Task 1:
#include <stdio.h>
#include <string.h>
#include <ctime>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <fstream>

using namespace std;

struct coord
{
 int X;
 int Y;
};

struct Dog
{
 int path[800];
 int fitness;
 double share;
 coord c;
};

int stepsToSousage(Dog dog)
{
 coord c;
 c.X= 500;
 c.Y= 500;
 for(int i=0;i<800;i++)
 {
 switch (dog.path[i]) {
 case 0:
 c.Y--;
 break;
 case 1:
 c.Y++;
 break;
 case 2:
 c.X--;
 break;
 case 3:
 c.X++;
 break;
 default:
 cout<<"Error in \'stepsToSousage\'"<<endl;
 exit(1);
 break;
 }
 }

 int steps[4]={0};

 steps[0]=abs(c.X - 400) + abs(c.Y-600);
 steps[1]=abs(c.X - 600) + abs(c.Y-600);
 steps[2]=abs(c.X - 400) + abs(c.Y-400);
 steps[3]=abs(c.X - 600) + abs(c.Y-400);

 int min=INT_MAX;
 for(int i=0;i<4;i++)
 {
 if(steps[i]<min)min = steps[i];
 }

 return min;
}

coord getCoord(Dog dog)
{
 coord c;
 c.X= 500;
 c.Y= 500;
 for(int i=0;i<800;i++)
 {
 switch (dog.path[i]) {
 case 0:
 c.Y--;
 break;
 case 1:
 c.Y++;
 break;
 case 2:
 c.X--;
 break;
 case 3:
 c.X++;
 break;
 default:
 cout<<"Error in \'getCoord\'"<<endl;
 exit(1);
 break;
 }
 }
 return c;
}
double S(int Dij)
{
 if(Dij < 5)
 return (1 - (double)Dij/5.0);
 else return 0;
}

double getDist(coord c1, coord c2)
{
 return abs(c1.X-c2.X) + abs(c1.Y-c2.Y);
}

int main(int argc, char** argv)
{
 ofstream BestF("Z:\\BestF.txt");
 ofstream map1("Z:\\map1.txt");
 ofstream map2("Z:\\map2.txt");
 ofstream map3("Z:\\map3.txt");
 ofstream map4("Z:\\map4.txt");

 ofstream table1("Z:\\table1.txt");
 ofstream table2("Z:\\table2.txt");
 ofstream table3("Z:\\table3.txt");
 ofstream table4("Z:\\table4.txt");

 srand(time(NULL));
 Dog osob[8];
 for(int i=0;i<8;i++)
 for(int j=0;j<800;j++)
 {
 osob[i].path[j] = rand()%4;

 }
 for(int i=0;i<8;i++)
 {
 osob[i].c = getCoord(osob[i]);
 cout<<i<<" x="<<osob[i].c.X<<" y="<<osob[i].c.Y<<endl;
 }
 int iter =0;
 while(true)
 {

 for(int i=0;i<8;i++)
 osob[i].fitness = 200 - stepsToSousage(osob[i]);

 for(int i=0;i<8;i++)
 {
 double znam = 0;
 double shareF=0;
 coord Ci = getCoord(osob[i]);
 for(int j=0;j<8;j++)
 {
 if(i==j)
 {
 znam+=1;
 continue;
 }
 coord Cj = getCoord(osob[j]);
 int dist = getDist(Ci,Cj);
 znam += S(dist);
 }
 shareF = osob[i].fitness / znam;
 osob[i].share = shareF;
 }
 Dog temp;
 int max;

 for(int i=0;i<7;i++)
 {
 max=i;
 for(int j=i+1;j<8;j++)
 {
 if(osob[j].share > osob[max].share)max=j;
 }
 if(max!=i)
 {

 temp = osob[i];
 osob[i]=osob[max];
 osob[max] = temp;
 }
 }

 cout<<"Sorted!!!"<<endl;
 cout<<"BEST = "<<osob[0].share<<endl;
 BestF<<osob[0].share<<'\n';
 if(iter == 0)

 for(int z=0;z<8;z++)
 {
 coord c = getCoord(osob[z]);
 map1<<c.X<<"*"<<c.Y<<'\n';
 table1<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
 }
 if(iter == 2)

 for(int z=0;z<8;z++)
 {
 coord c = getCoord(osob[z]);
 map2<<c.X<<"*"<<c.Y<<'\n';
 table2<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
 }
 if(iter == 4)

 for(int z=0;z<8;z++)
 {
 coord c = getCoord(osob[z]);
 map3<<c.X<<"*"<<c.Y<<'\n';
 table3<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
 }
 if(iter == 20)

 for(int z=0;z<8;z++)
 {
 coord c = getCoord(osob[z]);
 map4<<c.X<<"*"<<c.Y<<'\n';
 table4<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
 }

 for(int i=0;i<8;i++)
 cout<<"osob fitness ="<<osob[i].share<<endl;

 Dog best[4];

 for(int i=0;i<4;i++)
 best[i] = osob[i];

 for(int i=0;i<8;i++)
 {
 int Par1,Par2;//индексы родительских хромосом

 do{
 Par1 = rand() % 4;
 Par2 = rand() % 4;
 }while(Par1==Par2);

 int cut = (rand() % 799) + 1;

 Dog Chld1, Chld2;

 for(int k=0;k<cut;k++)
 {
 Chld1.path[k] = best[Par1].path[k];
 Chld2.path[k] = best[Par2].path[k];
 }

 for(int k=cut;k<800;k++)
 {
 Chld1.path[k] = best[Par2].path[k];
 Chld2.path[k] = best[Par1].path[k];
 }
 Chld1.fitness = 200 - stepsToSousage(Chld1);
 Chld2.fitness = 200 - stepsToSousage(Chld2);

 if(Chld1.fitness > Chld2.fitness)
 osob[i] = Chld1;
 else
 osob[i] = Chld2;
 }
 for(int i=0;i<8;i++)
 if(osob[i].fitness == 200)break;

 cout<<"ITERATION"<<endl;
 iter++;
 if(iter==21)break;
 }

 return 0;
}

Task 2:
[bookmark: _GoBack]

graph of Sharing Fitness vs Generation
50	64	66	74	72	66	80	25.333300000000001	40	15.7692	15.384600000000001	15.384600000000001	10.25	10.25	10.25	10.25	10.25	10.25	10.25	10.25	10.25	11	11	11	Generation
sharing fitness
image1.jpeg

