

Task

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome – the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a onr-point-crossover.

5. Give the child a mutation with a probability of 1/1000 = 0.001.

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.

(2) Desplay the best and average fitness vs. generation.

Program code (C#)

using System.Collections.Generic;

namespace Exercise1
{
 public class Conditional
 {
 public List<int> populationMax = new List<int>();
 public bool Condit(int preview, int iter)
 {
 int count = 0;
 for (int i = iter; i < 10 + iter; i++)
 {
 if ((populationMax[i] - 1) <= preview && preview <= (populationMax[i] + 1))
 {
 count = 0;
 }
 else
 count++;
 }
 if (count == 0)
 return false;
 return true;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Conditional c = new Conditional();
 List<Population> population = new List<Population>();
 Population pop = new Population();
 int i = -1;
 int preview = 0;
 int average = 0;
 while (i <= 500)
 {
 i++;
 pop.Cross();
 pop.Mutation();
 preview = pop.GetMax();
 average = pop.GetAverage();
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Maximum.txt", true))
 {
 file.WriteLine(preview);
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Average.txt", true))
 {
 file.WriteLine(average);
 }
 pop.GetAverage();
 c.populationMax.Add(preview);
 }
 int i1 = 0;
 while (c.Condit(preview, i1))
 {
 pop.Cross();
 pop.Mutation();
 preview = pop.GetMax();
 average = pop.GetAverage();
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Maximum.txt", true))
 {
 file.WriteLine(preview);

 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Average.txt", true))
 {
 file.WriteLine(average);
 }
 c.populationMax.Add((pop.GetMax()));
 i1++;
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Maximum.txt", true))
 {
 file.WriteLine(i + i1 - 1);
 }
 }
 }
}

using System;
using System.Linq;

namespace Exercise1
{
 public class Population
 {
 Random rand = new Random();
 const int countChromosomes = 100;
 const int countGenes = 1000;
 int[,] parents = new int[countChromosomes, countGenes];
 int[,] childs = new int[countChromosomes, countGenes];
 int[,] halfOfPopulation = new int[countChromosomes / 2, countGenes];
 int[] sum = new int[countChromosomes];
 int max;
 int average;
 int[] keys = new int[countChromosomes];
 public Population()
 {
 int[] genes = new int[countGenes];
 for (int i = 0; i < countChromosomes; i++)
 {
 int s = 0;
 for (int j = 0; j < countGenes; j++)
 {
 genes[j] = rand.Next(0, 2);
 if (genes[j] == 1)
 s += 1;
 parents[i, j] = genes[j];
 }
 sum[i] = s;
 }
 }
 public void Cross()
 {
 int[,] reserv = new int[countChromosomes, countGenes];
 for (int i = 0; i < countChromosomes; i++)
 keys[i] = i;
 Array.Sort(sum, keys);
 for (int i = 0, n = countChromosomes - 1; i < countChromosomes / 2; i++, n--)
 {
 for (int j = 0; j < countGenes; j++)
 {
 halfOfPopulation[i, j] = parents[keys[n], j];
 }
 }
 int k = 0;
 for (int i = 0; i < countChromosomes / 2; i++)
 {
 int a = rand.Next(0, countChromosomes / 2);
 int b = rand.Next(0, countChromosomes / 2);
 for (int j = 0; j < countGenes; j++)
 {
 childs[0, j] = halfOfPopulation[a, j];
 childs[1, j] = halfOfPopulation[b, j];
 reserv[0, j] = childs[0, j];
 }
 int c = rand.Next(0, countGenes);
 for (int j = countGenes - c; j < countGenes; j++)
 {
 childs[0, j] = childs[1, j];
 childs[1, j] = reserv[0, j];
 }
 for (int j = 0; j < countGenes; j++)
 {
 parents[k, j] = childs[0, j];
 parents[k+1, j] = childs[1, j];
 }
 k += 2;
 }
 }
 public void Mutation()
 {
 for (int i = 0; i < countChromosomes; i++)
 {
 int s = 0;
 for (int j = 0; j < countGenes; j++)

 {
 int value = rand.Next(0, 1000);
 if (value == 0)
 if (parents[i, j] == 1)
 parents[i, j] = 0;
 else
 parents[i, j] = 1;
 if (parents[i, j] == 1)
 s += 1;
 }
 sum[i] = s;
 }
 }
 public int GetMax()
 {
 max = sum.Max();
 return max;
 }
 public int GetAverage()
 {
 average = (int)sum.Average();
 return average;
 }
 }
}

Results

Iterations = 1039

Graph (iteration & maximum) - red

Graph (iteration average) – blue

Describtion

At first i Create 100 random binary-chromosomes each with 1000 genes. Then I defined fitness -

is the number of “1” in one chromosome – the more the better. After that selected 2

chromosomes at random from the better half of the population and created a child chromosome

by a onr-point-crossover. Then I gived the child a mutation with a probability of 1/1000 = 0.001

and repeated cycle 100 times and created the next generation. After that repeated until the fitness

value does not change any more.

