PRACT

CE

4

Minimization of 2D functions

In these practice we need to find multiple minimums of y = sin®

1. 20 random chromosomes with 10 genes each
2. Search for 2 random parents and get their children by uniform

crossover
3. Mutate children

(bmx)

4. Choose 2 survivors from 2 parents and 2 children by

- IF d(pl, cl) + d(p2, c2) > d(pl, c2) + d(p2,
* IF f(cl) > f(pl) THEN replace pl with cl
* TF f(c2) > f(p2) THEN replace p2 with c2
- ELSE
* ITF f(c2) > f(pl) THEN replace pl with c2
* ITF f(cl) > f(p2) THEN replace p2 with cl

solutions.

5. Repeat 2-4 while reach all

Code

io.PrintWriter;
util.ArrayList;
util.List;
util.Random;

import
import
import
import

java.
java.
java.
java.

public class Chromosome {
private List<Boolean> genes = new ArrayList<>();

private static Random random = new Random() ;

private Double fitness = null;
public Chromosome () {
for(int 1 = 0; 1 < 10; i++){

genes.add (random.nextBoolean ()) ;

}
}

public Chromosome (List<Boolean> genes) {
this.genes = genes;

}

public Double getFitness () {
fitness = Math.pow(Math.sin(5.0 * Math.PI * getX()) ,6.

return fitness;

}

public void setFitness (Double fitness) {
this.fitness = fitness;

}

public List<Boolean> getGenes () {
return genes;

}

public void setGenes (List<Boolean> genes) {
this.genes = genes;

}

public Double getX () {

Double sum = 0.0;
for(int i = 0; 1 < 10; i++){
sum += genes.get (i) ? Math.pow(2.0, i) : 0;

}

return sum / 1023.0;
}

public static List<Chromosome> crossover (Chromosome father,

(O

Chromosome mother,

cl)

Chromosome. java

PrintWriter printWriter) {



List<Chromosome> survivers = new ArrayList<>();

List<Boolean> firstChildGenes = new ArrayList<>();
List<Boolean> secondChildGenes = new ArrayList<>();

for(int i = 0; i < 10; i++){
if (random.nextBoolean())

{
firstChildGenes.add (father.getGenes () .get (1))
secondChildGenes.add (mother.getGenes () .get (1))

lelse(

firstChildGenes.add (mother.getGenes () .get (1))
secondChildGenes.add (father.getGenes () .get (1))

}

)

)

Chromosome firstChild = new Chromosome (firstChildGenes);

firstChild.mutate();

Chromosome secondChild = new Chromosome (secondChildGenes) ;

secondChild.mutate () ;

printWriter.println("" + father.getFitness() + "\t" + firstChild.getFitness());
printWriter.println("" + mother.getFitness () + "\t" + secondChild.getFitness() + "\n");

if (getDistance(father, firstChild)+getDistance (mother, secondChild) > getDis

getDistance (mother, firstChild)) {

survivers.add (father.getFitness () < firstChild.getFitness() ? father : £

survivers.add (mother.getFitness () < secondChild.getFitness () ? mother
lelse(

survivers.add (father.getFitness () < secondChild.getFitness () ? father

survivers.add (mother.getFitness () < firstChild.getFitness () ? mother : f

}

return survivers;

}

private static Double getDistance (Chromosome first,

return Math.abs(first.getX () - second.getX()):;
}

public void mutate () {
for(int i = 0; i< 10; i++){
if (random.nextDouble () < 0.1){
Boolean value = !genes.get (i) ;
genes.remove (1) ;
genes.add (i, value);

import java.io.FileNotFoundException;

import java.io.FileWriter;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;

import java.util.List;

import java.util.Random;

/7('7('
* Created by Arty on 26.10.2016.
*/

public class Population ({

Chromosome second) {

private List<Chromosome> chromosomes = new ArrayList<>();

private Random random = new Random() ;

public Population () {
for(int 1 = 0; 1 < 20; i++){
chromosomes.add (new Chromosome () ) ;

}

public Population (List<Chromosome> chromosomes) {
this.chromosomes = chromosomes;

}

public List<Chromosome> getChromosomes () {
return chromosomes;

}

public void setChromosomes (List<Chromosome> chromosomes) {

this.chromosomes = chromosomes;

}

public Population getNextGeneration (int iteration)

throws FileNotFoundException,

List<Chromosome> nextGenerationChromosomes = new ArrayList<>();

nextGenerationChromosomes.addAll (chromosomes) ;

tance (father, secondChild) +

irstChild) ;
secondChild) ;

secondChild) ;
irstChild) ;

Population. java

UnsupportedEncodingException {

PrintWriter printWriter = new PrintWriter ("result/crossover/" + iteration + ".txt", "UTF-8");



}

for(int 1 = 0; 1 < 10; i++){
Chromosome pl;
Chromosome p2;

do({
pl nextGenerationChromosomes.get (random.nextInt (20)) ;
p2 = nextGenerationChromosomes.get (random.nextInt (20)) ;

}
while (pl == p2);

List<Chromosome> survivers = Chromosome.crossover(pl, p2, printWriter);

nextGenerationChromosomes.remove (pl) ;
nextGenerationChromosomes.remove (p2) ;

nextGenerationChromosomes.addAll (survivers) ;

printWriter.close();
return new Population (nextGenerationChromosomes) ;

public Double getMinimumFitness () {

}

int minIndex = 0;

for(int i = 0; i < 20; i++){

minIndex

| ~e

}

return chromosomes.get (minIndex) .getFitness{();

public Double getAverageFitness () {

import
import
import
import

double sum = 0.0;
for(int 1 = 0; 1 < 20; i++){
sum += chromosomes.get (i) .getFitness();

}

return sum / 20.0;

java.io.File;
java.io.FileNotFoundException;
java.io.PrintWriter;
java.io.UnsupportedEncodingException;

import java.util.ArrayList;
import java.util.List;

public

class Main {

chromosomes.get (1) .getFitness () < chromosomes.get (minIndex) .getFitness ()

?

i

minIndex;

Main.java

public static void main(String[] args) throws FileNotFoundException, UnsupportedEncodingException {

//

new File ("E:\\A_WORK\\5cource\\siit\\1lab04\\result") .mkdir();
new File ("E:\\A_WORK\\5cource\\siit\\1lab04\\result\\crossover") .mkdir();

PrintWriter printMax new PrintWriter ("result/max.txt", "UTF-8");
PrintWriter printAvg = new PrintWriter ("result/avg.txt", "UTF-8");

List<Population> populations new ArrayList<>();

Population currentPopulation = new Population();

int iteration = 0;
while (!isTenPrevEquals (populations)) |
while (iteration != 25) {
//1f (iteration % 100 == 0) System.out.println(iteration);

printAvg.println(currentPopulation.getAverageFitness());
printMax.println (currentPopulation.getMinimumFitness());

populations.add (currentPopulation) ;
currentPopulation = currentPopulation.getNextGeneration (iteration);

iteration++;

printAvg.close();
printMax.close() ;

for (int 1 = 0; i1 <= iteration; 1 += (int) (iteration * 0.25)) {
if(i > iteration * 0.76) 1 = iteration - 1;
PrintWriter printIterationX = new PrintWriter ("result/" + i + "X.txt",
PrintWriter printIterationY = new PrintWriter ("result/" + i + "Y.txt",

Population p = populations.get(i);
for (Chromosome ¢ : p.getChromosomes()) {

printIterationX.println(c.getX());
printIterationY.println(c.getFitness());

"UTF-8") ;
"UTF_8" ) ;



}

printIterationX.close();
printIterationY.close();

}

Results

fitness(iteration)

0,50000

0,45000

0,40000

0,35000

0,30000

0,25000

0,20000

0,15000

0,10000

0,05000

0,00000

0
-0,05000

We get such graphic of minimums because even on
the first 1teration we can get random value with
can be almost a solution. See the Iteration 1
graphic.



Iteration 1

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

0,035686168
0,430882212

0,03295298
0,910253697

0,547441766
0,009592795

0,001191897
0,035686168

0,462861697
0,467482243

0,462861697
8,65E-05

0,970509984
0,03295298

0,035686168
0,932774234

0,778166669
0,001191897

0,989293111
0,022893698

C1
Cc2

C1
Cc2

C1
Cc2

C1
Cc2

C1
c2

(ox}
C2

C1
Cc2

(ox}
C2

C1
Cc2

c1
C2

0,262303
0,031221

0,950042
0,009593

0,009593
1,00E-05

0,160728
0,867853

0,973987
0,490751

1,13E-05
7,20E-04

7,20E-04
0,623639

0,834752
0,090309

0,921874
2,57E-04

0,661377
3,91E-11




Tteration 5

P1 3,91E-11 C1 8,39E-16
P2 0,158029 C2 0,144972
P1 0,009593 C1 0,96091
P2 0,001192 C2 0,034757
P1 3,91E-11 C1 0,365014
P2 0,5951 C2 0,998805
P1 0,002083 C1 0,399642
P2 1,40E-08 C2 0,022231
P1 0,001192 C1 0,62838
P2 0,002636 C2 0,811196
P1 1,13E-05 C1 0,993223
P2 0,001628 C2 0,004096
P1 0,001192 C1 0,024264
P2 0,002636 C2 0,84235
P1 1,02E-04 C1 0,011032
P2 0,001628 C2 0,675384
P1 0,022894 C1 0,002887
P2 0,035686 C2 0,090309
P1 1,40E-08 C1 4,95E-07

P2 0,001192 C2 0,003926



Tteration 9

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

1,00E-05
2,20E-10

4,95E-07
4,95E-07

6,30E-09
1,40E-08

0,002887
1,40E-08

8,38E-10
2,04E-07

3,91E-11
2,04E-07

4,95E-07
2,57E-07

1,40E-08
2,57E-07

2,57E-07
2,51E-05

2,20E-10
8,38E-10

C1
Cc2

C1
Cc2

C1
Cc2

C1
Cc2

C1
c2

(ox}
C2

C1
Cc2

(ox}
C2

C1
Cc2

c1
C2

0,675384
2,20E-10

4,95E-07
0,023571

0,984484
2,51E-05

1,92E-04
0,023571

0,901082
1,53E-04

0,020951
0,486077

0,786584
0,904182

0,012219
0,303752

0,533188
0,891533

0,395248
4,04E-09




Iteration 13

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

4,59E-05
0

0,002887
4,95E-07

8,38E-10
1,13E-05

2,20E-10
2,04E-07

2,04E-07
1,28E-06

2,20E-10
1,28E-06

0
2,51E-05

6,30E-09
9,42E-05

2,91E-06
8,39E-16

4,59E-05
1,13E-05

C1
Cc2

C1
Cc2

C1
Cc2

C1
Cc2

(ox}
C2

C1
c2

(ox}
C2

C1
Cc2

(ox}
C2

C1
c2

0,412931
0,127901

0,509539
1,28E-06

0,57126
0,003301

0,756698
7,63E-04

0,998805
0,007716

0,927416
0,670726

2,02E-08
0,013064

0,730217
6,11E-13

0,666057
0,090309

0,834752
0,69849




ITteration 18

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

P1
P2

1,13E-05
1,13E-05

4,95E-07
4,01E-07

8,38E-10
4,01E-07

2,57E-07
1,28E-06

2,57E-07
1,13E-05

4,95E-07
8,39E-16

8,39E-16
8,39E-16

8,39E-16
4,01E-07

2,57E-07
1,80E-06

8,38E-10
2,91E-06

(ox}
Cc2

C1
Cc2

C1
Cc2

C1
Cc2

(ox}
C2

C1
c2

(ox}
C2

C1
Cc2

(ox}
C2

C1
c2

We can say that not all runs

get all the solutions.

4/6 solutions.

0,028753
0,003301

0,006385
0,968693

8,92E-07
0,030381

2,57E-07
0,481412

1,80E-06
0,034757

1,07E-06
2,84E-08

0,001628
8,39E-16

0,001396
4,69E-04

1,80E-06
2,57E-07

0,395248
0,001628

of program we can

Usually algorithm finds



