#include <time.h>

#include <math.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#include <fstream>
#include <vector>

using namespace std;
typedef vector<int> Chrm;
typedef vector<Chrm> Pplt;

Pplt population;

double fitness(Chrm Chrm)

{

int sum = 0;

for (inti=1;i<11; i++)

{

sum += Chrm[i] * pow(2, (i - 1));
}

intx =sum/ 1023 * 5;
if (Chrm[0] == 0)

{

X =x*(-1);

}

sum = 0;

for (inti=12;i < 22; i++)
{

sum += Chrm[i] * pow(2, (i - 12));

}

int y = sum / 1023 * 5;if (Chrm[11] == 0)

{

y=y*(b;

}

double z = x * sin(abs(x)) + y * sin(abs(y));
return z;

}
double distance(Chrm Chrm1, Chrm Chrmz2)

{

int sum = 0;

for (inti=1;i<11;i++)

{

sum += Chrm1[i] * pow(2, (i - 1));
}

int x1 =sum /1023 * 5;
if (Chrm1[0] == 0)

{

x1 =x1* (-1);

}

sum = 0;

for (inti=12;i < 22; i++)
{

sum += Chrm1[i] * pow(2, (i - 12));
}

int yl =sum /1023 * 5;

if (Chrm1[11] == 0)

{

yl=yl*(-1);

}sum = 0;

for (inti=1;i<11; i++)

{

sum += Chrm2[i] * pow(2, (i - 1));
}

int x2 =sum /1023 * 5;

if (Chrm2[0] == 0)

{

x2 =x2 * (-1);

}

sum = 0;

for (inti=12;i < 22; i++)

{

sum += Chrm2[i] * pow(2, (i - 12));
}

int y2 =sum /1023 * 5;

if (Chrm2[11] == 0)

{

y2=y2*(-1);

}

double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
return dist;

}

Pplt makePplt()

{

Pplt result;

for (inti=0;i < 20; i++)

{Chrm Chrm;

for (int j = 0; j < 22; j++)

{

Chrm.push_back(rand() % 2);

}

result.push_back(Chrm);

}

return result;

}

Pplt makePplt();

double fitness(Chrm Chrm);
double s_function(Chrm Chrm);
bool sortPpl(const Chrm &Chrm1, const Chrm &Chrm?2);
Pplt newPplt();

double distance(Chrm Chrm1, Chrm Chrm?2);
double sharing_fitness(Chrm Chrm);
int main()

{

srand(time(NULL));

ofstream file("file.txt", ios::out);
population = makePplt();

sort(population.begin(), population.end(), sortPplt);

double aver = 0.0;

for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)
{

population = newPplt();

sort(population.begin(), population.end(), sortPplt);double max = sharing_fitness(population[0]);
double average = 0.0;

for (inti=0;i < 20; i++)

{

average += sharing_fitness(populationl[i]);

}

average = average / 20;

if (average == aver)

{

noChanged++;

}

else

{

noChanged = 0;

}

aver = average;

file << max <<"\t" << average << endl;

}

file.close();

system("pause");

return 0;

}

double s_function(Chrm Chrm)

{

double sigma = 1.0;

double s = 0.0;

for (inti=0; i < 20; i++){

double d = distance(Chrm, population[i]);
if (d < sigma)

{

s+=(1-(d/sigma));

}

}

return s;

}

double sharing_fitness(Chrm Chrm)

{

double f = fitness(Chrm) / s_function(Chrm);
return f;

}

bool sortPplt(const Chrm &Chrm1, const Chrm &Chrm?2)
{

return sharing_fitness(Chrm1) > sharing_fitness(Chrm2);

}

