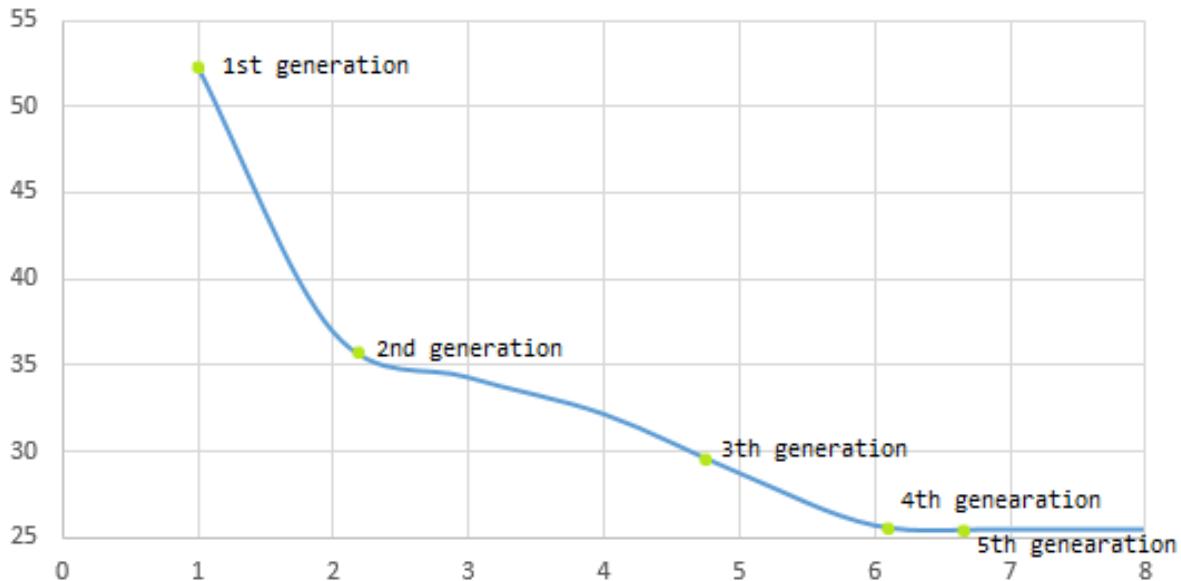
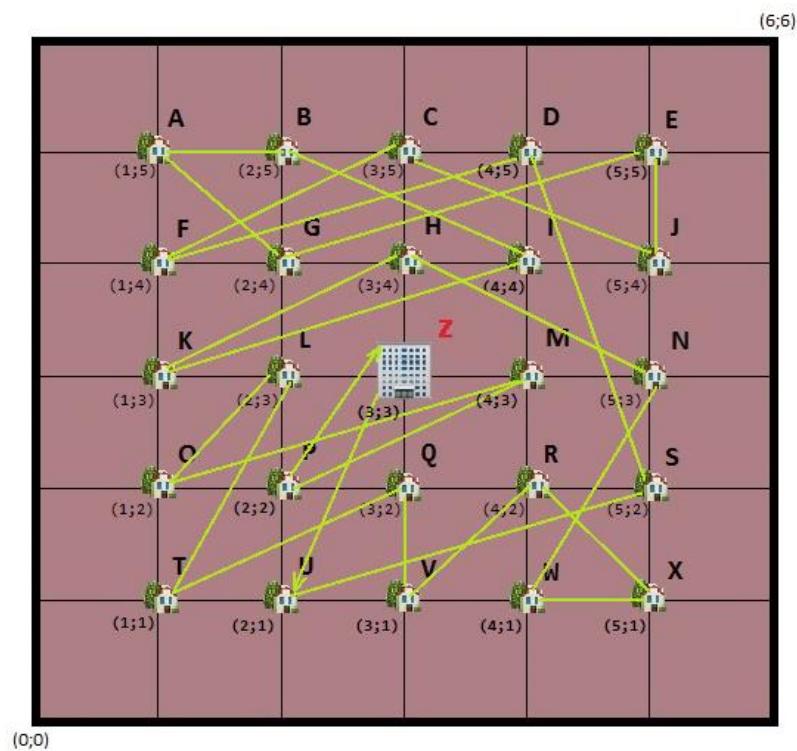

Modern intelligent IT
Lab 3 (08.04.2016)
Akira Imada
Student – Vitaly Konovalov
Group – AS-37

TSP with 25 cities of a fixed location

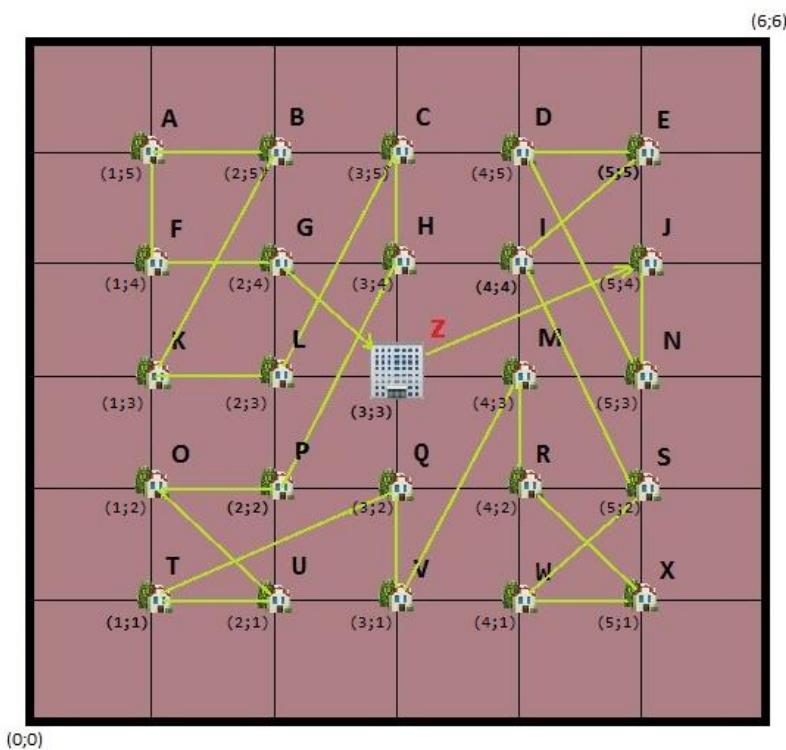
1. Assume 25 cities as shown in the next page (start from Z and return to Z).
2. Calculate distance matrix (25×25).
3. Apply GA and evolve chromosomes to be the tours of minimum length.
4. Also show
 - (5) the graph of fitness vs generation.

- (6) The minimum tour in the 1st, two intermediate, and the final generation.

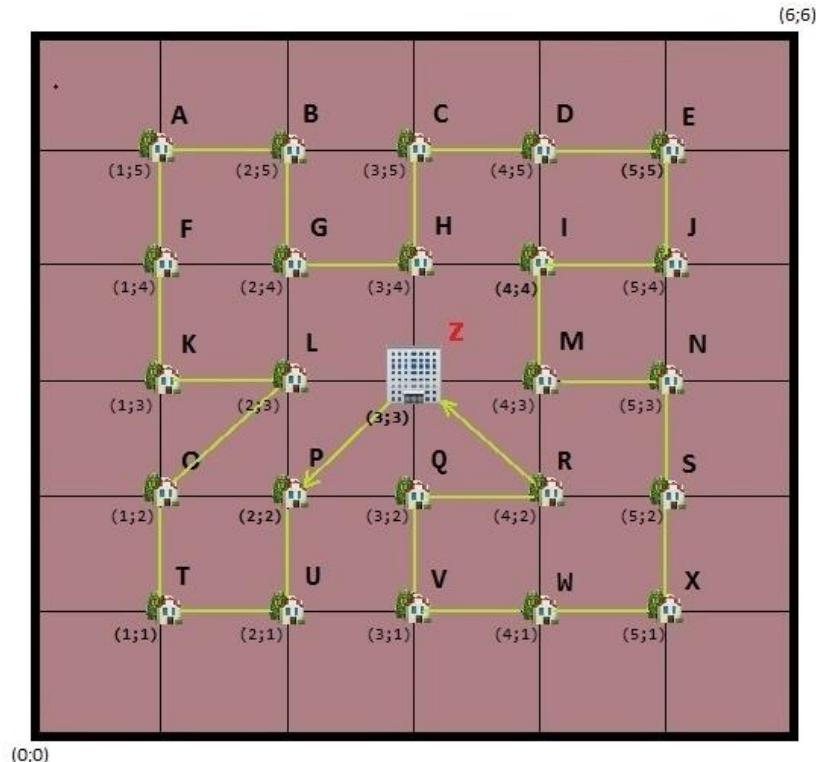

25 Cities map

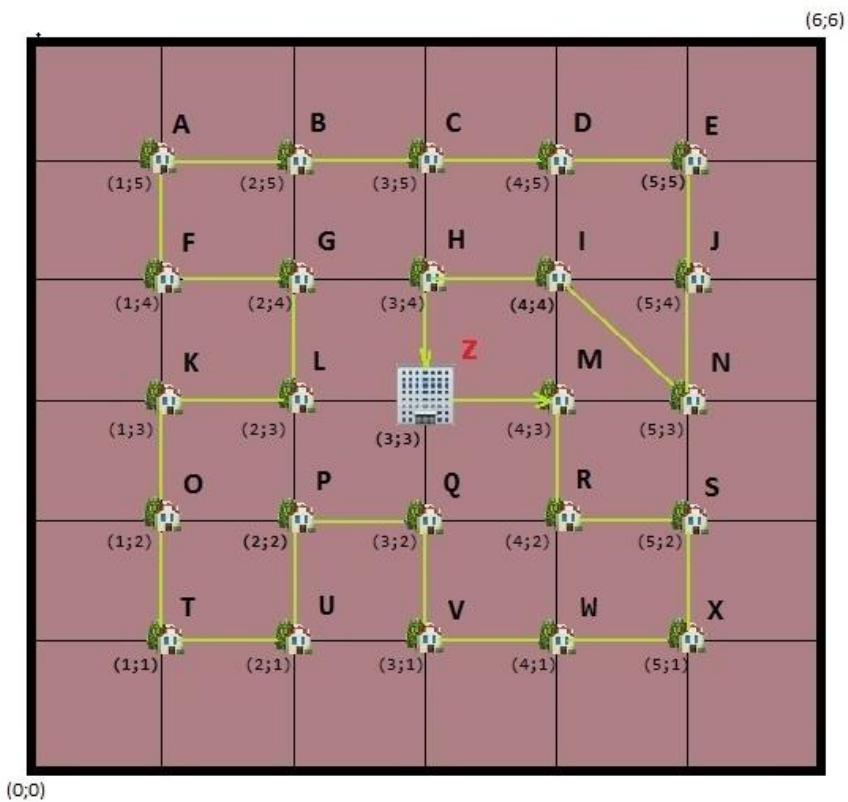

Distance Matrix

A	B	C	D	E	F	G	H	I	J	K	Z	L	M	N	O	P	Q	R	S	T	U	V	W	X		
A	0,00	1,00	2,00	3,00	4,00	1,00	1,41	2,24	3,16	4,12	2,00	2,24	2,83	3,61	4,47	3,00	3,16	3,61	4,24	5,00	4,00	4,12	4,47	5,00	5,66	
B	1,00	0,00	1,00	2,00	3,00	1,41	1,00	1,41	2,24	3,16	2,24	2,00	2,24	2,83	3,61	3,16	3,00	3,16	3,61	4,24	4,12	4,00	4,12	4,47	5,00	
C	2,00	1,00	0,00	1,00	2,00	2,24	1,41	1,00	1,41	2,24	2,83	2,24	2,00	2,24	2,83	3,61	3,16	3,00	3,16	3,61	4,47	4,12	4,00	4,12	4,47	5,00
D	3,00	2,00	1,00	0,00	1,00	3,16	2,24	1,41	1,00	1,41	3,61	2,83	2,24	2,00	2,24	4,24	3,61	3,16	3,00	3,16	5,00	4,47	4,12	4,00	4,12	4,12
E	4,00	3,00	2,00	1,00	0,00	4,12	3,16	2,24	1,41	1,00	4,47	3,61	2,83	2,24	2,00	5,00	4,24	3,61	3,16	3,00	5,66	5,00	4,47	4,12	4,00	
F	1,00	1,41	2,24	3,16	4,12	0,00	1,00	2,00	3,00	4,00	1,00	1,41	2,24	3,16	4,12	2,00	2,24	2,83	3,61	4,47	3,00	3,16	3,61	4,24	5,00	
G	1,41	1,00	1,41	2,24	3,16	1,00	0,00	1,00	2,00	3,00	1,41	1,00	1,41	2,24	3,16	2,24	2,00	2,24	2,83	3,61	3,16	3,00	3,16	3,61	4,24	
H	2,24	1,41	1,00	1,41	2,24	2,00	1,00	0,00	1,00	2,00	2,24	1,41	1,00	1,41	2,24	2,83	2,24	2,00	2,24	2,83	3,61	3,16	3,00	3,16	3,61	
I	3,16	2,24	1,41	1,00	1,41	3,00	2,00	1,00	0,00	1,00	3,16	2,24	1,41	1,00	1,41	3,61	2,83	2,24	2,00	2,24	4,24	3,61	3,16	3,00	3,16	
J	4,12	3,16	2,24	1,41	1,00	4,00	3,00	2,00	1,00	0,00	4,12	3,16	2,24	1,41	1,00	4,47	3,61	2,83	2,24	2,00	5,00	4,24	3,61	3,16	3,00	
K	2,00	2,24	2,83	3,61	4,47	1,00	1,41	2,24	3,16	4,12	0,00	1,00	2,00	3,00	4,00	1,00	1,41	2,24	3,16	4,12	2,00	2,24	2,83	3,61	4,47	
Z	2,24	2,00	2,24	2,83	3,61	1,41	1,00	1,41	2,24	3,16	1,00	0,00	1,00	2,00	3,00	1,41	1,00	1,41	2,24	3,16	2,24	2,00	2,24	2,83	3,61	
L	2,83	2,24	2,00	2,24	2,83	2,24	1,41	1,00	1,41	2,24	2,00	1,00	0,00	1,00	2,00	2,24	1,41	1,00	1,41	2,24	2,83	2,24	2,00	2,24	2,83	
M	3,61	2,83	2,24	2,00	2,24	3,16	2,24	1,41	1,00	1,41	3,00	2,00	1,00	0,00	1,00	3,16	2,24	1,41	1,00	1,41	3,61	2,83	2,24	2,00	2,24	
N	4,47	3,61	2,83	2,24	2,00	4,12	3,16	2,24	1,41	1,00	4,00	3,00	2,00	1,00	0,00	4,12	3,16	2,24	1,41	1,00	4,47	3,61	2,83	2,24	2,00	
O	3,00	3,16	3,61	4,24	5,00	2,00	2,24	2,83	3,61	4,47	1,00	1,41	2,24	3,16	4,12	0,00	1,00	2,00	3,00	4,00	1,00	1,41	2,24	3,16	4,12	
P	3,16	3,00	3,16	3,61	4,24	2,24	2,00	2,24	2,83	3,61	1,41	1,00	1,41	2,24	3,16	1,00	0,00	1,00	2,00	3,00	1,41	1,00	1,41	2,24	3,16	
Q	3,61	3,16	3,00	3,16	3,61	2,83	2,24	2,00	2,24	2,83	2,24	1,41	1,00	1,41	2,24	2,00	1,00	0,00	1,00	2,00	2,24	1,41	1,00	1,41	2,24	
R	4,24	3,61	3,16	3,00	3,16	3,61	2,83	2,24	2,00	2,24	3,16	2,24	1,41	1,00	1,41	3,00	2,00	1,00	0,00	1,00	3,16	2,24	1,41	1,00	1,41	
S	5,00	4,24	3,61	3,16	3,00	4,47	3,61	2,83	2,24	2,00	4,12	3,16	2,24	1,41	1,00	4,00	3,00	2,00	1,00	0,00	4,12	3,16	2,24	1,41	1,00	
T	4,00	4,12	4,47	5,00	5,66	3,00	3,16	3,61	4,24	5,00	2,00	2,24	2,83	3,61	4,47	1,00	1,41	2,24	3,16	4,12	0,00	1,00	2,00	3,00	4,00	
U	4,12	4,00	4,12	4,47	5,00	3,16	3,00	3,16	3,61	4,24	2,24	2,00	2,24	2,83	3,61	1,41	1,00	1,41	2,24	3,16	1,00	0,00	1,00	2,00	3,00	
V	4,47	4,12	4,00	4,12	4,47	3,61	3,16	3,00	3,16	3,61	2,83	2,24	2,00	2,24	2,83	2,24	1,41	1,00	1,41	2,24	2,00	1,00	0,00	1,00	2,00	
W	5,00	4,47	4,12	4,00	4,12	4,24	3,61	3,16	3,00	3,16	3,61	2,83	2,24	2,00	2,24	3,16	2,24	1,41	1,00	1,41	3,00	2,00	1,00	0,00	1,00	
X	5,66	5,00	4,47	4,12	4,00	5,00	4,24	3,61	3,16	3,00	4,47	3,61	2,83	2,24	2,00	4,12	3,16	2,24	1,41	1,00	4,00	3,00	2,00	1,00	0,00	


The graph of fitness vs generation

The minimum route in the 1st (distance: 52.31)


The minimum route in the 2nd(im) (distance: 36.89)


The minimum route in the 3th(im) (distance: 28.69)

The minimum route in the 4th(im) (distance: 26.23)

The final generation (distance: 25.41) (best)

im – intermediate.