
Task 4

Student – Oksana Zanko

y=sin6(5πx)

Results:

Code:

namespace Population
{
 class Chromosoma
 {
 private static int num_in_ch = 20;
 private static Random rnd = new Random();
 private double handsome = num_in_ch;
 //ceils
 private double[] a = new double[num_in_ch];

 public Chromosoma()
 {
 GenerateRandom();
 }

 public Chromosoma(Chromosoma _a, Chromosoma _b)
 {

 for (int i = 0; i < num_in_ch; i++)
 {
 //rnd.NextDouble(10)
 a[i] = rnd.Next(2) > 0 ? _a.getCeilByNum(i) : _b.getCeilByNum(i);

 handsome += Math.Pow(Math.Sin(5 * Math.PI * a[i]), 6);
 }
 }

 public double getCeilByNum(int i)
 {
 return a[i];
 }

 private void GenerateRandom()
 {
 for (int i = 0; i < num_in_ch; i++)
 {
 a[i] = rnd.Next(-5, 6) * rnd.NextDouble();
 handsome += Math.Pow(Math.Sin(5 * Math.PI * a[i]), 6);
 }
 }

 public double GetHandsome()
 {
 return handsome;
 }

 }

 class Population
 {

 private static int population_count = 300;
 private static Random rnd = new Random();

 List<Chromosoma> population;

 public Population()
 {
 population = new List<Chromosoma>();
 for (int i = 0; i < population_count; i++)
 population.Add(new Chromosoma());
 }

 public void SortChromosoms()
 {
 Chromosoma a;
 for (int i = 0; i < population_count; i++)
 for (int j = 0; j < population_count - 1; j++)
 {
 if (population[j].GetHandsome() > population[j + 1].GetHandsome())
 {
 a = population[j];
 population[j] = population[j + 1];
 population[j + 1] = a;
 }
 }
 }

 public void MakeItHalf()
 {
 population.RemoveRange(population_count / 2, population_count / 2);
 }

 public void MakeChildren()
 {
 int temp = population.Count;
 for (int i = 0; i < temp; i++)
 {
 int first = rnd.Next(0, population.Count);
 int second = rnd.Next(0, population.Count);
 population.Add(new Chromosoma(population[first], population[second]));
 }
 }

 public double GetAveregeHandsome()
 {
 double handsome = 0;

 for (int i = 0; i < population.Count; i++)
 handsome += population[i].GetHandsome();

 handsome /= population.Count;

 return handsome;
 }

 public double GetTopHandsome()
 {
 return population[0].GetHandsome();
 }

 public double GetHandSome(int i)
 {
 return population[i].GetHandsome();
 }

 public bool Check()
 {

 return population[0].GetHandsome() == 0;
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 StreamWriter f = new StreamWriter(@"C:\AveregeChromosom.csv");
 StreamWriter f2 = new StreamWriter(@"C:\TopChromosom.csv");
 int generation = 1;
 Population a = new Population();
 f.WriteLine(a.GetAveregeHandsome() + "!" + generation);
 f2.WriteLine(a.GetTopHandsome() + "!" + generation;
 int count = 0;
 int same = 0;
 double last = 0;
 while (true)
 {
 if (last == a.GetTopHandsome())
 same++;
 else
 same = 0;
 last = a.GetTopHandsome();
 if (same == 5)
 break;
 generation++;
 a.SortChromosoms();
 a.MakeItHalf();
 a.MakeChildren();
 Console.WriteLine(a.GetTopHandsome());
 f.WriteLine(a.GetAveregeHandsome() + "!" + generation);
 f2.WriteLine(a.GetTopHandsome() + "!" + generation);
 if (a.Check())
 break;
 count++;
 }

 f.Close();
 f2.Close();
 }
 }
}

#include <iostream>

#include <time.h>

#include <math.h>

#include <stdio.h>

using namespace std;

void main()

{

 int parents[20][10],selection[10][10],i,j,temp,number;

 int cros,Num1,Num2;

 float y[20],x[20],x1;

 srand(time(NULL));

 for (i=0; i<20; i++)

 {

 for (j=0; j<10; j++)

 {

 parents[i][j]=rand()%2;

 }

 }

//fitness

 for (i=0; i<20; i++)

 {

 x[i]=0;

 for (j=0; j<10; j++)

 {

 x[i]+=parents[i][j]*pow(2.0,(9-j));

 }

 x[i]=x[i]/1023;

 y[i]=pow(sin(5*3.14*x[i]),6);

 }

//sort

 for (i=0; i<19; i++)

 {

 if (y[i]>y[i+1])

 {

 x1=y[i];

 y[i]=y[i+1];

 y[i+1]=x1;

 for (j=0; j<10; j++)

 {

 temp=parents[i][j];

 parents[i][j]=parents[i+1][j];

 parents[i+1][j]=temp;

 }

 i=0;

 }

 }

 FILE *pfile;

 pfile=fopen("text.txt","w");

 for (i=0; i<20; i++)

 {

 for (j=0; j<10; j++)

 {

 cout<<parents[i][j]<<" ";

 }

 cout<<endl;

 }

 cout<<endl<<endl;

 number=0;

 do

 {

 for (i=0; i<20; i++)

 {

 fprintf(pfile,"\t%.10f\t%.10f\n",y[i],x[i]);

 }

 fprintf(pfile,"\n--

\n");

//selection

 for (i=0; i<10; i++)

 for (j=0; j<10; j++)

 selection[i][j]=parents[i][j];

//crosover

 for (i=0; i<20; i++)

 {

 cros=rand()%8+1;

 Num1=rand()%10;

 Num2=rand()%10;

 for (j=0; j<10; j++)

 {

 if (j<cros)

 parents[i][j]=selection[Num1][j];

 else

 parents[i][j]=selection[Num2][j];

 }

 }

//fitness

 for (i=0; i<20; i++)

 {

 x[i]=0;

 for (j=0; j<10; j++)

 {

 x[i]+=parents[i][j]*pow(2.0,(9-j));

 }

 x[i]=x[i]/1023;

 y[i]=pow(sin(5*3.14*x[i]),6);

 }

//sort

 for (i=0; i<19; i++)

 {

 if (y[i]>y[i+1])

 {

 x1=y[i];

 y[i]=y[i+1];

 y[i+1]=x1;

 for (j=0; j<10; j++)

 {

 temp=parents[i][j];

 parents[i][j]=parents[i+1][j];

 parents[i+1][j]=temp;

 }

 i=0;

 }

 }

 number++;

 //cout<<number;

 }

 //while(y[19]!=0.0);

 while (number!=15);

 cout<<endl<<endl;

 cout<<"---"<<endl;

 cout<<"Number of iteration = "<<number<<endl;

 cout<<"---"<<endl;

 fprintf(pfile,"\n--\nNumber

of iteration = %d\n--\n",number);

 for (i=0; i<20; i++)

 {

 for (j=0; j<10; j++)

 {

 cout<<parents[i][j]<<" ";

 }

 fprintf(pfile,"\t%.10f\t%.10f\n",y[i],x[i]);

 cout<<endl;

 }

 fclose(pfile);

 system("pause");

}

population #1

0.73 0.88

0.92 0.49

0.00 0.60

0.22 0.74

0.05 0.84

0.00 0.82

0.70 0.52

0.04 0.36

0.24 0.06

0.73 0.68

0.02 0.57

0.27 0.14

0.97 0.89

0.13 0.15

0.66 0.32

0.50 0.13

0.00 0.80

1.00 0.50

0.28 0.06

0.93 0.09

population #2

0.28 0.46

0.00 0.61

0.04 0.76

0.04 0.96

0.49 0.67

0.29 0.54

0.28 0.14

0.00 0.79

0.00 0.80

0.11 0.95

0.00 0.78

0.00 0.20

0.19 0.55

0.02 0.76

0.28 0.26

0.00 0.39

0.60 0.13

0.00 0.62

0.00 0.80

0.00 0.20

