
GREEN LINE - (x-0.4)^2

BLUE LINE - (x-0.6)^2

VALUE:
0 : 0.22847932

1 : 0.18643243

2 : 0.12344154

3 : 0.10857838

4 : 0.08274684

5 : 0.07661946

6 : 0.0665834

7 : 0.04961762

8 : 0.04037243

9 : 0.027727925

10 : 0.027442123

11 : 0.02363644

12 : 0.02371952

13 : 0.0232465

14 : 0.023100019

15 : 0.023058485

16 : 0.023051862

17 : 0.023051862

18 : 0.023051862

19 : 0.023051862

20 : 0.023051862

21 : 0.023051862

22 : 0.023051862

23 : 0.023051862

24 : 0.023051862

25 : 0.023051862

26 : 0.023051862

27 : 0.023051862

28 : 0.023051862

29 : 0.023051862

30 : 0.023051862

31 : 0.023051862

32 : 0.023051862

33 : 0.023051862

34 : 0.023051862

35 : 0.023051862

36 : 0.023051862

37 : 0.023051862

38 : 0.023051862

39 : 0.023051862

40 : 0.023051862

41 : 0.023051862

42 : 0.023051862

43 : 0.023051862

44 : 0.023051862

45 : 0.023051862

46 : 0.023051862

47 : 0.023051862

48 : 0.023051862

 49 : 0.023051862

CODE:
var Population = function(params) {

 this.populationArray = [];

 this.newPopulation = [];

 this.size = params.size;

 this.params = params;

};

Population.prototype.init = function() {

 for (var i = 0; i < this.size; i++) {

 var tmp = new Individual();

 tmp.init(this.params);

 tmp.fitSum();

 tmp.toBinary(this.params);

 this.populationArray.push(tmp);

 }

};

Population.prototype.sort = function() {

 this.newPopulation = this.newPopulation.sort(function(a, b) {

 return b.bigFit - a.bigFit;

 });

 this.populationArray = this.populationArray.sort(function(a, b) {

 return b.bigFit - a.bigFit;

 });

};

Population.prototype.selection = function() {

 this.populationArray = this.newPopulation.slice(0, this.size);

};

Population.prototype.crossover = function() {

 this.newPopulation = this.populationArray.slice(0, this.size);

 while (this.newPopulation.length < this.size*2) {

 var parentIndex1 = random(0, this.size-1, 0),

 parentIndex2 = random(0, this.size-1, 0),

 parent1 = this.populationArray[parentIndex1],

 parent2 = this.populationArray[parentIndex2],

 child1 = new Individual(),

 child2 = new Individual();

 for (var j = 0; j < parent1.decimals.length; j ++) {

 var pivot = random(1, parent1.binaries[j].length, 0);

 child1.binaries[j] = parent1.binaries[j].substr(0, pivot) +

parent2.binaries[j].substr(pivot, parent1.binaries[j].length+1-pivot);

 child2.binaries[j] = parent2.binaries[j].substr(0, pivot) +

parent1.binaries[j].substr(pivot, parent1.binaries[j].length+1-pivot);

 }

 child1.toDecimal(this.params);

 child2.toDecimal(this.params);

 child1.fitSum();

 child2.fitSum();

 if (child1.getSum() <= this.params.budget){

 this.newPopulation.push(child1);

 }

 if (child2.getSum() <= this.params.budget){

 this.newPopulation.push(child2);

 }

 }

};

