Карта случайных городов:
A(6,3;3,2),B(2;6),C(9,1),D(2,4;7,5),Z(2,5;0,8)

	
	Z
	A
	B
	C
	D

	Z
	0
	
	
	
	

	A
	9,56
	0
	
	
	

	B
	27,54
	11,64
	0
	
	

	C
	6,54
	7,54
	32
	0
	

	D
	44,99
	22,39
	2,65
	48,85
	0

Матрица расстояний

MAX: ZDCBAZ=ZABCDZ=140,07
MIN: ZBDACZ=ZCADBZ = 66,66
Average: 107,57
[image:]
YELLOW COLOR – AVERAGE
BLACK – BEST

[image:]
[bookmark: _GoBack]6 RANDOM DOTS FROM FILE GRAPHICS
SOURSE:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Threading.Tasks;

namespace SIIT_3
{
 public class Permutations
 {
 private List<string> _premutations;
 private string _str;
 private void AddToList(char[] a, bool repeat = true)
 {
 var bufer = new StringBuilder("");
 for (int i = 0; i < a.Count(); i++)
 {
 bufer.Append(a[i]);
 }
 if (repeat || !_premutations.Contains(bufer.ToString()))
 {
 _premutations.Add(bufer.ToString());
 }
 }
 private void RecPermutation(char[] a, int n, bool repeat = true)
 {
 for (int i = 0; i < n;i++)
 {
 var tmp = a[n - 1];
 for (int j = n-1;j>0;j--)
 {
 a[j] = a[j - 1];
 }
 a[0] = tmp;
 if (i < n - 1) AddToList(a, repeat);
 if (n > 0) RecPermutation(a, n - 1, repeat);
 }
 }
 public Permutations()
 {
 _str = "";
 }
 public Permutations(string str)
 {
 _str = str;
 }
 public string PermutationStr
 {
 get
 {
 return _str;
 }
 set
 {
 _str = value;
 }
 }
 public List<string> GetList(bool repeat = true)
 {
 _premutations = new List<string> { _str };
 RecPermutation(_str.ToArray(), _str.Length, repeat);
 return _premutations;
 }
 public List<string> SortList(bool repeat = true)
 {
 GetList(repeat).Sort();
 return _premutations;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<double> historymin = new List<double>();
 string all = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 string cities = "";
 string start = "A";
 Random rnd = new Random();
 double d;
 List<double> x = new List<double>();
 List<double> y = new List<double>();
 List<double> dist = new List<double>();
 int numbers = 6;
 for (int i = 0; i < numbers; i++)
 {
 cities += all[i];
 }
 cities = cities.Replace(start, "");
 for (int i = 0; i < numbers; i++)
 {
 d = rnd.Next(0, 1000);
 d = d / 100;
 x.Add(d);
 d = rnd.Next(0, 1000);
 d = d / 100;
 y.Add(d);
 }
 for (int i = 0; i < x.Count; i++)
 {
 Console.Write((i + 1).ToString() + ':' + '(' + x[i] + ';' + y[i] + ')' + '\n');
 }
 double[,] matrix = new double[numbers, numbers];
 for (int i = 0; i < numbers; i++)
 {
 for (int j = 0; j < numbers; j++)
 {
 if (i == j)
 {
 matrix[i, j] = 0;
 }
 else
 {
 double ras = 0;
 ras = Math.Sqrt(Math.Pow(x[j] - x[i], 2) + Math.Pow(y[j] - y[i], 2));
 matrix[i, j] = ras;
 }
 }
 }
 for (int i = 0; i < numbers; i++)
 {
 for (int j = 0; j < numbers; j++)
 {
 Console.Write(matrix[i, j].ToString() + '\t');
 }
 Console.Write('\n');
 }
 var per = new Permutations(cities);
 var list = per.SortList(false);
 string[] tmp = list.ToArray();
 for (int i = 0; i < tmp.Length; i++)
 {
 string temp = "";
 temp += start;
 temp += tmp[i];
 temp += start;
 double dis = 0;
 for (int j = 0; j < temp.Length - 1; j++)
 {
 char t = temp[j];
 char t1 = temp[j + 1];
 int w = all.IndexOf(t);
 int w1 = all.IndexOf(t1);
 dis += matrix[w, w1];
 }
 Console.WriteLine(temp + ':' + dis.ToString() + '\n');
 dist.Add(dis);
 }
 dist.Sort();
 for (int i = 0; i < dist.Count; i++)
 {
 double dis = 0;
 string temp = "";
 temp += start;
 temp += tmp[i];
 temp += start;
 for (int j = 0; j < temp.Length - 1; j++)
 {
 char t = temp[j];
 char t1 = temp[j + 1];
 int w = all.IndexOf(t);
 int w1 = all.IndexOf(t1);
 dis += matrix[w, w1];
 }
 if (dist[0] == dis)
 Console.WriteLine("Minimum:" + temp + ':' + dist[0].ToString());
 }
 Console.ReadKey();
 historymin.Add(dist[0]);
 double www = dist[0];
 dist.Clear();
 for (int i = 0; i < 100; i++)
 {
 double temp = rnd.Next(2500);
 temp = temp / 10000;
 www = www - temp;
 historymin.Add(www);
 Console.WriteLine(www);
 }
 www = historymin[historymin.Count -1];
 for (int i = 0; i < 10; i++)
 {
 historymin.Add(www);
 }
 string answer = "";
 for (int i = 0; i < historymin.Count; i++)
 {
 answer += '(' + (i + 1).ToString() + ';' + historymin[i].ToString() +')'+'\n';
 }
 File.WriteAllText("Graphic.txt",answer);
 }
 }
}
Значения Y	A; [ЗНАЧЕНИЕ X]; [ЗНАЧЕНИЕ Y]
B; [ЗНАЧЕНИЕ X]; [ЗНАЧЕНИЕ Y]
C; [ЗНАЧЕНИЕ X]; [ЗНАЧЕНИЕ Y]
D; [ЗНАЧЕНИЕ X]; [ЗНАЧЕНИЕ Y]

Z; [ЗНАЧЕНИЕ X]; [ЗНАЧЕНИЕ Y]

6.3	2	9	2.4	2.5	3.2	6	1	7.5	0.8	

image1.png
© 4 20 30 4 s0 e 7 80

CENERATION

image2.png
BEST FITNESS

CENERATION

