Task 1
1. Create 100 random binary-chromosomes each with 20genes.
2. Fitness is the number of "1" in one chromosome - the more the better.
3. Select 2 chromosomes at random from the better half of the population.
4. Create a child chromosome by a onr-point-crossover.
5. Repeat from 2. to 4. 100 times and create the next generation.
6. Repeat 5. until the fitness value does not change any more.
8. Show the result:
(1) Display the best chromosome in the 1st, an intermediate & final generation.

(2) Display the best and average fitness vs. generation.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class main

{

static class Chromosome

{

int[] genes;
Chromosome ()
{
genes = new int[20];
for(int i = 0; i < genes.length; i++)
genes[i] = random.nextInt (2);

}
int getFitness|()

{

int count = 0;
for(int i : genes)
if(1 == 1)

count++;

return count;

}

static class Generation
{
Chromosome [] chromosomes;
boolean isSorted = false;
Generation ()
{
chromosomes = new Chromosome[100];
for(int i = 0; i < chromosomes.length; i++)
chromosomes[i] = new Chromosome () ;
}
int getAverageFitness()
{
int cnt = 0;
for (Chromosome i : chromosomes)
cnt += i.getFitness|();
return cnt / chromosomes.length;
}

void sort ()




}

Arrays.sort(chromosomes, (ol, o02) ->
{
int olfit = ol.getFitness();
int o2fit 02.getFitness () ;
if(olfit < o02fit)
return 1;
else if(olfit > o2fit)
return -1;
else
return 0;

)
isSorted = true;
}

Chromosome [] get2RandomChromosomes ()

{
if (!isSorted)

sort () ;
Chromosome[] random?2 = new Chromosome[2];
random2 [0] = chromosomes[random.nextInt (50)7];
random2 [1] = chromosomes|[random.nextInt (50)7];

return random?2;
}
Chromosome getBestChromosome ()
{
if (!isSorted)
sort () ;
return chromosomes[0];

static Random random;
static ArrayList<Generation> generations;
static ArraylList<Integer> fitnessHistory;

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt (first.genes.length);
Chromosome child = new Chromosome () ;

System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);
System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint);

if (random.nextInt (1000) == 871)
{
int pos = random.nextInt (child.genes.length);
if (child.genes[pos] == 0)
child.genes[pos] 1;
else
child.genes[pos] = 0;

return child;

static boolean isLastGenerationUnchanged ()

{

int tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp==20)

return true;
if(fitnessHistory.size () <= 100)

return false;
for(int 1 = 0; 1 < 100; i++)
if(fitnessHistory.get (fitnessHistory.size()-1i-1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException




random = new Random (System.currentTimeMillis());
fitnessHistory = new ArrayList<>();
generations = new ArrayList<>();
generations.add (new Generation());
generations.get (0) .sort () ;
fitnessHistory.add(generations.get (0) .getAverageFitness());
System.out.println ("Generation: 0; Fitness: " +
generations.get (0) .getAverageFitness () +
"; Best chromosome: " +
generations.get (0) .getBestChromosome () .getFitness());

for(int i = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int 7 = 0; j < newGeneration.chromosomes.length; j++)
{
Chromosome[] random2 = generations.get (generations.size()-
1) .get2RandomChromosomes () ;
newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);
}
newGeneration.sort () ;
generations.add (newGeneration) ;
generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());
System.out.println(i + " " + newGeneration.getAverageFitness() + " " +
newGeneration.getBestChromosome () .getFitness());

if (isLastGenerationUnchanged())
break;

}

Thread.sleep(1000);

Result

1) The best chromosome in the 1% generation - 14;
The best chromosome in the last (10™) generation - 20;




