
Zykov Kirill. Laboratory work №1
scenario: probability of mutation is 10 percent

Code:

namespace SIIT_1

{

 class Chromosome

 {

 private bool[] species { get; set; }

 private int length;

 private double fitnessValue;

 private static Random rnd = new Random(DateTime.Now.Millisecond);

 public Chromosome()

 {

 species = new bool[0];

 length = 0;

 }

 public Chromosome(int n)

 {

 species = new bool[n];

 for (int i = 0; i < n; i++)

 {

 int random = Rnd(rnd,100);

 if (random > 50)

 {

 species[i] = true;

 }

 else species[i] = false;

 }

 length = n;

 }

 public Chromosome OnePointCross(Chromosome partner,int point)

 {

 Chromosome chlid = new Chromosome(length);

 for (int i = 0; i < point; i++)

 {

 chlid.species[i] = species[i];

 }

 for (int i = point; i < length; i++)

 {

 chlid.species[i] = partner.species[i];

 }

 return chlid;

 }

 public void Mutation()

 {

 if (species[Rnd(rnd, species.Length)] == true) species[Rnd(rnd,

species.Length)] = false;

 else species[Rnd(rnd, species.Length)] = true;

 }

 public string GetSpecie()

 {

 string str = "";

 for (int i = 0; i < species.Length; i++)

 {

 str+=Convert.ToInt32(species[i]).ToString();

 }

 return str;

 }

 public int Rnd(Random r,int n)

 {

 return r.Next(n);

 }

 public void EvaluateFitness()

 {

 fitnessValue = Convert.ToDouble(species.Count(ai => ai ==

true))/Convert.ToDouble(length);

 }

 public double GetFitnessValue()

 {

 EvaluateFitness();

 return fitnessValue;

 }

 }

}

namespace SIIT_1

{

 class Population

 {

 private List<Chromosome> population;

 private int popSize;

 private int geneNum;

 public double avgFit;

 private static Random rnd = new Random(DateTime.Now.Millisecond);

 public Population()

 {

 population = new List<Chromosome>();

 }

 public Population(List<Chromosome> pop)

 {

 population = pop;

 }

 public void CreatePopulation(int size,int length)

 {

 popSize = size;

 for (int i = 0; i < size; i++)

 {

 Chromosome spec = new Chromosome(length);

 population.Add(spec);

 }

 geneNum = length;

 }

 public Population Selection()

 {

 Population newPop;

 population = SortPop().population;

 List<Chromosome> children= new List<Chromosome>();

 for (int i = 0; i < population.Count; i++)

 {

 children.Add(population[Rnd(rnd, population.Count /

2)].OnePointCross(population[Rnd(rnd, population.Count / 2)], Rnd(rnd, geneNum)));

 }

 children[Rnd(rnd, geneNum)].Mutation();

 newPop = new Population(children);

 return newPop;

 }

 public Population SortPop()

 {

 Population newPop;

 List<double> fitness = new List<double>();

 for (int i = 0; i < popSize; i++)

 {

 fitness.Add(population[i].GetFitnessValue());

 //Console.WriteLine(fitness[i].ToString());

 }

 avgFit = fitness.Sum() /Convert.ToDouble(fitness.Count);

 Console.WriteLine(avgFit);

 Chromosome[] tempArr1 = population.ToArray();

 Array.Sort(fitness.ToArray(), tempArr1);

 population = tempArr1.ToList();

 newPop = new Population(population);

 return newPop;

 }

 public bool CheckPop()

 {

 bool flag=false;

 for (int i = 0; i < population.Count; i++)

 {

 if (population[i].GetFitnessValue() > 0.8) flag = true;

 }

 return flag;

 }

 public void ShowPopulation()

 {

 for (int i = 0; i < population.Count; i++)

 {

 System.Console.WriteLine(population[i].GetSpecie());

 }

 }

 public int Rnd(Random r, int p)

 {

 return r.Next(p);

 }

 }

}

Currently my programm doesn’t properly and only gives result after 40000 – 90000 generations so I

wont put graph in my report.

