
Source code:

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Random;

public class MainTask1

{

 static Random random = new Random(System.currentTimeMillis());

 static class Chromosome

 {

 double[] genes;

 public Chromosome()

 {

 genes = new double[20];

 for(int i = 0; i < 20; i++)

 genes[i] = random.nextDouble() * 2 - 1;

 }

 double getFitness()

 {

 double y = 20;

 for(int i = 0; i < 20; i++)

 y += genes[i] * genes[i] - Math.cos(2 * Math.PI * genes[i]);

 return y;

 }

 }

 static class Generation

 {

 Chromosome[] chromosomes;

 public Generation()

 {

 chromosomes = new Chromosome[20];

 for(int i = 0; i < 20; i++)

 chromosomes[i] = new Chromosome();

 }

 double getAverageFitness()

 {

 double counter = 0;

 for(Chromosome i : chromosomes)

 counter += i.getFitness();

 return counter / 20;

 }

 void sort()

 {

 Arrays.sort(chromosomes, (o1, o2) ->

 {

 double o1fit = o1.getFitness();

 double o2fit = o2.getFitness();

 if(o1fit < o2fit)

 return -1;

 else if(o1fit > o2fit)

 return 1;

 else

 return 0;

 });

 }

 Chromosome[] get2RandomChromosomes()

 {

 Chromosome[] random2 = new Chromosome[2];

 random2[0] = chromosomes[random.nextInt(10)];

 random2[1] = chromosomes[random.nextInt(10)];

 return random2;

 }

 Chromosome getBestChromosome()

 {

 return chromosomes[0];

 }

 }

 static Chromosome crossover(Chromosome first, Chromosome second)

 {

 int crossoverPoint = random.nextInt(first.genes.length);

 Chromosome child = new Chromosome();

 System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);

 System.arraycopy(second.genes, crossoverPoint, child.genes,

crossoverPoint,

 second.genes.length - crossoverPoint);

 /*Mutation block*/

 if(random.nextInt(20) == 13)

 {

 int pos = random.nextInt(child.genes.length);

 if(child.genes[pos] == 0)

 child.genes[pos] = 1;

 else

 child.genes[pos] = 0;

 }

 return child;

 }

 static ArrayList<Double> fitnessHistory;

 static boolean isLastGenerationUnchanged()

 {

 double tmp = fitnessHistory.get(fitnessHistory.size() - 1);

 if(tmp == 0.0)

 return true;

 if(fitnessHistory.size() <= 124)

 return false;

 for(int i = 0; i < 124; i++)

 if(fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp)

 return false;

 return true;

 }

 public static void main(String[] args) throws InterruptedException

 {

 ArrayList<Generation> generations = new ArrayList<>();

 generations.add(new Generation());

 generations.get(0).sort();

 fitnessHistory = new ArrayList<>();

 fitnessHistory.add(generations.get(0).getAverageFitness());

 System.out.println(String.format("%d\t\t%.4f\t\t%.4f", 0,

generations.get(0).getAverageFitness(),

generations.get(0).getBestChromosome().getFitness()));

 for(int i = 1; ; i++)

 {

 Generation newGeneration = new Generation();

 for(int j = 0; j < newGeneration.chromosomes.length; j++)

 {

 Chromosome[] random2 = generations.get(generations.size() -

1).get2RandomChromosomes();

 newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);

 }

 newGeneration.sort();

 generations.add(newGeneration);

 generations.remove(0);

 fitnessHistory.add(newGeneration.getAverageFitness());

 System.out.println(String.format("%d\t\t%.4f\t\t%.4f", i,

newGeneration.getAverageFitness(),

newGeneration.getBestChromosome().getFitness()));

 if(isLastGenerationUnchanged())

 break;

 }

 Thread.sleep(1000);

 }

}

Green line – fitness function (x-0.4)^2

Blue line – fitness function (x-0.6)^2

generation

