Hinton and Nowlan’s Simulation of Life Time Learning

Student — Thar Yachnik(AI - 10)

N-y
Iteration - x

300

225

150

75

0
50 100 150 200 250 300 350 400 500 600 700 800 900 1000

Source code:

'use strict';

const rand = () => {
const res = Math.random() ;
return res > 0.5 2?2 1 : 0;

}s

const getRandomInt = (min, max) => {
return Math.floor (Math.random() * (max - min + 1)) +

min;

}



const generatePopulation = (count) => {
return Array.from({ length: count }, v =>
generatePerson (genesCount)) ;

b

const generatePerson = (count) => {

return Array.from({ length: count }, v => rand()):;
i
const countFitness = (array) => {

return array.reduce((p, c) => c =1 2?2 ++tp : p, 0);
I
const rotatePersons = (population) => {

return population.sort((a, b) => countFitness(b) -

countFitness (a)) ;

}

const getStatistics = (population) => {
maxFitness.push (population.map (e =>
countFitness(e)) .shift())

averageFitness.push (getAverage (population)) ;

const getAverage = (population) => {

const all = population.reduce((p, c) => p +=
countFitness(c), 0);

return all / personCount;

}

// reduce less fitness persons
const trimPersons = (population) => {
return population.slice (0, sliceCount);

b

const getParents = (population) => {
const firstParentindex = getRandomInt (0, sliceCount -
1);

const secondParentindex = getRandomInt (0, sliceCount -
1)

return {
first: population[firstParentindex],
second: population[secondParentindex],

b



b

const crossover = (parents) => {
const children = [parents.first, parents.second];
const delimiter = getRandomInt (1, genesCount);

children.push (parents.first.slice (0,

delimiter) .concat (parents.second.slice(delimiter)));
children.push (parents.second.slice (0O,

delimiter) .concat (parents.first.slice(delimiter)));

return children;
I
const main = () => {
let population = generatePopulation (personCount); //

init

for (let 1 = 0; 1 < iterationCount; i++) {
population = rotatePersons (population);

getStatistics (population);
population = trimPersons (population);

let parents;
let newPopulation = [];

for (let j = 0; j < sliceCount / 2; j++) {
parents = getParents (population);
const children = crossover (parents);
newPopulation = newPopulation.concat (children);

population = newPopulation;

}

console.log('average', averageFitness);
console.log('max', maxFitness);

main () ;



