
Green line -fitness function (x-0.4)^2;

Blue line – fitness function(x-0.6)^2;

fitness

 generation

Source code:

package com.romanspt;

import java.util.*;

public class Main

{

 static long seed = System.currentTimeMillis();

 public static void main(String[] args) throws InterruptedException

 {

 Random random = new Random(seed);

 int numberOfSamples = 1000;

 int len = 20;

 int fixed = 10;

 Chromosome.setNumberOfLearningAttempts(numberOfSamples);

 ArrayList<Chromosome> inds = new ArrayList<>();

 for(int i = 0; i < numberOfSamples; i++)

 inds.add(new Chromosome(i, len, fixed, random));

 int generation = 0;

 double[] populationStats = Chromosome.getGenomeProb(inds);

 while(!Chromosome.isFixated(inds))

 {

 HashMap<Chromosome, Double> largeFitness = new HashMap<>();

 ArrayList<Chromosome> fitnessOne = new ArrayList<>();

 double totFitnessGreaterThanOne = 0., totalAttempts = 0, bestAttempts = 1000;

 int cnt = 0;

 for(Chromosome ind : inds)

 {

 Attempts attempts = new Attempts();

 double fitness = ind.liveLearnAndReturnFitness(random, attempts);

 totalAttempts += attempts.value;

 if(attempts.changed)

 cnt++;

 if(attempts.changed && attempts.value < bestAttempts)

 bestAttempts = attempts.value;

 if(fitness > 1)

 {

 largeFitness.put(ind, fitness);

 totFitnessGreaterThanOne += fitness;

 } else

 fitnessOne.add(ind);

 }

 System.out.printf(

 "GENERATION %4d\t\t0 --> %.6f\t\t\t1 --> %.6f\t\t\t? -->

%.6f\t\t\taverage --> %3.6f\t\t\tbest --> %3.6f\n",

 generation, populationStats[0], populationStats[1], populationStats[2],

totalAttempts / cnt,

 bestAttempts);

 ArrayList<Chromosome> newGen = new ArrayList<>();

 for(int i = 0; i < numberOfSamples; i++)

 {

 Chromosome samp1 = Chromosome.sampleIndividualPropToFitness(random,

largeFitness, fitnessOne,

 totFitnessGreaterThanOne);

 Chromosome samp2 = Chromosome.sampleIndividualPropToFitness(random,

largeFitness, fitnessOne,

 totFitnessGreaterThanOne);

 Chromosome newSamp = Chromosome.mate(i, samp1, samp2, random);

 newGen.add(newSamp);

 }

 inds = newGen;

 populationStats = Chromosome.getGenomeProb(inds);

 generation++;

 }

 System.out.println("Done:\t" + Chromosome.sequenceToString(inds.get(0)

.getSequence()) + "\t" + populationStats[0] + "\t" + populationStats[1] + "\t" +

populationStats[2]);

 Thread.sleep(1000);

 }

}

class Attempts

{

 public int value;

 public boolean changed;

 public Attempts()

 {

 value = 0;

 changed = false;

 }

}

class Chromosome

{

 private static int numberLearningAttempts = 1000;

 private final boolean fixGenomeWhenSuccess = false;

 private final double fitnessBoost = 19.;

 private int[] genome;

 private int ID;

 public static void setNumberOfLearningAttempts(int numberLearningAttempts)

 {

 Chromosome.numberLearningAttempts = numberLearningAttempts;

 }

 public Chromosome(int ID, int[] genome)

 {

 this.ID = ID;

 this.genome = genome;

 }

 public Chromosome(int ID, int size, int fixedElements, Random random)

 {

 this.ID = ID;

 genome = new int[size];

 ArrayList<Integer> positions = new ArrayList<>();

 for(int i = 0; i < size; i++)

 {

 genome[i] = 2; // init as ?

 positions.add(i);

 }

 Collections.shuffle(positions, random);

 for(int i = 0; i < fixedElements; i++)

 {

 int pos = positions.get(i);

 genome[pos] = random.nextInt(2);

 }

 }

 @Override

 public String toString()

 {

 if(genome == null)

 return "";

 return String.valueOf(ID) + '\t' + sequenceToString(genome);

 }

 public int[] getSequence()

 {

 return this.genome;

 }

 public static String sequenceToString(int[] genome)

 {

 if(genome == null)

 return "";

 StringBuilder s = new StringBuilder();

 for(int aGenome : genome)

 if(aGenome == 2)

 s.append('?');

 else

 s.append(aGenome);

 return s.toString();

 }

 public static Chromosome mate(int ID, Chromosome ind1, Chromosome ind2, Random rand)

 {

 int recPos = 1 + rand.nextInt(ind1.genome.length - 1);

 int[] genomeNew = new int[ind1.genome.length];

 System.arraycopy(ind1.genome, 0, genomeNew, 0, recPos);

 System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length -

recPos);

 return new Chromosome(ID, genomeNew);

 }

 public static int[] getCounts(int[] genome)

 {

 int[] cnts = new int[3];

 for(int aGenome : genome)

 cnts[aGenome]++;

 return cnts;

 }

 public double liveLearnAndReturnFitness(Random random, Attempts att)

 {

 int len = genome.length;

 if(getCounts(genome)[1] == len)

 // this individual has correct sequence, no learning will happen

 return 1 + fitnessBoost;

 else if(getCounts(genome)[0] > 0)

 // this individual has 0s in the sequence, will not learn right solution

 return 1;

 else

 {

 // do learning

 int[] sequence = genome.clone();

 ArrayList<Integer> positionOfQuestionMarks = new ArrayList<>();

 for(int i = 0; i < sequence.length; i++)

 if(sequence[i] == 2)

 positionOfQuestionMarks.add(i);

 int attempts = 1;

 for(; attempts <= numberLearningAttempts; attempts++)

 {

 int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(),

random);

 for(int i = 0; i < positionOfQuestionMarks.size(); i++)

 sequence[positionOfQuestionMarks.get(i)] = learnedBits[i];

 if(getCounts(sequence)[1] == len)

 {

 if(fixGenomeWhenSuccess)

 genome = sequence;

 att.value = attempts;

 att.changed = true;

 return 1 + fitnessBoost * (numberLearningAttempts - attempts) / 1000.;

 }

 }

 // could not learn

 return 1;

 }

 }

 public static int[] getRandomBinaryString(int len, Random random)

 {

 int[] s = new int[len];

 for(int i = 0; i < len; i++)

 s[i] = random.nextBoolean() ? 1 : 0;

 return s;

 }

 public static Chromosome sampleIndividualPropToFitness(Random random,

HashMap<Chromosome, Double> largeFitness,

 ArrayList<Chromosome> fitnessOne,

 double totFitnessGreaterThanOne)

 {

 double totFitness = fitnessOne.size() + totFitnessGreaterThanOne;

 if(random.nextDouble() < fitnessOne.size() / totFitness)

 // sample from those with fitness = 1

 return fitnessOne.get(random.nextInt(fitnessOne.size()));

 else

 {

 // sample from those ith fitness > 1

 double fitnessMark = random.nextDouble() * totFitnessGreaterThanOne;

 double cumulativeFitness = 0.;

 Chromosome sampledInd = null;

 for(Chromosome ind : largeFitness.keySet())

 {

 cumulativeFitness += largeFitness.get(ind);

 if(cumulativeFitness >= fitnessMark)

 {

 sampledInd = ind;

 break;

 }

 }

 return sampledInd;

 }

 }

 public static boolean isFixated(ArrayList<Chromosome> inds)

 {

 int[] firstGenome = inds.get(0).genome;

 for(Chromosome ind : inds)

 if(!Arrays.equals(firstGenome, ind.genome))

 return false;

 return true;

 }

 public static double[] getGenomeProb(Collection<Chromosome> inds)

 {

 double[] res = new double[3];

 for(Chromosome ind : inds)

 {

 int[] thisInd = getCounts(ind.genome);

 res[0] += thisInd[0];

 res[1] += thisInd[1];

 res[2] += thisInd[2];

 }

 double sum = res[0] + res[1] + res[2];

 res[0] /= sum;

 res[1] /= sum;

 res[2] /= sum;

 return res;

 }

}

