Source code:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class MainTaskl
{

static Random random = new Random (System.currentTimeMillis());

static class Chromosome
{
double[] genes;
public Chromosome ()
{
genes = new double[20];
for(int i = 0; 1 < 20; i++)
genes[i] = random.nextDouble() * 2 - 1;
}
double getFitness()
{
double y = 20;
for(int i = 0; i < 20; i++)
y += genes[i] * genes[i] - Math.cos(2 * Math.PI * genes[i]);
return y;

static class Generation
{
Chromosome|[] chromosomes;
public Generation()
{
chromosomes = new Chromosome[20];
for(int i = 0; 1 < 20; i++)
chromosomes [i] = new Chromosome () ;
}
double getAverageFitness|()
{
double counter = 0;
for (Chromosome i : chromosomes)
counter += i.getFitness();
return counter / 20;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, o02) ->
{
double olfit = ol.getFitness{();
double 02fit = o2.getFitness|();
if (olfit < o02fit)
return -1;
else if(olfit > o2fit)
return 1;
else

return 0;
1)
}

Chromosome [] get2RandomChromosomes ()

{
Chromosome|[] random?2 = new Chromosome[2];
random2 [0] = chromosomes|[random.nextInt (10)];

random?2 [1] chromosomes [random.nextInt (10)];

return random?2;

Chromosome getBestChromosome ()

{

return chromosomes[0];

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt (first.genes.length);

Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy (second.genes, crossoverPoint, child.genes,
crossoverPoint,

second.genes.length - crossoverPoint);

/*Mutation block*/

if (random.nextInt (20) == 13)
{
int pos = random.nextInt (child.genes.length) ;
if(child.genes[pos] == 0)
child.genes[pos] = 1;
else

child.genes[pos] = 0;

return child;

}

static ArrayList<Double> fitnessHistory;
static boolean islLastGenerationUnchanged ()
{
double tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp == 0.0)
return true;
if (fitnessHistory.size () <= 124)
return false;
for(int i = 0; i < 124; i++)
if (fitnessHistory.get (fitnessHistory.size() - 1 - 1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException
{
ArrayList<Generation> generations = new ArrayList<>();
generations.add (new Generation()):;
generations.get (0) .sort () ;
fitnessHistory = new ArrayList<>();
fitnessHistory.add (generations.get (0) .getAverageFitness ());
System.out.println (String. format ("%$d\t\t%.4£\t\t%.4£", O,
generations.get (0) .getAverageFitness(),

generations.get (0) .getBestChromosome () .getFitness()));
for(int i = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)
{
Chromosome[] random2 = generations.get (generations.size() -
1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover(random2[0], random2[1l]);

}

newGeneration.sort () ;

generations.add (newGeneration) ;

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());
System.out.println(String. format ("%$d\t\t%.4£\t\t%.4£", i,

newGeneration.getAverageFitness(),
newGeneration.getBestChromosome () .getFitness()));

if (isLastGenerationUnchanged())
break;

}

Thread.sleep(1000);

17.5

0.0

(x - 3/5)~2
(x - 2/5)"2
Bl (0.5, 0.0033333333333235335)

17.5

10.0

2.5

0.0

M (0.5, 0.009399359355539535)

10.0

J.5

2.5

0.0

Green line - fitness function (x-0.4)"2

Blue line - fitness function (x-0.6)"2

generation

0.45

0.40

