
Task 1

1. Create 100 random binary-chromosomes each with 20 genes.

2. Fitness is the number of "1" in one chromosome - the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a onr-point-crossover.

5. Repeat from 2. to 4. 100 times and create the next generation.

6. Repeat 5. until the fitness value does not change any more.

7. Show the result:

(1) Display the best chromosome in the 1st, an intermediate & final generation.

(2) Display the best and average fitness vs. generation.

Source code (Java)

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Random;

public class Main

{

 static class Chromosome

 {

 int[] genes;

 Chromosome()

 {

 genes = new int[20];

 for(int i = 0; i < genes.length; i++)

 genes[i] = random.nextInt(2);

 }

 int getFitness()

 {

 int cnt = 0;

 for(int i : genes)

 if(i == 1)

 cnt++;

 return cnt;

 }

 }

 static class Generation

 {

 Chromosome[] chromosomes;

 boolean isSorted = false;

 Generation()

 {

 chromosomes = new Chromosome[100];

 for(int i = 0; i < chromosomes.length; i++)

 chromosomes[i] = new Chromosome();

 }

 int getAverageFitness()

 {

 int cnt = 0;

 for(Chromosome i : chromosomes)

 cnt += i.getFitness();

 return cnt / chromosomes.length;

 }

 void sort()

 {

 Arrays.sort(chromosomes, (o1, o2) ->

 {

 int o1fit = o1.getFitness();

 int o2fit = o2.getFitness();

 if(o1fit < o2fit)

 return 1;

 else if(o1fit > o2fit)

 return -1;

 else

 return 0;

 });

 isSorted = true;

 }

 Chromosome[] get2RandomChromosomes()

 {

 if(!isSorted)

 sort();

 Chromosome[] random2 = new Chromosome[2];

 random2[0] = chromosomes[random.nextInt(50)];

 random2[1] = chromosomes[random.nextInt(50)];

 return random2;

 }

 Chromosome getBestChromosome()

 {

 if(!isSorted)

 sort();

 return chromosomes[0];

 }

 }

 static Random random;

 static ArrayList<Generation> generations;

 static ArrayList<Integer> fitnessHistory;

 static Chromosome crossover(Chromosome first, Chromosome second)

 {

 int crossoverPoint = random.nextInt(first.genes.length);

 Chromosome child = new Chromosome();

 System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);

 System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint,

 second.genes.length - crossoverPoint);

 if(random.nextInt(1000) == 871)

 {

 int pos = random.nextInt(child.genes.length);

 if(child.genes[pos] == 0)

 child.genes[pos] = 1;

 else

 child.genes[pos] = 0;

 }

 return child;

 }

 static boolean isLastGenerationUnchanged()

 {

 int tmp = fitnessHistory.get(fitnessHistory.size() - 1);

 if(tmp==20)

 return true;

 if(fitnessHistory.size() <= 100)

 return false;

 for(int i = 0; i < 100; i++)

 if(fitnessHistory.get(fitnessHistory.size()-i-1) != tmp)

 return false;

 return true;

 }

 public static void main(String[] args) throws InterruptedException

 {

 random = new Random(System.currentTimeMillis());

 fitnessHistory = new ArrayList<>();

 generations = new ArrayList<>();

 generations.add(new Generation());

 generations.get(0).sort();

 fitnessHistory.add(generations.get(0).getAverageFitness());

 System.out.println("Generation: 0; Fitness: " +

 generations.get(0).getAverageFitness() +

 "; Best chromosome: " +

generations.get(0).getBestChromosome().getFitness());

 for(int i = 1; ; i++)

 {

 Generation newGeneration = new Generation();

 for(int j = 0; j < newGeneration.chromosomes.length; j++)

 {

 Chromosome[] random2 = generations.get(generations.size()-

1).get2RandomChromosomes();

 newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);

 }

 newGeneration.sort();

 generations.add(newGeneration);

 generations.remove(0);

 fitnessHistory.add(newGeneration.getAverageFitness());

 System.out.println(i + " " + newGeneration.getAverageFitness() + " " +

newGeneration.getBestChromosome().getFitness());

 if(isLastGenerationUnchanged())

 break;

 }

 Thread.sleep(0,1);

 }

}

Result

1) The best chromosome in the 1
st
 generation - 16;

 The best chromosome in the last (12
th

) generation - 20;

2)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Average

Best

