
Contemporary Intelligent Information Techniques (CIIT)

Practice #6 (14/11/2016)

Siarhei Savaniuk (AI-10)

LabWork #6 Hinton and Nowlan's Simulation of Life Time Learning

An algorithm:

1. Create a population of 1000 chromosomes with 20 genes either of 1, 0, ? with probability being

0.25, 0.25, 0.5, respectively.

2. Make each chromosome a maximum of 1000 learnings by assigning "1" or "0" to each of "?" *

each gene feels happy or unhappy and if happy the gene is _xed and otherwise remain "?" * if all

"?" are happy tnen N = 1000 − so.far.trials else keep learning till N = 0.

3. Select two parents at random with the probability of 1 − 19N/1000.

4. Create next generation by repeating 3. 1000 times

5. Repeat from 2. to 4. untill solution found

Source code (written in Java)
File Individual.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {

 public static final int GENE_LENGTH = 10;

 private int[] genes;

 private double x;

 private double y1;

 private double y2;

 private int rank;

 public Individual(boolean initialize) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

N

iteration

iteration vs N

 generateIndividual();

 this.x = calculateX();

 this.y1 = calculateY1();

 this.y2 = calculateY2();

 this.rank = 0;

 }

 }

 public Individual(int[] genes) {

 this.genes = genes;

 this.x = calculateX();

 this.y1 = calculateY1();

 this.y2 = calculateY2();

 this.rank = 0;

 }

 public double getX() {

 return x;

 }

 public double getY1() {

 return y1;

 }

 public double getY2() {

 return y2;

 }

 public int getRank() {

 return rank;

 }

 public int updateRank() {

 return ++this.rank;

 }

 public void resetRank() {

 this.rank = 0;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(0, 2);

 }

 }

 public double calculateX() {

 return Integer.parseInt(Arrays.toString(genes).replaceAll("[,\\[\\]

]", ""), 2) / 170.5;

 }

 public double calculateY1() {

 return Math.pow(x - 2, 2);

 }

 public double calculateY2() {

 return Math.pow(x - 4, 2);

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Individual that = (Individual) o;

 if (Double.compare(that.y1, y1) != 0) return false;

 if (Double.compare(that.y2, y2) != 0) return false;

 if (Double.compare(that.x, x) != 0) return false;

 if (rank != that.rank) return false;

 return Arrays.equals(genes, that.genes);

 }

 @Override

 public int hashCode() {

 int result;

 long temp;

 result = Arrays.hashCode(genes);

 temp = Double.doubleToLongBits(y1);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 temp = Double.doubleToLongBits(y2);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 temp = Double.doubleToLongBits(x);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 result = 31 * result + rank;

 return result;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "genes=" + Arrays.toString(genes) +

 ", x=" + x +

 ", y1=" + y1 +

 ", y2=" + y2 +

 ", rank=" + rank +

 '}';

 }

}

File Population.java:
import java.util.Arrays;

public class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void replaceIndividual(Individual individual, Individual child) {

 for (int i = 0; i < individuals.length; ++i) {

 if (individuals[i].equals(individual)) {

 individuals[i] = child;

 break;

 }

 }

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 public void calculateRankForAllIndividuals() {

 resetRank();

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 for (int j = 0; j < POPULATION_SIZE; ++j) {

 if (i != j && (individuals[i].getY1() <

individuals[j].getY1() &&

 individuals[i].getY2() <

individuals[j].getY2())) {

 individuals[i].updateRank();

 }

 }

 }

 }

 private void resetRank() {

 for (Individual individual: individuals) {

 individual.resetRank();

 }

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Population nextGeneration = new

Population(population.getAllIndividuals());

 nextGeneration.calculateRankForAllIndividuals();

 for (int i = 0; i < Population.POPULATION_SIZE; ++i) {

 Individual[] parents = chooseParents(nextGeneration);

 int cutPoint = ThreadLocalRandom.current().nextInt(0,

Individual.GENE_LENGTH);

 Individual[] children = crossover(parents, cutPoint);

 Individual child = getBetterIndividualFromTwoChildren(children);

 calculateIndividualRank(child);

 Individual individual =

findIndividualThatMostSimilarToChild(child);

 if (childBetterThanParent(individual, child)) {

 nextGeneration.replaceIndividual(individual, child);

 nextGeneration.calculateRankForAllIndividuals();

 }

 }

 population = nextGeneration;

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

Population.POPULATION_SIZE)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

Population.POPULATION_SIZE))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private Individual getBetterIndividualFromTwoChildren(Individual[]

children) {

 return calculateIndividualRank(children[0]) >

calculateIndividualRank(children[1]) ? children[0] : children[1];

 }

 private Individual findIndividualThatMostSimilarToChild(Individual child)

{

 Individual individual = population.getIndividual(0);

 double minX = Math.abs(population.getIndividual(0).getX() -

child.getX());

 for (int i = 1; i < Population.POPULATION_SIZE; ++i) {

 double tempMinX = Math.abs(population.getIndividual(i).getX() -

child.getX());

 if (tempMinX < minX) {

 minX = tempMinX;

 individual = population.getIndividual(i);

 }

 }

 return individual;

 }

 private boolean childBetterThanParent(Individual individual, Individual

child) {

 return child.getRank() > individual.getRank() || (child.getY1() <

individual.getY1() && child.getY2() < individual.getY2());

 }

 private int calculateIndividualRank(Individual individual) {

 for (int i = 0; i < Population.POPULATION_SIZE; ++i) {

 if (individual.getY1() < population.getIndividual(i).getY1() &&

 individual.getY2() < population.getIndividual(i).getY2()) {

 individual.updateRank();

 }

 }

 return individual.getRank();

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
import java.io.FileWriter;

import java.io.IOException;

public class Main {

 public static void main(String[] args) throws IOException {

 FileWriter writer = new FileWriter("output.txt");

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 for (int i = 0; i < 1000; ++i) {

 population = geneticAlgorithm.run();

 System.out.println("ITERATION #" + (i + 1));

 writer.write("ITERATION #" + (i + 1) + ":\n");

 for (Individual individual: population.getAllIndividuals()) {

 writer.write(individual.toString() + "\n");

 System.out.println(individual);

 }

 }

 }

}

