Task 1
1. Create 100 random binary-chromosomes each with 20 genes.
. Fitness is the number of "1" in one chromosome - the more the better.

. Select 2 chromosomes at random from the better half of the population.

. Repeat from 2. to 4. 100 times and create the next generation.

2

3

4. Create a child chromosome by a onr-point-crossover.

5

6. Repeat 5. until the fitness value does not change any more.
7

. Show the result:
(1) Display the best chromosome in the 1st, an intermediate & final generation.

(2) Display the best and average fitness vs. generation.

Code (Java)

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class main
{
static class Chromosome
{
int[] genes;
Chromosome ()
{
genes = new int[20];
for(int 1 = 0; 1 < genes.length; i++)
genes[i] = random.nextInt (2);
}
int getFitness|()
{
int count = 0;
for(int i1 : genes)
if(1 == 1)
count++;
return count;

}

static class Generation
{
Chromosome[] chromosomes;
boolean isSorted = false;
Generation ()
{
chromosomes = new Chromosome[100];
for(int 1 = 0; i1 < chromosomes.length; i++)
chromosomes[i] = new Chromosome () ;
}

void sort ()



Arrays.sort(chromosomes, (ol, 02) ->
{
int olfit = ol.getFitness();
int o2fit o02.getFitness () ;
if (olfit < o02fit)
return 1;
else if(olfit > o2fit)
return -1;
else
return 0;

) ;

isSorted = true;
int getAverageFitness|()

int cnt = 0;

for (Chromosome 1 : chromosomes)
cnt += i.getFitness();

return cnt / chromosomes.length;

Chromosome getBestChromosome ()
{
if(!isSorted)
sort () ;
return chromosomes[0];

}

Chromosome[] get2RandomChromosomes ()

{
if(!isSorted)

sort () ;
Chromosome[] random?2 = new Chromosome[2];
random2 [0] = chromosomes [random.nextInt (50)];
random2 [1] = chromosomes[random.nextInt (50)];

return random2;

}
static Random random;
static ArrayList<Generation> generations;
static ArraylList<Integer> fitnessHistory;
static Chromosome crossover (Chromosome first, Chromosome second)
{
int crossoverPoint = random.nextInt (first.genes.length);

Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,

second.genes.length - crossoverPoint);

if (random.nextInt (1000) == 871)
{
int pos = random.nextInt (child.genes.length);
if (child.genes[pos] == 0)
child.genes[pos] = 1;
else
child.genes[pos]

0;

return child;

static boolean isLastGenerationUnchanged ()



int tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp==20)
return true;
if (fitnessHistory.size () <= 100)
return false;
for(int 1 = 0; 1 < 100; i++)
if(fitnessHistory.get (fitnessHistory.size()-1i-1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException
{

random = new Random (System.currentTimeMillis());

fitnessHistory = new ArrayList<>();

generations = new ArrayList<>();

generations.add (new Generation());

generations.get (0) .sort () ;

fitnessHistory.add (generations.get (0) .getAverageFitness());

System.out.println ("Generation: 0; Fitness: " +
generations.get (0) .getAverageFitness () +
"; Best chromosome: " +
generations.get (0) .getBestChromosome () .getFitness());
for(int 1 = 1; ; 1i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)
{
Chromosome [] random2 = generations.get (generations.size()-
1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover(random2[0], random2[1l]);

}

newGeneration.sort () ;

generations.add (newGeneration) ;

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());

System.out.println(i + " " + newGeneration.getAverageFitness() + " "
newGeneration.getBestChromosome () .getFitness());

if (isLastGenerationUnchanged())
break;

Thread.sleep(1000) ;



1) The best chromosome in the 1% generation - 15;
The best chromosome in the last (14™) generation - 20;

2)

Fitness

20

18

16

14

12

10

Result

/_/_/

1 2 3 4

5

6

7 8
Generation

9

10

11

12

13

14

e Best

e AVerage



