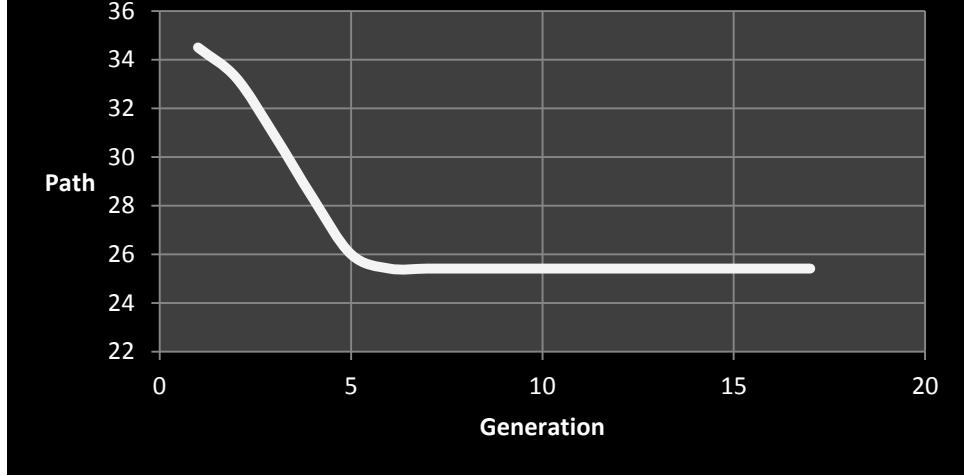

**TASK: Traveling Salesperson Problem (TSP)**

Assume a salesperson, starting from his/her city, should visit 25 cities, all of them but only once, and then return to the city he/she started. The problem is to look for the minimum length of such tour.

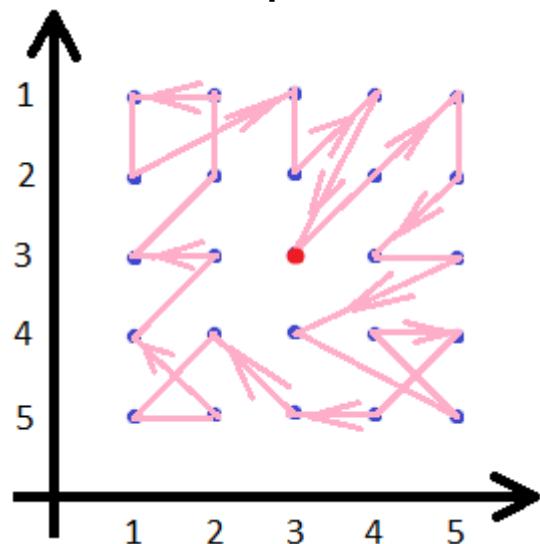
**TSP with 25 cities of a fixed location**

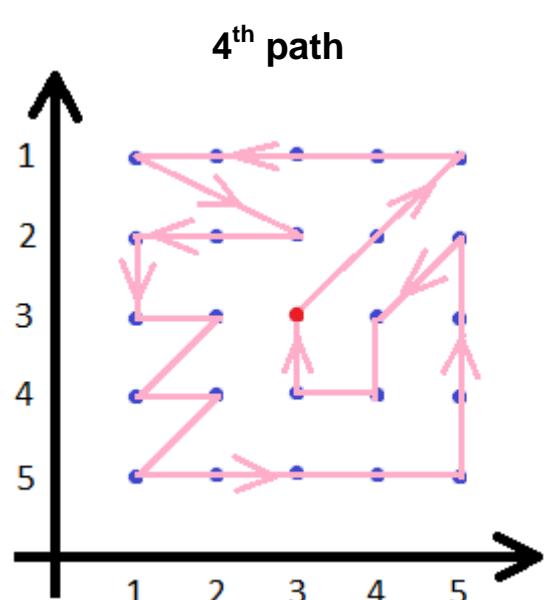
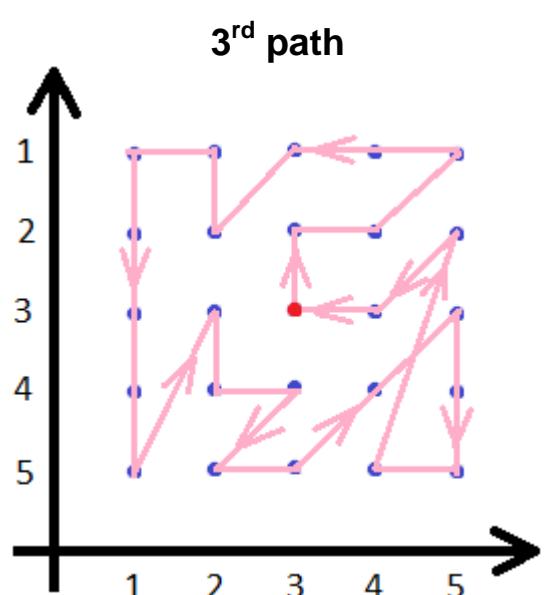
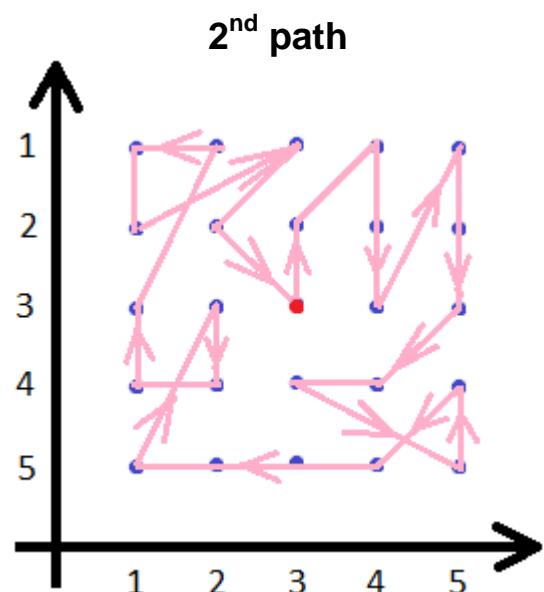
1. Assume 25 cities as shown in the next page (start from Z and return to Z).
2. Calculate distance matrix ( $25 \times 25$ ).
3. Apply GA and evolve chromosomes to be the tours of minimum length.
4. Also show
  - (5) The graph of fitness vs generation.
  - (6) The minimum tour in the 1st, two intermediate, and the final generation.

**Map of 25 cities**

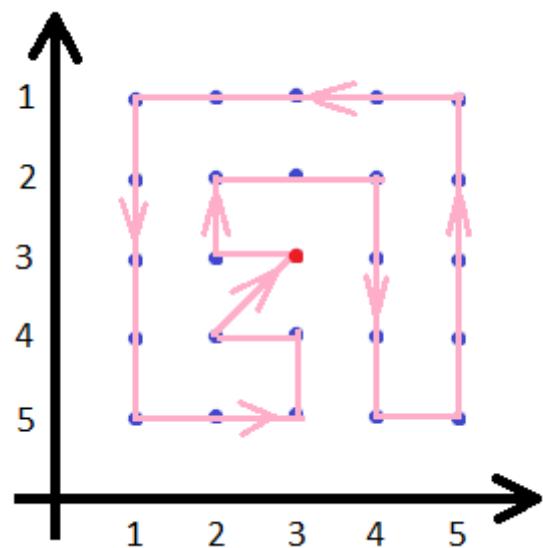



## All possible tours


| A | B    | C    | D    | E    | F    | G    | H    | I    | J    | K    | L    | M    | N    | O    | P    | Q    | R    | S    | T    | U    | V    | W    | X    | Y    |      |
|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| A | 0,00 | 1,00 | 2,00 | 3,00 | 4,00 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 2,00 | 2,83 | 3,61 | 4,47 | 3,00 | 3,16 | 3,61 | 4,24 | 5,00 | 4,00 | 4,12 | 4,47 | 5,00 |      |      |
| B | 1,00 | 0,00 | 1,00 | 2,00 | 3,00 | 1,41 | 1,00 | 1,41 | 2,24 | 3,16 | 2,24 | 2,00 | 2,83 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 4,24 | 4,12 | 4,00 | 4,12 | 4,47 | 5,00 |      |
| C | 2,00 | 1,00 | 0,00 | 1,00 | 2,00 | 2,24 | 1,41 | 1,00 | 1,41 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 4,47 | 4,12 | 4,00 | 4,12 | 4,47 | 5,00 |      |
| D | 3,00 | 2,00 | 1,00 | 0,00 | 1,00 | 3,16 | 2,24 | 1,41 | 1,00 | 1,41 | 3,81 | 2,83 | 2,24 | 2,00 | 2,24 | 4,24 | 3,61 | 3,16 | 3,00 | 3,16 | 5,00 | 4,47 | 4,12 | 4,00 |      |
| E | 4,00 | 3,00 | 2,00 | 1,00 | 0,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,47 | 3,61 | 2,83 | 2,24 | 2,00 | 5,00 | 4,24 | 3,61 | 3,16 | 3,00 | 5,66 | 4,47 | 4,12 | 4,00 |      |
| F | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 0,00 | 1,00 | 2,00 | 3,00 | 4,00 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 2,00 | 2,24 | 2,83 | 3,61 | 4,47 | 3,00 | 3,16 | 3,61 | 4,24 |      |
| G | 1,41 | 1,00 | 1,41 | 2,24 | 3,16 | 1,00 | 0,00 | 1,00 | 2,00 | 3,00 | 1,41 | 1,00 | 2,24 | 3,16 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 4,24 |      |
| H | 2,24 | 1,41 | 1,00 | 1,41 | 2,24 | 2,00 | 1,00 | 0,00 | 1,00 | 2,00 | 2,24 | 1,41 | 1,00 | 2,24 | 2,83 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 |      |
| I | 3,16 | 2,24 | 1,41 | 1,00 | 1,41 | 3,00 | 2,00 | 1,00 | 0,00 | 1,00 | 3,16 | 2,24 | 1,41 | 1,00 | 2,41 | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 4,24 | 3,61 | 3,16 | 3,00 |      |
| J | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,00 | 3,00 | 2,00 | 1,00 | 0,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,47 | 3,61 | 2,83 | 2,24 | 2,00 | 5,00 | 4,24 | 3,61 | 3,16 |      |
| K | 2,00 | 2,24 | 2,83 | 3,61 | 4,47 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 0,00 | 1,00 | 2,00 | 3,00 | 4,00 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 2,00 | 2,24 | 2,83 | 3,61 |      |
| L | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 1,41 | 1,00 | 1,41 | 2,24 | 3,16 | 1,00 | 0,00 | 1,00 | 2,00 | 3,00 | 1,41 | 1,00 | 2,24 | 3,16 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 |      |
| M | 2,83 | 2,24 | 2,00 | 2,24 | 2,83 | 2,24 | 1,41 | 1,00 | 1,41 | 2,24 | 2,00 | 1,00 | 0,00 | 1,00 | 2,00 | 2,24 | 1,41 | 1,00 | 2,24 | 2,83 | 2,24 | 2,00 | 2,24 | 2,83 |      |
| N | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 3,16 | 2,24 | 1,41 | 1,00 | 1,41 | 3,00 | 2,00 | 1,00 | 0,00 | 1,00 | 3,16 | 2,24 | 1,41 | 1,00 | 2,24 | 2,83 | 2,24 | 2,00 | 2,24 |      |
| O | 4,47 | 3,61 | 2,83 | 2,24 | 2,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,00 | 3,00 | 2,00 | 1,00 | 0,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,47 | 3,61 | 2,83 | 2,24 |      |
| P | 3,00 | 3,16 | 3,61 | 4,24 | 5,00 | 2,00 | 2,24 | 2,83 | 3,61 | 4,47 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 0,00 | 1,00 | 2,00 | 3,00 | 4,00 | 1,00 | 1,41 | 2,24 | 3,16 |      |
| Q | 3,16 | 3,00 | 3,16 | 3,61 | 4,24 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 1,41 | 1,00 | 1,41 | 2,24 | 3,16 | 1,00 | 0,00 | 1,00 | 2,00 | 3,00 | 1,41 | 1,00 | 2,24 | 3,16 |      |
| R | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 2,83 | 2,24 | 1,41 | 1,00 | 1,41 | 2,24 | 3,00 | 1,00 | 0,00 | 1,00 | 2,00 | 2,24 | 1,41 | 1,00 | 2,24 |      |
| S | 4,24 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 3,16 | 2,24 | 1,41 | 1,00 | 1,41 | 3,00 | 2,00 | 1,00 | 0,00 | 3,16 | 2,24 | 1,41 | 1,00 | 2,24 |      |
| T | 5,00 | 4,24 | 3,61 | 3,16 | 3,00 | 4,47 | 3,61 | 2,83 | 2,24 | 2,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,00 | 3,00 | 2,00 | 1,00 | 0,00 | 4,12 | 3,16 | 2,24 | 1,41 |      |
| U | 4,00 | 4,12 | 4,47 | 5,00 | 5,66 | 3,00 | 3,16 | 3,61 | 4,24 | 5,00 | 2,00 | 2,24 | 2,83 | 3,61 | 4,47 | 1,00 | 1,41 | 2,24 | 3,16 | 4,12 | 0,00 | 1,00 | 2,00 | 3,00 |      |
| V | 4,12 | 4,00 | 4,12 | 4,47 | 5,00 | 3,16 | 3,00 | 3,16 | 3,61 | 4,24 | 2,24 | 2,00 | 2,24 | 2,83 | 3,61 | 4,47 | 1,00 | 1,41 | 2,24 | 3,16 | 1,00 | 0,00 | 1,00 | 2,00 |      |
| W | 4,47 | 4,12 | 4,00 | 4,12 | 4,47 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 2,83 | 2,24 | 1,41 | 1,00 | 2,24 | 2,00 | 1,00 | 0,00 | 1,00 | 2,00 |      |
| X | 5,00 | 4,47 | 4,12 | 4,00 | 4,12 | 4,24 | 3,61 | 3,16 | 3,00 | 3,16 | 3,61 | 2,83 | 2,24 | 2,00 | 2,24 | 3,16 | 2,24 | 1,41 | 1,00 | 3,00 | 2,00 | 1,00 | 0,00 | 1,00 | 2,00 |
| Y | 5,66 | 5,00 | 4,47 | 4,12 | 4,00 | 5,00 | 4,24 | 3,61 | 3,16 | 3,00 | 4,47 | 3,61 | 2,83 | 2,24 | 2,00 | 4,12 | 3,16 | 2,24 | 1,41 | 1,00 | 4,00 | 3,00 | 2,00 | 1,00 | 0,00 |




## Graph of fitness vs generation

### Path(fitness) vs Generation




### 1<sup>st</sup> path





Last (best) path

