Hinton and Nowlan’s Simulation of Life Time Learning

An algoritlun
1. Create a popnlation of 1000 chromesomes with 20 genes either of 1, 0, 7 with
probability being 0.25, 0.25, 0.5, respectively.
2. Make each chromesome a maximm of 1000 learnings by assigning 717 or 707
to each of "7
*each gene feels happy or unhappy and if happy the gene is ficed and oth-
erwise remain 7"
FAfall 77 are happy tnen N o= 1000 — so. far.trials else keep learning till
N =
3. Seleet two parents at random with the probability of 1 — 10N /1000,
4. Create next generation by repeating 3. 1000 times
5. Repeat from 2. to 4, untill solution found

Source code:
import java.util.*;
class Attempts

public int value;

public boolean changed;

public Attempts()

{

value = 0;

changed = false;

}

}

class Chromosome

{

private static int numberLearningAttempts = 1000;
private final boolean fixGenomeWhenSuccess = false;
private final double fitnessBoost = 19.;



private int[] genome;
private int ID;
public static void setNumberOfLearningAttempts(int numberLearningAttempts)

{

Chromosome.numberLearningAttempts = numberLearningAttempts;
public Chromosome(int ID, int[] genome)

{
this.ID = ID;
this.genome = genome;

public Chromosome(int ID, int size, int fixedElements, Random random)

{

this.ID = ID;

genome = new int[size];

ArrayList<Integer> positions = new ArrayList<>();
for(inti=0;i < size; i++)

genomel[i] = 2; // initas ?
positions.add(i);

}

Collections.shuffle(positions, random);
for(inti = 0; i < fixedElements; i++)

{

int pos = positions.get(i);
genome[pos] = random.nextint(2);

}

}
@Override

public String toString()

{

if(genome == null)

return "";

return String.valueOf(ID) + \t' + sequenceToString(genome);

public int[] getSequence()
{

return this.genome;

}

public static String sequenceToString(int[] genome)
{

if(@enome == null)

return ";

StringBuilder s = new StringBuilder();
for(int aGenome : genome)
if(@Genome == 2)

s.append('?");

else

s.append(aGenome);

return s.toString();

public static Chromosome mate(int ID, Chromosome ind1, Chromosome ind2, Random rand)
{

int recPos = 1 + rand.nextInt(ind1.genome.length - 1);

int[] genomeNew = new int[ind1.genome.length];

System.arraycopy(ind1l.genome, 0, genomeNew, 0, recPos);
System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length - recPos);
return new Chromosome(ID, genomeNew);

public static int[] getCounts(int[] genome)

{
int[] cnts = new int[3];
for(int aGenome : genome)



cnts[aGenome]++;
return cnts;

public double liveLearnAndReturnFitness(Random random, Attempts att)
{

int len = genome.length;

if(getCounts(genome)[1] == len)

// this individual has correct sequence, no learning will happen
return 1 + fithessBoost;

else if(getCounts(genome)[0] > 0)

// this individual has 0s in the sequence, will not learn right solution
return 1;

else

{

// do learning

int[] sequence = genome.clone();

ArrayList<Integer> positionOfQuestionMarks = new ArrayList<>();
for(inti = 0; i < sequence.length; i++)

if(sequence[i] == 2)

positionOfQuestionMarks.add(i);

int attempts = 1,

for(; attempts <= numberLearningAttempts; attempts++)

int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(), random);
for(inti = 0; i < positionOfQuestionMarks.size(); i++)
sequence[positionOfQuestionMarks.get(i)] = learnedBits]i];
if(getCounts(sequence)[1] == len)

{

if(fixGenomeWhenSuccess)

genome = sequence;

att.value = attempts;

att.changed = true;

return 1 + fithessBoost * (humberLearningAttempts - attempts) / 1000.;

}

// could not learn

return 1;

}

}

public static int[] getRandomBinaryString(int len, Random random)
{

int[] s = new int[len];

for(inti =0; i <len; i++)

s[i] = random.nextBoolean() ? 1 : 0;

return s;

public static Chromosome samplelndividualPropToFithess(Random random, HashMap<Chromosome,
Double> largeFitness,

ArrayList<Chromosome> fithessOne,

double totFitnessGreaterThanOne)

{

double totFitness = fithessOne.size() + totFitnessGreaterThanOne;
if(random.nextDouble() < fitnessOne.size() / totFitness)

/I sample from those with fithess = 1

return fithnessOne.get(random.nextint(fithessOne.size()));

else

{

I/l sample from those ith fitness > 1

double fitnessMark = random.nextDouble() * totFitnessGreaterThanOne;
double cumulativeFitness = 0.;

Chromosome sampledind = null;

for(Chromosome ind : largeFitness.keySet())

{



cumulativeFitness += largeFitness.get(ind);
if(cumulativeFitness >= fitnessMark)

sampledind = ind;

break;

}

}

return sampledind;

}

}

public static boolean isFixated(ArrayList<Chromosome> inds)
{

int[] firstGenome = inds.get(0).genome;
for(Chromosome ind : inds)
if(lArrays.equals(firstGenome, ind.genome))
return false;

return true;

public static double[] getGenomeProb(Collection<Chromosome> inds)

double[] res = new double[3];
for(Chromosome ind : inds)

int[] thisInd = getCounts(ind.genome);

res[0] += thisInd[O0];

res[1] += thisind[1];

res[2] += thisind[2];

}

double sum = res[0] + res[1] + res[2];

res[0] /= sum,;

res[1] /= sum;

res[2] /= sum,;

return res;

}

}

public class Main

{

static long seed = System.currentTimeMillis();

public static void main(String[] args) throws InterruptedException
{

Random random = new Random(seed);

int numberOfSamples = 1000;

int len = 20;

int fixed = 10;
Chromosome.setNumberOfLearningAttempts(numberOfSamples);
ArrayList<Chromosome> inds = new ArrayList<>();

for(inti = 0; i < numberOfSamples; i++)

inds.add(new Chromosome(i, len, fixed, random));

int generation = 0;

double[] populationStats = Chromosome.getGenomeProb(inds);
while(!Chromosome.isFixated(inds))

HashMap<Chromosome, Double> largeFitness = new HashMap<>();
ArrayList<Chromosome> fitnessOne = new ArrayList<>();

double totFitnessGreaterThanOne = 0., totalAttempts = 0, bestAttempts = 1000;
intcnt = 0;

for(Chromosome ind : inds)

{

Attempts attempts = new Attempts();

double fitness = ind.liveLearnAndReturnFitness(random, attempts);
totalAttempts += attempts.value;

if(attempts.changed)

cnt++;



if(attempts.changed && attempts.value < bestAttempts)
bestAttempts = attempts.value;
if(fitness > 1)
{
largeFitness.put(ind, fitness);
totFitnessGreaterThanOne += fitness;
} else
fithessOne.add(ind);
}
System.out.printf(
"GENERATION %4d\t\t0 --> %.6f\t\t\t1 --> %.6A\t\t\t? --> %.6f\t\t\taverage --> %3.6f\t\t\tbest --> %3.6f\n",
generation, populationStats[0], populationStats[1], populationStats[2], totalAttempts / cnt,
bestAttempts);
ArrayList<Chromosome> newGen = new ArrayList<>();
for(inti = 0; i < numberOfSamples; i++)
{
Chromosome sampl = Chromosome.samplelndividualPropToFitness(random, largeFitness, fithessOne,
totFitnessGreaterThanOne);
Chromosome samp2 = Chromosome.samplelndividualPropToFitness(random, largeFitness, fithessOne,
totFitnessGreaterThanOne);
Chromosome newSamp = Chromosome.mate(i, sampl, samp2, random);
newGen.add(hewSamp);
}
inds = newGen;
populationStats = Chromosome.getGenomeProb(inds);
generation++;
}
System.out.printin("Done:\t" + Chromosome.sequenceToString(inds.get(0) .getSequence()) + "\t" +
populationStats[0] +
"\t" + populationStats[1] + "\t" + populationStats[2]);
Thread.sleep(1000);
}
1



