Kozitsky Igor. Laboratory work Nel

Second scenario: probability of mutation is 50 percent

Code:

#tinclude
#include
#include
#tinclude

"stdafx.h"
<iostream>
<vector>
<fstream>

using namespace std;

unsigned

power(vector<bool> chromo);

vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of chr);
vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of chr, unsigned
number_of_gen);
void mutation(vector<vector<bool>> &generation, unsigned procent);
void vector_output(vector<vector<bool>> vec);

bool check = false;

int main()

{

unsigned number_of_gen = 100;
unsigned number_of_chr = 100;
unsigned limit = 1000;
unsigned procent = 50;

vector<vector<vector<bool>>> library;
vector <vector<bool>> generation;

for (int i = @; i < number_of_chr; i++) {

}

vector<bool> temp;

for (int j = ©; j < number_of_gen; j++) {
temp.push_back(rand() % 2);

}

generation.push_back(temp);

library.push_back(generation);
cout << "Generation 0:" << endl;
vector_output(generation);
unsigned number = 1;
vector<int> graph;

while (true) {

}

vector<vector<bool>> p
graph.push_back(power(
generation = evolution
mutation(generation, p
library.push_back(gene
cout << "Generation "
number++;

arents = selection(generation, number_of_chr);
parents[0]));
(parents, number_of_chr, number_of_gen);

vector_output(generation);

if (check == true || n

ofstream file;
file.open("D:\\Testl.txt");
for (int i = @; i < graph.siz

}

file << 1 <«

rocent);

ration);

<< number << ":" << endl;
umber == limit) break;

e(); i++) {

<< graph[i] << '\n';

file.close();
return 0;

}

unsigned power(vector<bool> chromo) {
unsigned res = 0;
for (int i = @; i < chromo.size(); i++) {
if (chromo[i] == true) res++;
}

return res;

}

vector<vector<bool>> selection(vector<vector<bool>> gen, unsigned number_of chr) {
vector<vector<bool>> temp;
vector<unsigned> numbers;
vector<unsigned> values;
for (int i = @; 1 < gen.size(); i++) {
values.push_back(power(gen[i]));
numbers.push_back(i);
if (values[i] == gen[i].size()) check = true;
}
for (int i = @; i < gen.size(); i++) {
for (int j = gen.size() - 1; j >=1i; j--) {
if (values[i] <= values[j] && i != j) {
int T = values[i];
values[i] = values[j];
values[j] = T;
numbers[i] js
numbers[j] i;

}
}
unsigned NumChromes = number_of chr / 2;
for (int i = @; i < NumChromes; i++) {
temp.push_back(gen[numbers[i]]);
}

return temp;

}

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number of chr, unsigned
number_of_gen) {
vector<vector<bool>> result;
for (int i = @; i < par.size(); i++) {
unsigned mother = rand() % par.size();
unsigned father;
while (true) {
father = rand() % par.size();
if (mother != father) break;
}
unsigned point = rand() % number_ of gen;
vector<bool> child;
for (int j = @; j < number_of gen; j++) {
if (j <= point) child.push_back(par[mother][j]);
else child.push_back(par[father][j]);

}
result.push_back(child);

}

return result;

}

void mutation(vector<vector<bool>> &generation, unsigned procent) {
for (int i = @; i < generation.size(); i++) {
if (rand() % 100 + 1 >= procent) {
int j = rand() % generation[i].size();
if (generation[i][j] == @) generation[i][j] = 1;

else generation[i][]j] = 0;

}

void vector_output(vector<vector<bool>> vec) {
for (int i = @; i < vec.size(); i++) {
for (int j = 0; j < vec[i].size(); j++) {
cout << vec[i][]];

}

cout << " "
if (i % 2 ==10 & i !=0) cout << endl;
}

cout << endl;

}

Result with 100 genes and 100 chromosomes:

120
100
80

60

Finess

40

20

0 10 20 30 40 50 60 70

Generation

Result with 10 genes and 10 chromosomes:

12

10

Fimess

0 2 4 6 8 10

Generation

80

12

