Task 1

1. Create 100 random binary-chromosomes each with 20 genes.

. Fitness is the number of "1" in one chromosome - the more the better.

. Select 2 chromosomes at random from the better half of the population.

. Repeat from 2. to 4. 100 times and create the next generation.

. Repeat 5. until the fitness value does not change any more.

. Show the result:

2
3
4. Create a child chromosome by a onr-point-crossover.
5
6
7

(1) Display the best chromosome in the 1st, an intermediate & final generation.

(2) Display the best and average fitness vs. generation.

Source code (Java)

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class Main

{

static class Chromosome

{

}

int[] genes;
Chromosome ()
{
genes = new int[20];
for(int i = 0; i < genes.length; i++)
genes|[i] = random.nextInt (2);
}
int getFitness()
{
int cnt = 0;
for (int i : genes)
if(i == 1)
cnt++;
return cnt;

static class Generation

{

Chromosome [] chromosomes;
boolean isSorted = false;
Generation ()

{

chromosomes = new Chromosome[100];

for(int 1 = 0; i1 < chromosomes.length;

chromosomes[i] = new Chromosome () ;

}

int getAverageFitness|()

{

i++)

int cnt = 0;
for (Chromosome i1 : chromosomes)
cnt += i.getFitness|();
return cnt / chromosomes.length;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, 02) ->
{
int olfit = ol.getFitness();
int 02fit = o2.getFitness();
if (olfit < o2fit)
return 1;
else if (olfit > o02fit)
return -1;
else
return O;
)
isSorted = true;
}
Chromosome[] get2RandomChromosomes ()
{
if(!isSorted)
sort () ;
Chromosome[] random?2 = new Chromosome[2];

random?2 [0] chromosomes [random.nextInt (50)];
random2 [1] = chromosomes|[random.nextInt (50)7];

return random?2;

}

Chromosome getBestChromosome ()

{
if(!isSorted)
sort () ;
return chromosomes[0];

}
static Random random;
static Arraylist<Generation> generations;
static ArraylList<Integer> fitnessHistory;
static Chromosome crossover (Chromosome first, Chromosome second)
{
int crossoverPoint = random.nextInt (first.genes.length);

Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,

second.genes.length - crossoverPoint);

if (random.nextInt (1000) == 871)
{
int pos = random.nextInt (child.genes.length);
if (child.genes[pos] == 0)
child.genes[pos] = 1;
else
child.genes[pos]

0;
}

return child;

}

static boolean islastGenerationUnchanged()
{

int tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp==20)
return true;
if (fitnessHistory.size () <= 100)
return false;
for(int i = 0; 1 < 100; i++)
if (fitnessHistory.get(fitnessHistory.size()-i-1) != tmp)
return false;
return true;

}

public static void main(String[] args) throws InterruptedException
{
random = new Random (System.currentTimeMillis());
fitnessHistory = new ArrayList<>();
generations = new ArrayList<>();
generations.add (new Generation());
generations.get (0) .sort () ;
fitnessHistory.add(generations.get (0) .getAverageFitness());

System.out.println ("Generation: 0; Fitness: " +
generations.get (0) .getAverageFitness () +
", Best chromosome: " +
generations.get (0) .getBestChromosome () .getFitness());
for(int i = 1; ; 1i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; Jj++)
{
Chromosome [] random2 = generations.get (generations.size()-
1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover (random2[0], random2[1l]);

}

newGeneration.sort () ;

generations.add (newGeneration) ;

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());

System.out.println(i + " " + newGeneration.getAverageFitness() +
newGeneration.getBestChromosome () .getFitness ());

if (isLastGenerationUnchanged())
break;

Thread.sleep(0,1);

Result

1) The best chromosome in the 1% generation - 16;
The best chromosome in the last (12™) generation - 20;

2)

20

18 e _—

. /_/ /_/

14 /

ol

/ Average

10 7

Best

o N B O

o 1 2 3 4 5 6 7 8 9 10 11 12

