
Hinton and Nowlan’s Simulation of Life Time Learning

 Student – Ihar Yachnik(AI - 10) !
N - y
Iteration - x

!
Source code: !
'use strict'; !!
const rand = () => {
 const res = Math.random();
 return res > 0.5 ? 1 : 0;
}; !
const getRandomInt = (min, max) => {
 return Math.floor(Math.random() * (max - min + 1)) +
min;
} !

0

75

150

225

300

50 100 150 200 250 300 350 400 500 600 700 800 900 1000

N

const generatePopulation = (count) => {
 return Array.from({ length: count }, v =>
generatePerson(genesCount));
}; !
const generatePerson = (count) => {
 return Array.from({ length: count }, v => rand());
}; !
const countFitness = (array) => {
 return array.reduce((p, c) => c == 1 ? ++p : p, 0);
}; !
const rotatePersons = (population) => {
 return population.sort((a, b) => countFitness(b) -
countFitness(a));
} !
const getStatistics = (population) => {
 maxFitness.push(population.map(e =>
countFitness(e)).shift());
 averageFitness.push(getAverage(population));
} !
const getAverage = (population) => {
 const all = population.reduce((p, c) => p +=
countFitness(c), 0);
 return all / personCount;
} !
// reduce less fitness persons
const trimPersons = (population) => {
 return population.slice(0, sliceCount);
}; !
const getParents = (population) => {
 const firstParentindex = getRandomInt(0, sliceCount -
1);
 const secondParentindex = getRandomInt(0, sliceCount -
1); !
 return {
 first: population[firstParentindex],
 second: population[secondParentindex],
 };

}; !
const crossover = (parents) => {
 const children = [parents.first, parents.second];
 const delimiter = getRandomInt(1, genesCount); !
 children.push(parents.first.slice(0,
delimiter).concat(parents.second.slice(delimiter)));
 children.push(parents.second.slice(0,
delimiter).concat(parents.first.slice(delimiter))); !
 return children;
}; !
const main = () => {
 let population = generatePopulation(personCount); //
init !
 for (let i = 0; i < iterationCount; i++) {
 population = rotatePersons(population); !
 getStatistics(population); !
 population = trimPersons(population); !
 let parents;
 let newPopulation = []; !
 for (let j = 0; j < sliceCount / 2; j++) {
 parents = getParents(population);
 const children = crossover(parents);
 newPopulation = newPopulation.concat(children);
 } !
 population = newPopulation;
 } !
 console.log('average', averageFitness);
 console.log('max', maxFitness);
} !
main(); !!

