
Dzianis Palchuk. ii-10.CIIT practice. Lab 6
Hinton and Nowlan’s Simulation of Life Time learning

Diagram 1. N value by iteration

Source code:
import random
from math import sin
def get_average_value(generation):
 av_list = []
 for i in generation:
 sum = fitness_function(i)
 av_list.append(sum)
 average = reduce(lambda x, y: x + y, av_list) / len(av_list)
 min_value = min(av_list)
 return average, min_value
def fitness_function(i):
 return getResX(i)*sin(abs(getResX(i)))
def getResX(i):
 sum = 0
 for count in range(0,10):
 if i[count] == 1:
 sum += 2**count
 if i[0] == 1:
 sum *=-1
 return float(sum)/1023*5
def main():
 generation = []
 for i in range(0, 20):
 hromosome = []
 for j in range(0, 10):
 hromosome.append(random.getrandbits(1))
 generation.append(hromosome)
 min_value = get_average_value(generation)[1]
 print(min_value)
 count = 0
 Xs = []
 MAXs = []
 while count < 10:
 Xs.append((map(lambda x: getResX(x), generation)))
 generation.sort(key=lambda x: fitness_function(x), reverse=False)
 fathers = generation[0:10]
 new_generation = []
 for i in range(0, 10):
 mother = random.randrange(0, 10)
 father = random.randrange(0, 10)
 rand_index = random.randrange(0, 10)

 first = fathers[mother][0:rand_index]
 first.extend(fathers[father][rand_index:10])
 second = fathers[father][0:rand_index]
 second.extend(fathers[mother][rand_index:20])
 new_generation.append(first)
 new_generation.append(second)
 new_generation.extend(fathers)
 new_max = get_average_value(new_generation)
 MAXs.append(new_max)
 if new_max[0] < min_value:
 min_value = new_max[0]
 count = 0
 else:
 count += 1
 generation = new_generation
 print(Xs[0])
 print(Xs[2])
 print(Xs[len(Xs)-1])
 print(MAXs)
 print("------------------")
 print(generation[0])
if __name__ == '__main__':
 main()

