Contemporary Intelligent Information Techniques (CIIT)
Practice #6 (14/11/2016)
Siarhei Savaniuk (Al-10)

LabWork #6 Hinton and Nowlan's Simulation of Life Time Learning

An algorithm:
1. Create a population of 1000 chromosomes with 20 genes either of 1, 0, ? with probability being

0.25, 0.25, 0.5, respectively.

2. Make each chromosome a maximum of 1000 learnings by assigning "1™ or "0" to each of "?" *
each gene feels happy or unhappy and if happy the gene is _xed and otherwise remain "?" * if all
"?" are happy tnen N = 1000 — so.far.trials else keep learning till N = 0.

3. Select two parents at random with the probability of 1 — 19N/1000.

4. Create next generation by repeating 3. 1000 times

5. Repeat from 2. to 4. untill solution found

iteration vs N

200
180
160
140
120
=z 100
80
60
40

20

0 100 200 300 400 500 600 700 800 900 1000
iteration

Source code (written in Java)

File Individual.java:
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class Individual ({
public static final int GENE LENGTH = 10;
private int[] genes;
private double x;
private double yl;
private double y2;

private int rank;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH] ;

if (initialize) {

generateIndividual () ;
this.x = calculateX();
this.yl = calculateYl();
this.y2 = calculateY2();
this.rank = 0;

}

public Individual (int[] genes) {
this.genes = genes;
this.x = calculateX();
this.yl calculateYl ()
this.y2 = calculateY2 ()
this.rank = 0;

}

public double getX () {
return x;

}

public double getYl () {
return yl;

}

public double getY2 () {
return y2;

}

public int getRank () {
return rank;

}

public int updateRank () {
return ++this.rank;

}

public void resetRank () {
this.rank = 0;

}

public void generatelIndividual () {
for (int i = 0; i < GENE_LENGTH; ++i) {
genes[i] = ThreadLocalRandom.current() .nextInt (0, 2);

}

public double calculateX() {

return Integer.parselInt (Arrays.toString(genes) .replaceAll ("[,\\[\\]
"y, 2) / 170.5;
}

public double calculateYl () {
return Math.pow(x - 2, 2);

}

public double calculateY2 () {
return Math.pow(x - 4, 2);
}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];
System.arraycopy (this.genes, 0, genes, 0, cutPoint);
return genes;

}

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];
System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

@QOverride
public boolean equals (Object o) {
if (this == o0) return true;
if (o == null || getClass() != o.getClass()) return false;
Individual that = (Individual) o;
if (Double.compare(that.yl, yl) != 0) return false;
if (Double.compare(that.y2, y2) != 0) return false;
if (Double.compare(that.x, x) != 0) return false;
if (rank != that.rank) return false;

return Arrays.equals(genes, that.genes);

}

@Override
public int hashCode () {
int result;
long temp;
result = Arrays.hashCode (genes) ;
temp = Double.doubleToLongBits(yl);
result = 31 * result + (int) (temp ©~ (temp >>> 32));
temp = Double.doubleToLongBits(y2);
result = 31 * result + (int) (temp * (temp >>> 32));
temp = Double.doubleToLongBits (x) ;
result = 31 * result + (int) (temp ©~ (temp >>> 32));
result = 31 * result + rank;
return result;

}

@Override
public String toString() {
return "Individual{" +

"genes=" + Arrays.toString(genes) +
", x=" + x +
", o yl=" + yl o+
", y2=" + y2 +
", rank=" + rank +

l}l;

File Population.java:
import java.util.Arrays;

public class Population ({
public static final int POPULATION SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int i = 0; i < POPULATION SIZE; +4+1) {
individuals[i] = new Individual (true);

}

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];
System.arraycopy(individuals, 0, this.individuals, O,

individuals.length) ;
}

public Individual getIndividual (int index) {
return individuals[index];

}

public void replacelIndividual (Individual individual,
i < individuals.length; ++i) {

Individual child)

for (int i = 0;

if (individuals[i].equals(individual)) {
individuals[i] = child;
break;

}

public Individual[] getAllIndividuals() {
return individuals;

}

public void calculateRankForAllIndividuals () {

resetRank () ;

for (int 1 = 0; i < POPULATION SIZE; ++i) {

for (int j = 0; j < POPULATION SIZE; ++3j) {
if (i '= Jj && (individuals[i].getY1l () <
individuals[]j].getY1l () &&
<

individuals[i] .getY2 ()

individuals([j].getY2())) {
individuals[i] .updateRank () ;

}

}

private void resetRank () {
for (Individual individual: individuals) {

individual.resetRank () ;

}

@Override
public String toString() {
return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

private Population population;

public GeneticAlgorithm (Population population) {

this.population = population;
}

public Population run() {
Population nextGeneration = new

Population (population.getAllIndividuals());
nextGeneration.calculateRankForAllIndividuals () ;

i < Population.POPULATION SIZE; ++i) {

for (int i = 0;
Individual[] parents = chooseParents (nextGeneration);
int cutPoint = ThreadLocalRandom.current () .nextInt (0,

Individual.GENE_LENGTH) ;

{

Individual[] children = crossover (parents, cutPoint);

Individual child = getBetterIndividualFromTwoChildren (children) ;

calculateIndividualRank (child) ;

Individual individual =
findIndividualThatMostSimilarToChild (child) ;

if (childBetterThanParent (individual, child)) {
nextGeneration.replaceIndividual (individual, child);
nextGeneration.calculateRankForAllIndividuals () ;

}

population = nextGeneration;
return population;
}

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population.POPULATION SIZE)),

fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (0,
Population.POPULATION_SIZE))};
}

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[1l].getGenesAfterCutPoint (curPoint));
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[1l].getGenesBeforeCutPoint (curPoint));

descendants[0] = new Individual (firstDescendantGenes) ;
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private Individual getBetterIndividualFromTwoChildren (Individuall]
children) {
return calculateIndividualRank (children([0]) >
calculateIndividualRank (children[1]) ? children[0] : children[1];

}

private Individual findIndividualThatMostSimilarToChild (Individual child)

Individual individual = population.getIndividual (0);
double minX = Math.abs (population.getIndividual (0).getX () -
child.getX());
for (int 1 = 1; i < Population.POPULATION SIZE; ++i) ({
double tempMinX = Math.abs (population.getIndividual (i) .getX () -
child.getX());
if (tempMinX < minX) {
minX = tempMinX;
individual = population.getIndividual (1) ;
}
}

return individual;

}

private boolean childBetterThanParent (Individual individual, Individual

child) {
return child.getRank () > individual.getRank () || (child.getYl() <

individual.getY¥1l () && child.getY2 () < individual.getY2()):
}

private int calculateIndividualRank (Individual individual)
for (int 1 = 0; i < Population.POPULATION SIZE; ++i)
if (individual.getYl () < population.getIndividual (i) .get¥1l () &&
individual.getY2 () < population.getIndividual (i) .getY2()) {
individual.updateRank () ;

{

}
}

return individual.getRank();

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE_ LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:
import java.io.FileWriter;
import java.io.IOException;

public class Main {
public static void main (String[] args) throws IOException {
FileWriter writer = new FileWriter ("output.txt");
Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

for (int i = 0; 1 < 1000; ++1i) {
population = geneticAlgorithm.run();
System.out.println ("ITERATION #" + (i + 1));
writer.write ("ITERATION #" + (i + 1) + ":\n");
for (Individual individual: population.getAllIndividuals()) {
writer.write (individual.toString() + "\n");
System.out.println (individual) ;

