Dzmitry Boika
Hinton and Nowlan’s Simulation of Life Time Learning

An algorithm

L. Create a |u||||||.|li|||| of 1000 chromesomes with 20 genes either of 1. 0. 7 with
probability being 0,25, 0,25, 0.5, respectively.

2. Make each chromesome a maximmun of 1000 learnings by assigning 17 or 70"

i
to each of

¥ pach gl fools ||.|||||_'\' oar III|||-|||||_'\' and if ||-||||!’\' the gl is fixed and oth-
erwise remain Y7

FALall " are happy tnen N = 1000 — so. fardrials else keep learning ill
N =1

3. Seleet two parents al random with the ||I'||||.|||i|i||\' of 1 |"J_1'.Ill.'r|||||||_
4, Create next generation by repeating 3. 1000 times

S, Repeat from 2, tod, untill solution fonnd

180
160
140
120
100
20
60
40
20

0

0 200 400 600 300 1000

Source code:

import java.util.*;

class Attempts

{

public int value;

public boolean changed;

public Attempts()

{

value = 0;

changed = false;

}

}

class Chromosome

{

private static int numberLearningAttempts = 1000;
private final boolean fixGenomeWhenSuccess = false;
private final double fitnessBoost = 19,;

private int[] genome;

private int ID;

public static void setNumberOfLearningAttempts(int numberLearningAttempts)

{

Chromosome.numberlLearningAttempts = numberLearningAttempts;

public Chromosome(int ID, int[] genome)

{
this.ID = ID;
this.genome = genome;

public Chromosome(int ID, int size, int fixedElements, Random random)

{

this.ID = ID;

genome = new int[size];
ArraylList<Integer> positions = new ArrayList<>();
for(inti = 0; i < size; i++)

{

genomeli] = 2; // initas ?
positions.add(i);

}

Collections.shuffle(positions, random);
for(inti = 0; i < fixedElements; i++)

{

int pos = positions.get(i);
genome[pos] = random.nextInt(2);

}

}

@Override

public String toString()

{

if(genome == null)

return "*;

return String.valueOf(ID) + '\t' + sequenceToString(genome);

}

public int[] getSequence()

{

return this.genome;

}

public static String sequenceToString(int[] genome)

{

if(genome == null)

return "*;

StringBuilder s = new StringBuilder();

for(int aGenome : genome)

ifltaGenome == 2)

s.append('?');

else

s.append(aGenome);

return s.toString();

}

public static Chromosome mate(int ID, Chromosome ind1, Chromosome ind2, Random rand)
{

int recPos = 1 + rand.nextint(indl.genome.length - 1);
int[] genomeNew = new int[ind1l.genome.length];
System.arraycopy(indl.genome, 0, genomeNew, 0, recPos);
System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length - recPos);
return new Chromosome(ID, genomeNew);

}

public static int[] getCounts(int[] genome)

{

int[] cnts = new int[3];

for(int aGenome : genome)

cnts[aGenome]++;

return cnts;

public double liveLearnAndReturnFitness(Random random, Attempts att)

{

int len = genome.length;

if(getCounts(genome)[1] == len)

// this individual has correct sequence, no learning will happen
return 1 + fitnessBoost;

else if(getCounts(genome)[0] > 0)

// this individual has Os in the sequence, will not learn right solution
return 1;

else

{

// do learning

int[] sequence = genome.clone();

ArraylList<Integer> positionOfQuestionMarks = new ArrayList<>();
for(inti = 0; i < sequence.length; i++)

if(sequenceli] == 2)

positionOfQuestionMarks.add(i);

int attempts = 1;

for(; attempts <= numberLearningAttempts; attempts++)

int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(), random);
for(inti = 0; i < positionOfQuestionMarks.size(); i++)
sequence[positionOfQuestionMarks.get(i)] = learnedBits[il;
if(getCounts(sequence)[1] == len)

{

if(fixGenomeWhenSuccess)

genome = sequence,

att.value = attempts;

att.changed = true;

return 1 + fithessBoost * (numberLearningAttempts - attempts) / 1000.;
}

}

// could not learn

return 1;

}

}

public static int[] getRandomBinaryString(int len, Random random)
{

int[]1 s = new int[len];

for(inti=0;i < len; i++)

s[i] = random.nextBoolean() ? 1 : O;

return s;

}

public static Chromosome samplelndividualPropToFitness(Random random,
HashMap<Chromosome, Double> largeFitness,
ArrayList<Chromosome> fitnessOne,

double totFitnessGreaterThanOne)

{

double totFitness = fitnessOne.size() + totFitnessGreaterThanOne;
if(random.nextDouble() < fitnessOne.size() / totFitness)

// sample from those with fithess = 1

return fitnessOne.get(random.nextint(fitnessOne.size()));

else

{

// sample from those ith fitness > 1

double fitnessMark = random.nextDouble() * totFitnessGreaterThanOne;
double cumulativeFitness = 0.;

Chromosome sampledind = null;

for(Chromosome ind : largeFitness.keySet())

{

cumulativeFitness += largeFitness.get(ind);

if(cumulativeFitness >= fitnessMark)

{

sampledind = ind;

break;

}

}

return sampledind;

}

}

public static boolean isFixated(ArrayList<Chromosome=> inds)
{

int[] firstGenome = inds.get(0).genome;

for(Chromosome ind : inds)

if(!Arrays.equals(firstGenome, ind.genome))

return false;

return true;

}

public static double[] getGenomeProb(Collection<Chromosome> inds)
{

double[] res = new double[3];

for(Chromosome ind : inds)

int[] thisInd = getCounts(ind.genome);

res[0] += thisInd[0];

res[1] += thisInd[1];

res[2] += thisInd[2];

}

double sum = res[0] + res[1] + res[2];

res[0] /= sum;

res[1] /= sum;

res[2] /= sum;

return res;

}

}

public class Main

{

static long seed = System.currentTimeMillis();

public static void main(String[] args) throws InterruptedException
{

Random random = new Random(seed);

int numberOfSamples = 1000;

int len = 20;

int fixed = 10;
Chromosome.setNumberOfLearningAttempts(numberOfSamples);
ArrayList<Chromosome> inds = new ArrayList<>();

for(inti = 0; i < numberOfSamples; i++)

inds.add(new Chromosome(i, len, fixed, random));

int generation = 0;

double[] populationStats = Chromosome.getGenomeProb(inds);
while(!Chromosome.isFixated(inds))

{

HashMap<Chromosome, Double> largeFitness = new HashMap<>();
ArrayList<Chromosome> fitnessOne = new ArrayList<>();
double totFitnessGreaterThanOne = 0., totalAttempts = 0, bestAttempts = 1000;
int cnt = 0;

for(Chromosome ind : inds)

{

Attempts attempts = new Attempts();

double fitness = ind.liveLearnAndReturnFitness(random, attempts);
totalAttempts += attempts.value;

if(attempts.changed)

cnt++;

if(attempts.changed && attempts.value < bestAttempts)
bestAttempts = attempts.value;

if(fithess > 1)

{

largeFitness.put(ind, fitness);

totFitnessGreaterThanOne += fitness;

} else

fitnessOne.add(ind);

}

System.out.printf(

"GENERATION %4d\t\t0 --> %.6At\t\t1 --> %.6A\t\t? --> %.6MAt\t\taverage --> %3.6f\t\t\tbest
--> %3.6f\n",

generation, populationStats[0], populationStats[1], populationStats[2], totalAttempts / cnt,
bestAttempts);

ArrayList<Chromosome> newGen = new ArrayList<>();

for(inti = 0; i < numberOfSamples; i++)

{

Chromosome sampl = Chromosome.samplelndividualPropToFithess(random, largeFitness,
fitnessOne,

totFitnessGreaterThanOne);

Chromosome samp?2 = Chromosome.samplelndividualPropToFitness(random, largeFitness,
fitnessOne,

totFitnessGreaterThanOne);

Chromosome newSamp = Chromosome.mate(i, sampl, samp2, random);
newGen.add(newSamp);

}

inds = newGen;

populationStats = Chromosome.getGenomeProb(inds);

generation++;

}

System.out.printin("Done:\t" + Chromosome.sequenceToString(inds.get(0) .getSequence())
+ "\t" + populationStats[0] +

"\t" + populationStats[1] + "\t" + populationStats[2]);

Thread.sleep(1000);

