Source code:
import java.util.*;

class Attempts
{
public int value;
public boolean changed;
public Attempts()
{
value = 0;
changed = false;
}
}

class Chromosome

{

private static int numberLearningAttempts = 1000;

private final boolean fixGenomeWhenSuccess = false;
private final double fitnessBoost = 19.;

private int[] genome;
private int ID;

public static void setNumberOfLearningAttempts(int numberLearningAttempts)

{

Chromosome.numberLearningAttempts = numberLearningAttempts;

}

public Chromosome(int ID, int[] genome)

{
this.ID = ID;
this.genome = genome;

}

public Chromosome(int ID, int size, int fixedElements, Random random)

{
this.ID = ID;
genome = new int[size];
ArrayList<Integer> positions = new ArrayList<>();
for(inti=0;i<size; i++)
{
genome[i] = 2; // init as ?
positions.add(i);

Collections.shuffle(positions, random);
for(inti = 0; i < fixedElements; i++)
{
int pos = positions.get(i);
genome[pos] = random.nextInt(2);

}
@Override
public String toString()
{
if(genome == null)

return """,
return String.valueOf(ID) + "\t' + sequenceToString(genome);

}

public int[] getSequence()

{

return this.genome;

}
public static String sequenceToString(int[] genome)
{

if(genome == null)

return """;
StringBuilder s = new StringBuilder();
for(int aGenome : genome)
if(@aGenome == 2)
s.append(*?");
else
s.append(aGenome);
return s.toString();

}

public static Chromosome mate(int ID, Chromosome ind1, Chromosome ind2, Random rand)
{
int recPos = 1 + rand.nextInt(ind1.genome.length - 1);
int[] genomeNew = new int[ind1.genome.length];
System.arraycopy(ind1l.genome, 0, genomeNew, 0, recPos);
System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length - recPos);
return new Chromosome(ID, genomeNew);

}

public static int[] getCounts(int[] genome)
{
int[] cnts = new int[3];
for(int aGenome : genome)
cnts[aGenome]++;
return cnts;

}

public double liveLearnAndReturnFitness(Random random, Attempts att)
{
int len = genome.length;
if(getCounts(genome)[1] == len)
// this individual has correct sequence, no learning will happen
return 1 + fitnessBoost;
else if(getCounts(genome)[0] > 0)
/I this individual has Os in the sequence, will not learn right solution
return 1,
else

// do learning
int[] sequence = genome.clone();
ArrayList<Integer> positionOfQuestionMarks = new ArrayList<>();
for(inti=0; i < sequence.length; i++)
if(sequence[i] == 2)
positionOfQuestionMarks.add(i);
int attempts = 1;
for(; attempts <= numberLearningAttempts; attempts++)
{
int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(), random);
for(int i = 0; i < positionOfQuestionMarks.size(); i++)
sequence[positionOfQuestionMarks.get(i)] = learnedBits[i];
if(getCounts(sequence)[1] == len)

if(fixGenomeWhenSuccess)
genome = sequence;
att.value = attempts;

att.changed = true;
return 1 + fitnessBoost * (humberLearningAttempts - attempts) / 1000.;

¥
¥

/l could not learn
return 1;
}
}

public static int[] getRandomBinaryString(int len, Random random)
{
int[] s = new int[len];
for(inti=0;i<len; i++)
s[i] = random.nextBoolean() ? 1 : 0;
return s;

}

public static Chromosome samplelndividualPropToFitness(Random random, HashMap<Chromosome, Double>
largeFitness,
ArrayList<Chromosome> fitnessOne,
double totFitnessGreaterThanOne)

double totFitness = fitnessOne.size() + totFitnessGreaterThanOne;
if(random.nextDouble() < fitnessOne.size() / totFitness)
/I sample from those with fitness = 1
return fitnessOne.get(random.nextint(fitnessOne.size()));
else
{
/I sample from those ith fitness > 1
double fitnessMark = random.nextDouble() * totFitnessGreaterThanOne;
double cumulativeFitness = 0.;
Chromosome sampledind = null;
for(Chromosome ind : largeFitness.keySet())
{
cumulativeFitness += largeFitness.get(ind);
if(cumulativeFitness >= fitnessMark)

sampledind = ind;
break;
}
}
return sampledind;
}
}

public static boolean isFixated(ArrayList<Chromosome> inds)
{
int[] firstGenome = inds.get(0).genome;
for(Chromosome ind : inds)
if(1Arrays.equals(firstGenome, ind.genome))
return false;
return true;

}

public static double[] getGenomeProb(Collection<Chromosome> inds)

double[] res = new double[3];
for(Chromosome ind : inds)
{
int[] thisind = getCounts(ind.genome);
res[0] += thisInd[0];
res[1] += thisInd[1];
res[2] += thisInd[2];

}

double sum = res[0] + res[1] + res[2];
res[0] /= sum;

res[1] /= sum;

res[2] /= sum;

return res;

}

public class Main

{

static long seed = System.currentTimeMillis();

public static void main(String[] args) throws InterruptedException
{

Random random = new Random(seed);

int numberOfSamples = 1000;

int len = 20;

int fixed = 10;

Chromosome.setNumberOfLearningAttempts(numberOfSamples);

ArrayList<Chromosome> inds = new ArrayList<>();
for(int i = 0; i < numberOfSamples; i++)
inds.add(new Chromosome(i, len, fixed, random));

int generation = 0;
double[] populationStats = Chromosome.getGenomeProb(inds);

while(!Chromosome.isFixated(inds))
{
HashMap<Chromosome, Double> largeFitness = new HashMap<>();
ArrayList<Chromosome> fithessOne = new ArrayList<>();
double totFitnessGreaterThanOne = 0., total Attempts = 0, bestAttempts = 1000;
intcnt=0;
for(Chromosome ind : inds)
{
Attempts attempts = new Attempts();
double fitness = ind.liveLearnAndReturnFitness(random, attempts);
total Attempts += attempts.value;
if(attempts.changed)
cnt++;
if(attempts.changed && attempts.value < bestAttempts)
bestAttempts = attempts.value;
if(fitness > 1)
{
largeFitness.put(ind, fitness);
totFitnessGreaterThanOne += fitness;
} else
fitnessOne.add(ind);
}
System.out.printf(
"GENERATION %4d\t\t0 --> %.6f\t\t\t1 --> %.6f\t\t\t? --> %.6f\t\t\taverage --> %3.6ft\t\tbest -->
%3.6f\n"",
generation, populationStats[0], populationStats[1], populationStats[2], total Attempts / cnt,
bestAttempts);

ArrayList<Chromosome> newGen = new ArrayList<>();
for(inti =0; i < numberOfSamples; i++)
{
Chromosome sampl = Chromosome.samplelndividualPropToFitness(random, largeFitness, fitnessOne,
totFitnessGreaterThanOne);

Chromosome samp2 = Chromosome.samplelndividualPropToFitness(random, largeFitness, fitnessOne,
totFitnessGreaterThanOne);
Chromosome newSamp = Chromosome.mate(i, samp1, samp2, random);
newGen.add(newSamp);
}
inds = newGen;
populationStats = Chromosome.getGenomeProb(inds);
generation++;
}
System.out.printin(*'Done:\t" + Chromosome.sequenceToString(inds.get(0) .getSequence()) + ""\t"" +
populationStats[0] + ""\t"* + populationStats[1] + ""\t"* + populationStats[2]);
Thread.sleep(1000);
}

SewONeu A WN =

h | b | | b | b | o | -
0O NGV A WN

0.18

0.14

0.12

0.08

0.06

0.04

0.02

0.00

A B C D E F G
0:0.21747751 ! 0:0.51747932
1:0.17643043 ! 1:0.47643043
2:0.12644100 : 2:0.42644254
3:0.10857654 : 3:0.40857936
4:008274021 ! 4:0.38274184
5:0.07661301 ; 5:0.37661706
6:0.0663210 ; 6 : 0.3665887
7 :0.0496021 : 7:0.34961778
8:0.04036321 : 8:0.34037143
9:0.027723256 9:0.327727623
10:0.027446589 | 10:0.327442953
11:0.02361369 ; 11:0.32363541
12:0.02371857 § 12:0.32371857
13:0.0231231 ; 13:0.3232465
14:0.023100145 ! 14:0.323100017
15:0.023047152 15:0.323059485
16:0.023047152 ! 16:0.323051761
17:0.023047152 17:0.323051761
1

| Nuerl |)
COYPAHFHN R NANFNRIVF
S 10 i5 20 25 20 35 40 45

0.14

0.08

0.06

0.04

0.02

Blue line- y=(x-0.6)"2

Yellow line- y=(x-0.4)"2

