
#include <time.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#include <fstream>
#include <vector>
using namespace std;
typedef vector<int> Chrm;
typedef vector<Chrm> Pplt;
Pplt population;
double fitness(Chrm Chrm)
{
int sum = 0;
for (int i = 1; i < 11; i++)
{
sum += Chrm[i] * pow(2, (i - 1));
}
int x = sum / 1023 * 5;
if (Chrm[0] == 0)
{
x = x * (-1);
}
sum = 0;
for (int i = 12; i < 22; i++)
{
sum += Chrm[i] * pow(2, (i - 12));
}
int y = sum / 1023 * 5;if (Chrm[11] == 0)
{
y = y * (-1);
}
double z = x * sin(abs(x)) + y * sin(abs(y));
return z;
}
double distance(Chrm Chrm1, Chrm Chrm2)
{
int sum = 0;
for (int i = 1; i < 11; i++)
{
sum += Chrm1[i] * pow(2, (i - 1));
}
int x1 = sum / 1023 * 5;
if (Chrm1[0] == 0)
{
x1 = x1 * (-1);
}
sum = 0;
for (int i = 12; i < 22; i++)
{
sum += Chrm1[i] * pow(2, (i - 12));
}

int y1 = sum / 1023 * 5;
if (Chrm1[11] == 0)
{
y1 = y1 * (-1);
}sum = 0;
for (int i = 1; i < 11; i++)
{
sum += Chrm2[i] * pow(2, (i - 1));
}
int x2 = sum / 1023 * 5;
if (Chrm2[0] == 0)
{
x2 = x2 * (-1);
}
sum = 0;
for (int i = 12; i < 22; i++)
{
sum += Chrm2[i] * pow(2, (i - 12));
}
int y2 = sum / 1023 * 5;
if (Chrm2[11] == 0)
{
y2 = y2 * (-1);
}
double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
return dist;
}
Pplt makePplt()
{
Pplt result;
for (int i = 0; i < 20; i++)
{Chrm Chrm;
for (int j = 0; j < 22; j++)
{
Chrm.push_back(rand() % 2);
}
result.push_back(Chrm);
}
return result;
}
Pplt makePplt();
double fitness(Chrm Chrm);
double s_function(Chrm Chrm);
bool sortPpl(const Chrm &Chrm1, const Chrm &Chrm2);
Pplt newPplt();
double distance(Chrm Chrm1, Chrm Chrm2);
double sharing_fitness(Chrm Chrm);
int main()
{
srand(time(NULL));
ofstream file("file.txt", ios::out);
population = makePplt();

sort(population.begin(), population.end(), sortPplt);
double aver = 0.0;
for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)
{
population = newPplt();
sort(population.begin(), population.end(), sortPplt);double max = sharing_fitness(population[0]);
double average = 0.0;
for (int i = 0; i < 20; i++)
{
average += sharing_fitness(population[i]);
}
average = average / 20;
if (average == aver)
{
noChanged++;
}
else
{
noChanged = 0;
}
aver = average;
file << max << "\t" << average << endl;
}
file.close();
system("pause");
return 0;
}
double s_function(Chrm Chrm)
{
double sigma = 1.0;
double s = 0.0;
for (int i = 0; i < 20; i++){
double d = distance(Chrm, population[i]);
if (d < sigma)
{
s += (1 - (d / sigma));
}
}
return s;
}
double sharing_fitness(Chrm Chrm)
{
double f = fitness(Chrm) / s_function(Chrm);
return f;
}
bool sortPplt(const Chrm &Chrm1, const Chrm &Chrm2)
{
return sharing_fitness(Chrm1) > sharing_fitness(Chrm2);
}

