Hinton and Nowlan’s Simulation of Life Time Learning
The pattern is “11111”.
5 bits

Results:

'S

% - generation
y - attempts

=]
!

[

'
ot
eat
—
=)
—
v}
"
=0
e
5
=
.}
3
5}
J
v
[
=)

The patternis “1111111111”.
10 bits:

Results:

2154

¥ - generation
y - attempts

-



The pattern is “111111111111111”.

15 bits:
Results:

T~ Paz 1
2504 —
2004
130

® - generation
1004
y - attempts
504
X
1 1 1 i I 1 : :
20 40 60 20 100 120 140 160 180 200
The patternis “1111111111111111111111111”.
25 bits:
Results:
Pacl
¥ - generations
y - attempts
X
f f t f : f i
30 100 130 200 230 300 330 400 430 300 350 600




import java.util.*;

class Attempts

{

public int value;

public boolean changed;

public Attempts()

{

value = 0;

changed = false;

}

}

class Chromosome

{

private static int numberLearningAttempts = 1000;
private final boolean fixGenomeWhenSuccess = false;
private final double fitnessBoost = 19.;

private int[] genome;

private int ID;

public static void setNumberOfLearningAttempts(int numberLearningAttempts)

{

Chromosome.numberLearningAttempts = numberLearningAttempts;

}

public Chromosome(int ID, int[] genome)

{

this.ID = ID;

this.genome = genome;

}

public Chromosome(int ID, int size, int fixedElements, Random random)
{

this.ID = ID;

genome = new int[size];
ArrayList<Integer> positions = new ArrayList<>();
for(inti=0; i <size; i++)

{

genomel[i] = 2; // initas ?
positions.add(i);

}

Collections.shuffle(positions, random);
for(inti = 0; i < fixedElements; i++)
{

int pos = positions.get(i);
genome[pos] = random.nextInt(2);

}

¥

@Override

public String toString()

{

if(genome == null)

return """;

return String.valueOf(ID) + "\t' + sequenceToString(genome);

}
public int[] getSequence()

{

return this.genome;

¥

public static String sequenceToString(int[] genome)

{

if(genome == null)



return '""";

StringBuilder s = new StringBuilder();
for(int aGenome : genome)
if(aGenome == 2)

s.append(*?");

else

s.append(aGenome);

return s.toString();

¥

public static Chromosome mate(int ID, Chromosome ind1, Chromosome ind2, Random rand)
{

int recPos = 1 + rand.nextInt(ind1.genome.length - 1);

int[] genomeNew = new int[ind1.genome.length];

System.arraycopy(ind1.genome, 0, genomeNew, 0, recPos);

System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length - recPos);
return new Chromosome(ID, genomeNew);

¥
public static int[] getCounts(int[] genome)

{

int[] cnts = new int[3];
for(int aGenome : genome)
cnts[aGenome]++;

return cnts;

¥

public double liveLearnAndReturnFitness(Random random, Attempts att)
{

int len = genome.length;

if(getCounts(genome)[1] == len)

/I this individual has correct sequence, no learning will happen

return 1 + fitnessBoost;

else if(getCounts(genome)[0] > 0)

/I this individual has Os in the sequence, will not learn right solution
return 1,

else

{

// do learning

int[] sequence = genome.clone();

ArrayList<Integer> positionOfQuestionMarks = new ArrayList<>();
for(inti = 0; i < sequence.length; i++)

if(sequence[i] == 2)

positionOfQuestionMarks.add(i);

int attempts = 1;

for(; attempts <= numberLearningAttempts; attempts++)

{

int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(), random);
for(int i = 0; i < positionOfQuestionMarks.size(); i++)
sequence[positionOfQuestionMarks.get(i)] = learnedBits[i];
if(getCounts(sequence)[1] == len)

{

if(fixGenomeWhenSuccess)

genome = sequence;

att.value = attempts;

att.changed = true;

return 1 + fitnessBoost * (numberLearningAttempts - attempts) / 1000.;

¥
¥

// could not learn
return 1;



}

}

public static int[] getRandomBinaryString(int len, Random random)
{

int[] s = new int[len];

for(inti=0;i<len; i++)

s[i] = random.nextBoolean() ? 1 : 0;

return s;

}

public static Chromosome samplelndividualPropToFitness(Random random, HashMap<Chromosome, Double>
largeFitness,

ArrayList<Chromosome> fitnessOne,

double totFitnessGreaterThanOne)

{

double totFitness = fitnessOne.size() + totFitnessGreaterThanOne;
if(random.nextDouble() < fitnessOne.size() / totFitness)

I/ sample from those with fitness = 1

return fitnessOne.get(random.nextInt(fithessOne.size()));

else

{

[/ sample from those ith fitness > 1

double fitnessMark = random.nextDouble() * totFitnessGreaterThanOne;
double cumulativeFitness = 0.;

Chromosome sampledind = null;

for(Chromosome ind : largeFitness.keySet())

{

cumulativeFitness += largeFitness.get(ind);
if(cumulativeFitness >= fitnessMark)

{

sampledind = ind;

break;

}

}

return sampledind;

}

}

public static boolean isFixated(ArrayList<Chromosome> inds)
{

int[] firstGenome = inds.get(0).genome;

for(Chromosome ind : inds)

if(! Arrays.equals(firstGenome, ind.genome))

return false;

return true;

¥

public static double[] getGenomeProb(Collection<Chromosome> inds)
{

double[] res = new double[3];
for(Chromosome ind : inds)

{

int[] thisind = getCounts(ind.genome);
res[0] += thisInd[0];

res[1] += thisInd[1];

res[2] += thisInd[2];

}

double sum = res[0] + res[1] + res[2];
res[0] /= sum;

res[1] /= sum;

res[2] /= sum;



return res;

}

}

public class Main

{

static long seed = System.currentTimeMillis();

public static void main(String[] args) throws InterruptedException

{

Random random = new Random(seed);

int numberOfSamples = 1000;

int len = 20;

int fixed = 10;
Chromosome.setNumberOfLearningAttempts(numberOfSamples);
ArrayList<Chromosome> inds = new ArrayList<>();

for(int i = 0; i < numberOfSamples; i++)

inds.add(new Chromosome(i, len, fixed, random));

int generation = 0;

double[] populationStats = Chromosome.getGenomeProb(inds);
while(IChromosome.isFixated(inds))

{

HashMap<Chromosome, Double> largeFitness = new HashMap<>();
ArrayList<Chromosome> fithessOne = new ArrayList<>();

double totFitnessGreaterThanOne = 0., total Attempts = 0, bestAttempts = 1000;
int cnt = 0;

for(Chromosome ind : inds)

{

Attempts attempts = new Attempts();

double fitness = ind.liveLearnAndReturnFitness(random, attempts);
total Attempts += attempts.value;

if(attempts.changed)

cnt++;

if(attempts.changed && attempts.value < bestAttempts)

bestAttempts = attempts.value;

if(fitness > 1)

{

largeFitness.put(ind, fitness);

totFitnessGreaterThanOne += fitness;

} else

fitnessOne.add(ind);

}

System.out.printf(

"GENERATION %4d\t\t0 --> %.6At\t\t1 --> %.6M\t\t\t? --> %.6M\t\t\taverage --> %3.6f\t\t\tbest --> %63.6f\n"",
generation, populationStats[0], populationStats[1], populationStats[2], total Attempts / cnt,
bestAttempts);

ArrayList<Chromosome> newGen = new ArrayList<>();

for(int i = 0; i < numberOfSamples; i++)

{

Chromosome sampl = Chromosome.samplelndividualPropToFitness(random, largeFitness, fitnessOne,
totFitnessGreaterThanOne);

Chromosome samp2 = Chromosome.samplelndividualPropToFitness(random, largeFitness, fitnessOne,
totFitnessGreaterThanOne);

Chromosome newSamp = Chromosome.mate(i, sampl, samp2, random);
newGen.add(newSamp);

}

inds = newGen;

populationStats = Chromosome.getGenomeProb(inds);

generation++;

¥



System.out.printin(*'Done:\t"" + Chromosome.sequenceToString(inds.get(0) .getSequence()) + ""\t" +
populationStats[0] +

"\t"" + populationStats[1] + ""\t"* + populationStats[2]);

Thread.sleep(1000);

}

}



