
PRACTICE 4

Minimization of 2D functions
In these practice we need to find multiple minimums of y = sin6 (5πx)

1. 20 random chromosomes with 10 genes each

2. Search for 2 random parents and get their children by uniform

crossover

3. Mutate children

4. Choose 2 survivors from 2 parents and 2 children by

- IF d(p1, c1) + d(p2, c2) > d(p1, c2) + d(p2, c1)

∗ IF f(c1) > f(p1) THEN replace p1 with c1

∗ IF f(c2) > f(p2) THEN replace p2 with c2
– ELSE

∗ IF f(c2) > f(p1) THEN replace p1 with c2

∗ IF f(c1) > f(p2) THEN replace p2 with c1
5. Repeat 2-4 while reach all solutions.

Code
Chromosome.java

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class Chromosome {

 private List<Boolean> genes = new ArrayList<>();

 private static Random random = new Random();

 private Double fitness = null;

 public Chromosome() {

 for(int i = 0; i < 10; i++){

 genes.add(random.nextBoolean());

 }

 }

 public Chromosome(List<Boolean> genes) {

 this.genes = genes;

 }

 public Double getFitness() {

 fitness = Math.pow(Math.sin(5.0 * Math.PI * getX()) ,6.0);

 return fitness;

 }

 public void setFitness(Double fitness) {

 this.fitness = fitness;

 }

 public List<Boolean> getGenes() {

 return genes;

 }

 public void setGenes(List<Boolean> genes) {

 this.genes = genes;

 }

 public Double getX(){

 Double sum = 0.0;

 for(int i = 0; i < 10; i++){

 sum += genes.get(i) ? Math.pow(2.0, i) : 0;

 }

 return sum / 1023.0;

 }

 public static List<Chromosome> crossover(Chromosome father, Chromosome mother, PrintWriter printWriter){

 List<Chromosome> survivers = new ArrayList<>();

 List<Boolean> firstChildGenes = new ArrayList<>();

 List<Boolean> secondChildGenes = new ArrayList<>();

 for(int i = 0; i < 10; i++){

 if(random.nextBoolean()){

 firstChildGenes.add(father.getGenes().get(i));

 secondChildGenes.add(mother.getGenes().get(i));

 }else{

 firstChildGenes.add(mother.getGenes().get(i));

 secondChildGenes.add(father.getGenes().get(i));

 }

 }

 Chromosome firstChild = new Chromosome(firstChildGenes);

 firstChild.mutate();

 Chromosome secondChild = new Chromosome(secondChildGenes);

 secondChild.mutate();

 printWriter.println("" + father.getFitness() + "\t" + firstChild.getFitness());

 printWriter.println("" + mother.getFitness() + "\t" + secondChild.getFitness() + "\n");

 if(getDistance(father, firstChild)+getDistance(mother, secondChild) > getDistance(father, secondChild) +

getDistance(mother, firstChild)){

 survivers.add(father.getFitness() < firstChild.getFitness() ? father : firstChild);

 survivers.add(mother.getFitness() < secondChild.getFitness() ? mother : secondChild);

 }else{

 survivers.add(father.getFitness() < secondChild.getFitness() ? father : secondChild);

 survivers.add(mother.getFitness() < firstChild.getFitness() ? mother : firstChild);

 }

 return survivers;

 }

 private static Double getDistance(Chromosome first, Chromosome second){

 return Math.abs(first.getX() - second.getX());

 }

 public void mutate(){

 for(int i = 0; i< 10; i++){

 if(random.nextDouble() < 0.1){

 Boolean value = !genes.get(i);

 genes.remove(i);

 genes.add(i, value);

 }

 }

 }

}

Population.java

import java.io.FileNotFoundException;

import java.io.FileWriter;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

/**

 * Created by Arty on 26.10.2016.

 */

public class Population {

 private List<Chromosome> chromosomes = new ArrayList<>();

 private Random random = new Random();

 public Population() {

 for(int i = 0; i < 20; i++){

 chromosomes.add(new Chromosome());

 }

 }

 public Population(List<Chromosome> chromosomes) {

 this.chromosomes = chromosomes;

 }

 public List<Chromosome> getChromosomes() {

 return chromosomes;

 }

 public void setChromosomes(List<Chromosome> chromosomes) {

 this.chromosomes = chromosomes;

 }

 public Population getNextGeneration(int iteration) throws FileNotFoundException, UnsupportedEncodingException {

 List<Chromosome> nextGenerationChromosomes = new ArrayList<>();

 nextGenerationChromosomes.addAll(chromosomes);

 PrintWriter printWriter = new PrintWriter("result/crossover/" + iteration + ".txt", "UTF-8");

 for(int i = 0; i < 10; i++){

 Chromosome p1;

 Chromosome p2;

 do{

 p1 = nextGenerationChromosomes.get(random.nextInt(20));

 p2 = nextGenerationChromosomes.get(random.nextInt(20));

 }

 while (p1 == p2);

 List<Chromosome> survivers = Chromosome.crossover(p1, p2, printWriter);

 nextGenerationChromosomes.remove(p1);

 nextGenerationChromosomes.remove(p2);

 nextGenerationChromosomes.addAll(survivers);

 }

 printWriter.close();

 return new Population(nextGenerationChromosomes);

 }

 public Double getMinimumFitness(){

 int minIndex = 0;

 for(int i = 0; i < 20; i++){

 minIndex = chromosomes.get(i).getFitness() < chromosomes.get(minIndex).getFitness() ? i : minIndex;

 }

 return chromosomes.get(minIndex).getFitness();

 }

 public Double getAverageFitness(){

 double sum = 0.0;

 for(int i = 0; i < 20; i++){

 sum += chromosomes.get(i).getFitness();

 }

 return sum / 20.0;

 }

}

Main.java

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.ArrayList;

import java.util.List;

public class Main {

 public static void main(String[] args) throws FileNotFoundException, UnsupportedEncodingException {

 new File("E:\\A_WORK\\5cource\\siit\\lab04\\result").mkdir();

 new File("E:\\A_WORK\\5cource\\siit\\lab04\\result\\crossover").mkdir();

 PrintWriter printMax = new PrintWriter("result/max.txt", "UTF-8");

 PrintWriter printAvg = new PrintWriter("result/avg.txt", "UTF-8");

 List<Population> populations = new ArrayList<>();

 Population currentPopulation = new Population();

 int iteration = 0;

// while (!isTenPrevEquals(populations)) {

 while (iteration != 25) {

 //if (iteration % 100 == 0) System.out.println(iteration);

 printAvg.println(currentPopulation.getAverageFitness());

 printMax.println(currentPopulation.getMinimumFitness());

 populations.add(currentPopulation);

 currentPopulation = currentPopulation.getNextGeneration(iteration);

 iteration++;

 }

 printAvg.close();

 printMax.close();

 for (int i = 0; i <= iteration; i += (int) (iteration * 0.25)) {

 if(i > iteration * 0.76) i = iteration - 1;

 PrintWriter printIterationX = new PrintWriter("result/" + i + "X.txt", "UTF-8");

 PrintWriter printIterationY = new PrintWriter("result/" + i + "Y.txt", "UTF-8");

 Population p = populations.get(i);

 for (Chromosome c : p.getChromosomes()) {

 printIterationX.println(c.getX());

 printIterationY.println(c.getFitness());

 }

 printIterationX.close();

 printIterationY.close();

 }

 }

}

Results

We get such graphic of minimums because even on

the first iteration we can get random value with

can be almost a solution. See the Iteration 1

graphic.

-0,05000

0,00000

0,05000

0,10000

0,15000

0,20000

0,25000

0,30000

0,35000

0,40000

0,45000

0,50000

0 2 4 6 8 10 12 14 16 18 20

f

i

fitness(iteration)

AVG

MIN

Iteration 1

P1 0,035686168 C1 0,262303

P2 0,430882212 C2 0,031221

P1 0,03295298 C1 0,950042

P2 0,910253697 C2 0,009593

P1 0,547441766 C1 0,009593

P2 0,009592795 C2 1,00E-05

P1 0,001191897 C1 0,160728

P2 0,035686168 C2 0,867853

P1 0,462861697 C1 0,973987

P2 0,467482243 C2 0,490751

P1 0,462861697 C1 1,13E-05

P2 8,65E-05 C2 7,20E-04

P1 0,970509984 C1 7,20E-04

P2 0,03295298 C2 0,623639

P1 0,035686168 C1 0,834752

P2 0,932774234 C2 0,090309

P1 0,778166669 C1 0,921874

P2 0,001191897 C2 2,57E-04

P1 0,989293111 C1 0,661377

P2 0,022893698 C2 3,91E-11

Iteration 5

P1 3,91E-11 C1 8,39E-16

P2 0,158029 C2 0,144972

P1 0,009593 C1 0,96091

P2 0,001192 C2 0,034757

P1 3,91E-11 C1 0,365014

P2 0,5951 C2 0,998805

P1 0,002083 C1 0,399642

P2 1,40E-08 C2 0,022231

P1 0,001192 C1 0,62838

P2 0,002636 C2 0,811196

P1 1,13E-05 C1 0,993223

P2 0,001628 C2 0,004096

P1 0,001192 C1 0,024264

P2 0,002636 C2 0,84235

P1 1,02E-04 C1 0,011032

P2 0,001628 C2 0,675384

P1 0,022894 C1 0,002887

P2 0,035686 C2 0,090309

P1 1,40E-08 C1 4,95E-07

P2 0,001192 C2 0,003926

Iteration 9

P1 1,00E-05 C1 0,675384

P2 2,20E-10 C2 2,20E-10

P1 4,95E-07 C1 4,95E-07

P2 4,95E-07 C2 0,023571

P1 6,30E-09 C1 0,984484

P2 1,40E-08 C2 2,51E-05

P1 0,002887 C1 1,92E-04

P2 1,40E-08 C2 0,023571

P1 8,38E-10 C1 0,901082

P2 2,04E-07 C2 1,53E-04

P1 3,91E-11 C1 0,020951

P2 2,04E-07 C2 0,486077

P1 4,95E-07 C1 0,786584

P2 2,57E-07 C2 0,904182

P1 1,40E-08 C1 0,012219

P2 2,57E-07 C2 0,303752

P1 2,57E-07 C1 0,533188

P2 2,51E-05 C2 0,891533

P1 2,20E-10 C1 0,395248

P2 8,38E-10 C2 4,04E-09

Iteration 13

P1 4,59E-05 C1 0,412931

P2 0 C2 0,127901

P1 0,002887 C1 0,509539

P2 4,95E-07 C2 1,28E-06

P1 8,38E-10 C1 0,57126

P2 1,13E-05 C2 0,003301

P1 2,20E-10 C1 0,756698

P2 2,04E-07 C2 7,63E-04

P1 2,04E-07 C1 0,998805

P2 1,28E-06 C2 0,007716

P1 2,20E-10 C1 0,927416

P2 1,28E-06 C2 0,670726

P1 0 C1 2,02E-08

P2 2,51E-05 C2 0,013064

P1 6,30E-09 C1 0,730217

P2 9,42E-05 C2 6,11E-13

P1 2,91E-06 C1 0,666057

P2 8,39E-16 C2 0,090309

P1 4,59E-05 C1 0,834752

P2 1,13E-05 C2 0,69849

Iteration 18

P1 1,13E-05 C1 0,028753

P2 1,13E-05 C2 0,003301

P1 4,95E-07 C1 0,006385

P2 4,01E-07 C2 0,968693

P1 8,38E-10 C1 8,92E-07

P2 4,01E-07 C2 0,030381

P1 2,57E-07 C1 2,57E-07

P2 1,28E-06 C2 0,481412

P1 2,57E-07 C1 1,80E-06

P2 1,13E-05 C2 0,034757

P1 4,95E-07 C1 1,07E-06

P2 8,39E-16 C2 2,84E-08

P1 8,39E-16 C1 0,001628

P2 8,39E-16 C2 8,39E-16

P1 8,39E-16 C1 0,001396

P2 4,01E-07 C2 4,69E-04

P1 2,57E-07 C1 1,80E-06

P2 1,80E-06 C2 2,57E-07

P1 8,38E-10 C1 0,395248

P2 2,91E-06 C2 0,001628

We can say that not all runs of program we can

get all the solutions. Usually algorithm finds

4/6 solutions.

