
Kozitsky Igor. Laboratory work №1

First scenario: probability of mutation is 1 percent

Code on C++:

#include "stdafx.h"
#include <iostream>
#include <vector>

using namespace std;

unsigned power(vector<bool> chromo);
vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of_chr);
vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen);
void mutation(vector<vector<bool>> &generation, unsigned procent);
void vector_output(vector<vector<bool>> vec);

bool check = false;

int main()
{

 unsigned number_of_gen = 100;
 unsigned number_of_chr = 100;
 unsigned limit = 1000;
 unsigned procent = 1;

 vector<vector<vector<bool>>> library;
 vector <vector<bool>> generation;

 for (int i = 0; i < number_of_chr; i++) {
 vector<bool> temp;
 for (int j = 0; j < number_of_gen; j++) {
 temp.push_back(rand() % 2);
 }
 generation.push_back(temp);
 }
 library.push_back(generation);
 cout << "Generation 0:" << endl;
 vector_output(generation);
 unsigned number = 1;

 while (true) {
 vector<vector<bool>> parents = selection(generation, number_of_chr);
 generation = evolution(parents, number_of_chr, number_of_gen);
 mutation(generation, procent);
 library.push_back(generation);
 cout << "Generation " << number << ":" << endl;
 number++;
 vector_output(generation);
 if (check == true || number == limit) break;
 }
 return 0;
}

unsigned power(vector<bool> chromo) {
 unsigned res = 0;
 for (int i = 0; i < chromo.size(); i++) {
 if (chromo[i] == true) res++;
 }
 return res;

}

vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of_chr) {
 vector<vector<bool>> temp;
 vector<unsigned> numbers;
 vector<unsigned> values;
 for (int i = 0; i < gen.size(); i++) {
 values.push_back(power(gen[i]));
 numbers.push_back(i);
 if (values[i] == gen[i].size()) check = true;
 }
 for (int i = 0; i < gen.size(); i++) {
 for (int j = gen.size() - 1; j >= i; j--) {
 if (values[i] <= values[j] && i != j) {
 int T = values[i];
 values[i] = values[j];
 values[j] = T;
 numbers[i] = j;
 numbers[j] = i;
 }
 }
 }
 unsigned NumChromes = number_of_chr / 2;
 for (int i = 0; i < NumChromes; i++) {
 temp.push_back(gen[numbers[i]]);
 }
 return temp;
}

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen) {
 vector<vector<bool>> result;
 for (int i = 0; i < par.size(); i++) {
 unsigned mother = rand() % par.size();
 unsigned father;
 while (true) {
 father = rand() % par.size();
 if (mother != father) break;
 }
 unsigned point = rand() % number_of_gen;
 vector<bool> child;
 for (int j = 0; j < number_of_gen; j++) {
 if (j <= point) child.push_back(par[mother][j]);
 else child.push_back(par[father][j]);
 }
 result.push_back(child);
 }
 return result;
}

void mutation(vector<vector<bool>> &generation, unsigned procent) {
 for (int i = 0; i < generation.size(); i++) {
 if (rand() % 100 + 1 >= procent) {
 int j = rand() % generation[i].size();
 if (generation[i][j] == 0) generation[i][j] = 1;
 else generation[i][j] = 0;
 }
 }
}

void vector_output(vector<vector<bool>> vec) {
 for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < vec[i].size(); j++) {
 cout << vec[i][j];
 }

 cout << " ";
 if (i % 2 == 0 && i != 0) cout << endl;
 }
 cout << endl;
}

Result with 100 genes and 100 chromosomes:

Result with 10 genes and 10 chromosomes:

Second scenario: probability of mutation is 50 percent

Code:

#include "stdafx.h"
#include <iostream>
#include <vector>
#include <fstream>

using namespace std;

unsigned power(vector<bool> chromo);
vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of_chr);
vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen);
void mutation(vector<vector<bool>> &generation, unsigned procent);
void vector_output(vector<vector<bool>> vec);

bool check = false;

int main()
{

 unsigned number_of_gen = 100;
 unsigned number_of_chr = 100;
 unsigned limit = 1000;
 unsigned procent = 50;

 vector<vector<vector<bool>>> library;
 vector <vector<bool>> generation;

 for (int i = 0; i < number_of_chr; i++) {
 vector<bool> temp;
 for (int j = 0; j < number_of_gen; j++) {
 temp.push_back(rand() % 2);
 }
 generation.push_back(temp);
 }
 library.push_back(generation);
 cout << "Generation 0:" << endl;
 vector_output(generation);
 unsigned number = 1;
 vector<int> graph;

 while (true) {
 vector<vector<bool>> parents = selection(generation, number_of_chr);
 graph.push_back(power(parents[0]));
 generation = evolution(parents, number_of_chr, number_of_gen);
 mutation(generation, procent);
 library.push_back(generation);
 cout << "Generation " << number << ":" << endl;
 number++;
 vector_output(generation);
 if (check == true || number == limit) break;
 }

 ofstream file;
 file.open("D:\\Test1.txt");
 for (int i = 0; i < graph.size(); i++) {
 file << i << " " << graph[i] << '\n';
 }
 file.close();
 return 0;
}

unsigned power(vector<bool> chromo) {
 unsigned res = 0;
 for (int i = 0; i < chromo.size(); i++) {
 if (chromo[i] == true) res++;
 }
 return res;
}

vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of_chr) {

 vector<vector<bool>> temp;
 vector<unsigned> numbers;
 vector<unsigned> values;
 for (int i = 0; i < gen.size(); i++) {
 values.push_back(power(gen[i]));
 numbers.push_back(i);
 if (values[i] == gen[i].size()) check = true;
 }
 for (int i = 0; i < gen.size(); i++) {
 for (int j = gen.size() - 1; j >= i; j--) {
 if (values[i] <= values[j] && i != j) {
 int T = values[i];
 values[i] = values[j];
 values[j] = T;
 numbers[i] = j;
 numbers[j] = i;
 }
 }
 }
 unsigned NumChromes = number_of_chr / 2;
 for (int i = 0; i < NumChromes; i++) {
 temp.push_back(gen[numbers[i]]);
 }
 return temp;
}

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen) {
 vector<vector<bool>> result;
 for (int i = 0; i < par.size(); i++) {
 unsigned mother = rand() % par.size();
 unsigned father;
 while (true) {
 father = rand() % par.size();
 if (mother != father) break;
 }
 unsigned point = rand() % number_of_gen;
 vector<bool> child;
 for (int j = 0; j < number_of_gen; j++) {
 if (j <= point) child.push_back(par[mother][j]);
 else child.push_back(par[father][j]);
 }
 result.push_back(child);
 }
 return result;
}

void mutation(vector<vector<bool>> &generation, unsigned procent) {
 for (int i = 0; i < generation.size(); i++) {
 if (rand() % 100 + 1 >= procent) {
 int j = rand() % generation[i].size();
 if (generation[i][j] == 0) generation[i][j] = 1;
 else generation[i][j] = 0;
 }
 }
}

void vector_output(vector<vector<bool>> vec) {
 for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < vec[i].size(); j++) {
 cout << vec[i][j];
 }
 cout << " ";
 if (i % 2 == 0 && i != 0) cout << endl;
 }

 cout << endl;
}

Result:

