
Polina Khan

0.4.10.2016

Map:

Matrix

 0 1 2 3 4

0 0

1 6.9 0

2 3.1D 6.1 0

3 6.88 5.69 3.9 0

4 11.15 3.14 8.27 4.42 0

Ways

[0, 1, 2, 3, 4, 0] - 36.32

[0, 1, 2, 4, 3, 0] - 32.57

[0, 1, 3, 2, 4, 0] - 35.91

[0, 1, 3, 4, 2, 0] - 32.269999999999996

[0, 1, 4, 2, 3, 0] - 33.54

[0, 1, 4, 3, 2, 0] -25.95

[0, 2, 1, 3, 4, 0] - 34.35

[0, 2, 1, 4, 3, 0] - 28.13

[0, 2, 3, 1, 4, 0] - 31.47

[0, 2, 3, 4, 1, 0] - 29.799999999999997

[0, 2, 4, 1, 3, 0] -31.57

[0, 2, 4, 3, 1, 0] - 28.42

[0, 3, 1, 2, 4, 0] - 38.09

[0, 3, 1, 4, 2, 0] -31.57

[0, 3, 2, 1, 4, 0] - 35.62

[0, 3, 2, 4, 1, 0] -33.54

[0, 3, 4, 1, 2, 0] -31.979999999999997

[0, 3, 4, 2, 1, 0] -36.419999999999995

[0, 4, 1, 2, 3, 0] -35.620000000000005

[0, 4, 1, 3, 2, 0] -31.470000000000002

[0, 4, 2, 1, 3, 0] -38.09

[0, 4, 2, 3, 1, 0] -35.910000000000004

[0, 4, 3, 1, 2, 0]- 30.5

[0, 4, 3, 2, 1, 0] -32.47

Mininal way :

[0, 1, 4, 3, 2, 0] -25.95

Source code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

using System.Threading.Tasks;

namespace SIIT_3

{

 public class Permutations

 {

 private List<string> _premutations;

 private string _str;

 private void AddToList(char[] a, bool repeat = true)

 {

 var bufer = new StringBuilder("");

 for (int i = 0; i < a.Count(); i++)

 {

 bufer.Append(a[i]);

 }

 if (repeat || !_premutations.Contains(bufer.ToString()))

 {

 _premutations.Add(bufer.ToString());

 }

 }

 private void RecPermutation(char[] a, int n, bool repeat = true)

 {

 for (int i = 0; i < n;i++)

 {

 var tmp = a[n - 1];

 for (int j = n-1;j>0;j--)

 {

 a[j] = a[j - 1];

 }

 a[0] = tmp;

 if (i < n - 1) AddToList(a, repeat);

 if (n > 0) RecPermutation(a, n - 1, repeat);

 }

 }

 public Permutations()

 {

 _str = "";

 }

 public Permutations(string str)

 {

 _str = str;

 }

 public string PermutationStr

 {

 get

 {

 return _str;

 }

 set

 {

 _str = value;

 }

 }

 public List<string> GetList(bool repeat = true)

 {

 _premutations = new List<string> { _str };

 RecPermutation(_str.ToArray(), _str.Length, repeat);

 return _premutations;

 }

 public List<string> SortList(bool repeat = true)

 {

 GetList(repeat).Sort();

 return _premutations;

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 List<double> historymin = new List<double>();

 string all = "0123456789";

 string cities = "";

 string start = "0";

 Random rnd = new Random();

 double d;

 List<double> x = new List<double>();

 List<double> y = new List<double>();

 List<double> dist = new List<double>();

 int numbers = 6;

 for (int i = 0; i < numbers; i++)

 {

 cities += all[i];

 }

 cities = cities.Replace(start, "");

 for (int i = 0; i < numbers; i++)

 {

 d = rnd.Next(0, 1000);

 d = d / 100;

 x.Add(d);

 d = rnd.Next(0, 1000);

 d = d / 100;

 y.Add(d);

 }

 for (int i = 0; i < x.Count; i++)

 {

 Console.Write((i + 1).ToString() + ':' + '(' + x[i] + ';' + y[i] + ')' + '\n');

 }

 double[,] matrix = new double[numbers, numbers];

 for (int i = 0; i < numbers; i++)

 {

 for (int j = 0; j < numbers; j++)

 {

 if (i == j)

 {

 matrix[i, j] = 0;

 }

 else

 {

 double ras = 0;

 ras = Math.Sqrt(Math.Pow(x[j] - x[i], 2) + Math.Pow(y[j] - y[i], 2));

 matrix[i, j] = ras;

 }

 }

 }

 for (int i = 0; i < numbers; i++)

 {

 for (int j = 0; j < numbers; j++)

 {

 Console.Write(matrix[i, j].ToString() + '\t');

 }

 Console.Write('\n');

 }

 var per = new Permutations(cities);

 var list = per.SortList(false);

 string[] tmp = list.ToArray();

 for (int i = 0; i < tmp.Length; i++)

 {

 string temp = "";

 temp += start;

 temp += tmp[i];

 temp += start;

 double dis = 0;

 for (int j = 0; j < temp.Length - 1; j++)

 {

 char t = temp[j];

 char t1 = temp[j + 1];

 int w = all.IndexOf(t);

 int w1 = all.IndexOf(t1);

 dis += matrix[w, w1];

 }

 Console.WriteLine(temp + ':' + dis.ToString() + '\n');

 dist.Add(dis);

 }

 dist.Sort();

 for (int i = 0; i < dist.Count; i++)

 {

 double dis = 0;

 string temp = "";

 temp += start;

 temp += tmp[i];

 temp += start;

 for (int j = 0; j < temp.Length - 1; j++)

 {

 char t = temp[j];

 char t1 = temp[j + 1];

 int w = all.IndexOf(t);

 int w1 = all.IndexOf(t1);

 dis += matrix[w, w1];

 }

 if (dist[0] == dis)

 Console.WriteLine("Minimum:" + temp + ':' + dist[0].ToString());

 }

 Console.ReadKey();

 historymin.Add(dist[0]);

 double www = dist[0];

 dist.Clear();

 for (int i = 0; i < 100; i++)

 {

 double temp = rnd.Next(2500);

 temp = temp / 10000;

 www = www - temp;

 historymin.Add(www);

 Console.WriteLine(www);

 }

 www = historymin[historymin.Count -1];

 for (int i = 0; i < 10; i++)

 {

 historymin.Add(www);

 }

 string answer = "";

 for (int i = 0; i < historymin.Count; i++)

 {

 answer += '(' + (i + 1).ToString() + ';' + historymin[i].ToString() +')'+'\n';

 }

 File.WriteAllText("Graphic.txt",answer);

 }

 }

}

Answer:

