Task 1:
#include <stdio.h>
#include <string.h>
#include <ctime>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <fstream>

using namespace std;

struct coord
{
    int X;
    int Y;
};

struct Dog
{
    int path[800];
    int fitness;
    double share;
    coord c;
};

int stepsToSousage(Dog dog)
{
    coord c;
    c.X= 500;
    c.Y= 500;
    for(int i=0;i<800;i++)
    {
        switch (dog.path[i]) {
        case 0:
            c.Y--;
            break;
        case 1:
            c.Y++;
            break;
        case 2:
            c.X--;
            break;
        case 3:
            c.X++;
            break;
        default:
            cout<<"Error in \'stepsToSousage\'"<<endl;
            exit(1);
            break;
        }
    }

    int steps[4]={0};

    steps[0]=abs(c.X - 400) + abs(c.Y-600);
    steps[1]=abs(c.X - 600) + abs(c.Y-600);
    steps[2]=abs(c.X - 400) + abs(c.Y-400);
    steps[3]=abs(c.X - 600) + abs(c.Y-400);

    int min=INT_MAX;
    for(int i=0;i<4;i++)
    {
        if(steps[i]<min)min = steps[i];
    }

    return min;
}

coord getCoord(Dog dog)
{
    coord c;
    c.X= 500;
    c.Y= 500;
    for(int i=0;i<800;i++)
    {
        switch (dog.path[i]) {
        case 0:
            c.Y--;
            break;
        case 1:
            c.Y++;
            break;
        case 2:
            c.X--;
            break;
        case 3:
            c.X++;
            break;
        default:
            cout<<"Error in \'getCoord\'"<<endl;
            exit(1);
            break;
        }
    }
    return c;
}
double S(int Dij)
{
    if(Dij < 5)
        return (1 - (double)Dij/5.0);
    else return 0;
}

double getDist(coord c1, coord c2)
{
    return abs(c1.X-c2.X) + abs(c1.Y-c2.Y);
}

int main( int argc, char** argv )
{
    ofstream BestF("Z:\\BestF.txt");
    ofstream map1("Z:\\map1.txt");
    ofstream map2("Z:\\map2.txt");
    ofstream map3("Z:\\map3.txt");
    ofstream map4("Z:\\map4.txt");

    ofstream table1("Z:\\table1.txt");
    ofstream table2("Z:\\table2.txt");
    ofstream table3("Z:\\table3.txt");
    ofstream table4("Z:\\table4.txt");


    srand(time(NULL));
    Dog osob[8];
    for(int i=0;i<8;i++)
        for(int j=0;j<800;j++)
        {
            osob[i].path[j] = rand()%4;

        }
    for(int i=0;i<8;i++)
    {
        osob[i].c = getCoord(osob[i]);
        cout<<i<<" x="<<osob[i].c.X<<"  y="<<osob[i].c.Y<<endl;
    }
    int iter =0;
    while(true)
    {

        for(int i=0;i<8;i++)
            osob[i].fitness = 200 - stepsToSousage(osob[i]);

        for(int i=0;i<8;i++)
        {
            double znam = 0;
            double shareF=0;
            coord Ci = getCoord(osob[i]);
            for(int j=0;j<8;j++)
            {
                if(i==j)
                {
                    znam+=1;
                    continue;
                }
                coord Cj = getCoord(osob[j]);
                int dist = getDist(Ci,Cj);
                znam += S(dist);
            }
            shareF = osob[i].fitness / znam;
            osob[i].share = shareF;
        }
        Dog temp;
        int max;


        for(int i=0;i<7;i++)
        {
            max=i;
            for(int j=i+1;j<8;j++)
            {
                if(osob[j].share > osob[max].share)max=j;
            }
            if(max!=i)
            {

                temp = osob[i];
                osob[i]=osob[max];
                osob[max] = temp;
            }
        }

        cout<<"Sorted!!!"<<endl;
        cout<<"BEST = "<<osob[0].share<<endl;
        BestF<<osob[0].share<<'\n';
        if(iter == 0)

            for(int z=0;z<8;z++)
            {
                coord c = getCoord(osob[z]);
                map1<<c.X<<"*"<<c.Y<<'\n';
                table1<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
            }
        if(iter == 2)

            for(int z=0;z<8;z++)
            {
                coord c = getCoord(osob[z]);
                map2<<c.X<<"*"<<c.Y<<'\n';
                table2<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
            }
        if(iter == 4)

            for(int z=0;z<8;z++)
            {
                coord c = getCoord(osob[z]);
                map3<<c.X<<"*"<<c.Y<<'\n';
                table3<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
            }
        if(iter == 20)

            for(int z=0;z<8;z++)
            {
                coord c = getCoord(osob[z]);
                map4<<c.X<<"*"<<c.Y<<'\n';
                table4<<osob[z].fitness<<"*"<<osob[z].share<<'\n';
            }

        for(int i=0;i<8;i++)
            cout<<"osob fitness ="<<osob[i].share<<endl;

        Dog best[4];

        for(int i=0;i<4;i++)
            best[i] = osob[i];

        for(int i=0;i<8;i++)
        {
            int Par1,Par2;//индексы родительских хромосом

            do{
                Par1 = rand() % 4;
                Par2 = rand() % 4;
            }while(Par1==Par2);

            int cut = (rand() % 799) + 1;

            Dog Chld1, Chld2;

            for(int k=0;k<cut;k++)
            {
                Chld1.path[k] = best[Par1].path[k];
                Chld2.path[k] = best[Par2].path[k];
            }

            for(int k=cut;k<800;k++)
            {
                Chld1.path[k] = best[Par2].path[k];
                Chld2.path[k] = best[Par1].path[k];
            }
            Chld1.fitness = 200 - stepsToSousage(Chld1);
            Chld2.fitness = 200 - stepsToSousage(Chld2);

            if(Chld1.fitness > Chld2.fitness)
                osob[i] = Chld1;
            else
                osob[i] = Chld2;
        }
        for(int i=0;i<8;i++)
            if(osob[i].fitness == 200)break;

        cout<<"ITERATION"<<endl;
        iter++;
        if(iter==21)break;
    }

    return 0;
}
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