436 0.169110
0.169110 0.784946 0.284457 0.153470 0.169110 0.784946
0.786901 0.783969 0.795699 0.847507 0.786901 0.795699
0.167155 0.638319 0.638319 0.167155 0.167155 0.167155
0.786901 0.167155 0.792766 0.161290 0.786901 0.792766
Iteration: 10

0.197458 0.198436 0.202346 0.478983 0.197458 0.198436
0.198436 0.196481 0.198436 0.196481 0.198436 0.198436
0.197458 0.197458 0.197458 0.197458 0.197458 0.197458
0.794721 0.400782 0.262952 0.400782 0.400782 0.400782
0.198436 0.198436 0.197458 0.448680 0.198436 0.198436
0.794721 0.197458 0.697947 0.043988 0.794721 0.197458
0.197458 0.198436 0.201369 0.198436 0.198436 0.201369
0.198436 0.198436 0.135875 0.448680 0.198436 0.198436
0.198436 0.794721 0.544477 0.198436 0.198436 0.198436
0.211144 0.400782 0.150538 0.461388 0.211144 0.400782
Iteration: 15

0.198436 0.400782 0.150538 0.448680 0.198436 0.400782
0.198436 0.201369 0.701857 0.198436 0.198436 0.201369
0.198436 0.400782 0.150538 0.452590 0.198436 0.400782
0.400782 0.201369 0.439883 0.201369 0.400782 0.201369
0.400782 0.400782 0.150538 0.400782 0.400782 0.400782
0.198436 0.201369 0.201369 0.714565 0.198436 0.201369
0.201369 0.400782 0.201369 0.392962 0.201369 0.400782
0.201369 0.201369 0.076246 0.138807 0.201369 0.201369
0.400782 0.400782 0.401760 0.400782 0.400782 0.400782
0.201369 0.201369 0.467253 0.201369 0.201369 0.201369
Iteration: 20

0.400782 0.400782 0.403715 0.901271 0.400782 0.400782
0.400782 0.400782 0.404692 0.463343 0.400782 0.400782
0.201369 0.400782 0.701857 0.279570 0.201369 0.400782
0.400782 0.400782 0.150538 0.400782 0.400782 0.400782
0.400782 0.400782 0.150538 0.385142 0.400782 0.400782
0.400782 0.400782 0.400782 0.400782 0.400782 0.400782
0.399804 0.400782 0.398827 0.397849 0.399804 0.400782
0.400782 0.400782 0.154448 0.385142 0.400782 0.400782
0.201369 0.400782 0.701857 0.400782 0.400782 0.400782
0.400782 0.400782 0.025415 0.405670 0.400782 0.400782

Source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import random
import math
import matplotlib.pyplot as plt
import numpy as np
def create population(gens, chromos):
population = []
for chrom in xrange(chromos):
population.append([])
for gen in xrange(gens):
population[chrom].append(random.randint(0, 1))
return population
def calc y(x):
return math.sin(5 * 3.1415 * x) ** 6
def calc fitness(arr):
x = convert from bin to dec(arr)
x /= 1023.
y = calc_y(x)
return y
def find best chromos(population):
list = []
for chrom in population:
list.append((calc_fitness(chrom), chrom))
bubble sort(list)
r=1[1
for item in list[len(population) / 2:]:
r.append(item[1])
return r
def create childs(pop):
size = len(pop)
parl, par2 = random.randint(®, size - 1), random.randint(0, size - 1)
cut point = random.randint (@, len(pop[0]))
parentl = pop[parl]
parent2 = pop[par2]
childl = parentl[:cut point] + parent2[cut point:]
child2 = parent2[:cut point] + parentl[cut point:]
return childl, child2, parentl, parent2
def bubble sort(A):
for i in range(len(A)):
for k in range(len(A) - 1, i, -1):
if A[k][O] > A[k - 1]1[0]:
swap(A, k, k - 1)
def swap(A, x, y):

def

def

def

def

def

def

def

def

def

cl):

tmp = A[Xx]
A[x] = Aly]
Aly] = tmp
swap(sl, s2):
tmp = sl
sl = s2
s2 = tmp
return sl1, s2
get avg count(population):
chromos = len(population)
average list = []
for chrom in xrange(chromos):
cur counter = calc fitness(population[chrom])
average list.append(cur counter)
return sum(average list) / len(average list)
minimum(population):
min = 9999999999,
for chrom in population:
fintess = calc fitness(chrom)
if min > fintess:
min = fintess
return min
convert from bin to dec(arr):
num str = *°'
for a in arr:
num str += str(a)
return int(num str, 2)
is mutant(prob, count all):
val = random.randrange(0, count all)
if val <= prob:
return True
return False
inverse value(val):
if val is 0:
return 1
return 0
crossover _mutate(child):
print("mutation of child")
print(child)
len_all = len(child)
prob = 1. / len_all
mutated child = []
for bit in child:
if is mutant(prob, len all):
mutated child.append(inverse value(bit))
else:
mutated child.append(bit)
print(mutated child)
return mutated child
distance(pointl, point2):
pl = convert from bin to dec(pointl) / 1023.
p2 = convert from bin to dec(point2) / 1023.
return math.fabs(pl - p2)
replace parents and childs(pl, p2, cl, c2):
if distance(pl, cl) + distance(p2, c2) > distance(pl, c2) + distance(p2,

if calc fitness(cl) < calc fitness(pl):
retl = cl
else:

retl = pl
if calc fitness(c2) < calc fitness(p2):

ret2 = c2

else:
ret2 = p2

else:

if calc fitness(c2) < calc fitness(pl):
retl = c2

else:
retl = pl

if calc fitness(cl) < calc fitness(p2):
ret2 = cl

else:
ret2 = p2

return retl, ret2
def create new generation(old gen):
new gen = []
for iter in xrange(len(old gen) / 2):
chl, ch2, prl, pr2 = create childs(old gen)
chl crossover mutate(chl)
ch2 crossover mutate(ch2)
repl, rep2 = replace parents and childs(prl, pr2, chl, ch2)
new_gen.append(repl)
new _gen.append(rep2)
return new gen
def get avg count(population):
chromos = len(population)
average list = []
for chrom in xrange(chromos):
cur_counter = calc fitness(population[chrom])
average list.append(cur counter)
return sum(average list) / len(average list)
def find best chromosome(min, all chromos):
for chr in all chromos:

if min == calc fitness(chr):
return chr
def main():
population = create population(10, 20)
mins = []
avgs = []

count _iter = 30
for i in xrange(count iter):
min = minimum(population)
mins.append(min)
avg = get avg count(population)
avgs.append(avg)
print(str(i) + ";min;
print(str(i) + ";" +
str(convert from bin to dec(find best chromosome(min, population))/1023.))
population = create new generation(population)
if i in [0, 5, 10, 15, 25]:
print("Iteration: " + str(i))
xs, ys = [1, []
for chr in population:
x = convert from bin to dec(chr) / 1023.
y = calc fitness(chr)
print(str(x) + ";" + str(y))
xs.append(x)
ys.append(y)

+ str(min))

= np.arange(0, 1, 0.0025)

=[]

X in b x:

b y.append(calc_y(x))
plt.plot(xs, ys, 'ro')
plt.plot(b x, b y,'b")
plt.show()

print(mins)
plt.plot(range(count iter), mins, 'b")
plt.plot(range(count iter), avgs, 'g")
plt.show()

if npame == "_main__":

main()

b x
by
for

