Green line -fitness function (x-0.4)"2;
Blue line - fitness function(x-0.6)"2;

fitness

0,25

-

P

w
*

7.5

2.5 -

0.0 L

1=

=20

=25

generation

=0

=5

40

[
9]
]

0.0

Source code:
package com.romanspt;
import java.util.*;

public class Main
{

static long seed

System

.currentTimeMillis () ;

public static void main(String[] args) throws InterruptedException

{
Random random = new Random (seed) ;
int numberOfSamples = 1000;
int len = 20;
int fixed = 10;

Chromosome. setNumberOfLearningAttempts (numberOfSamples) ;
ArrayList<Chromosome> inds = new ArrayList<>();
for(int i = 0; i < numberOfSamples; i++)

inds.add (new Chromosome (i, len, fixed, random));

int generation = 0;
double[] populationStats = Chromosome.getGenomeProb (inds) ;

while (!Chromosome. isFixated(inds))

{

HashMap<Chromosome, Double> largeFitness = new HashMap<>();
ArrayList<Chromosome> fitnessOne = new ArrayList<>();
double totFitnessGreaterThanOne = 0., totalAttempts = 0, bestAttempts = 1000;

int cnt = 0;
for (Chromosome ind : inds)
{
Attempts attempts = new Attempts():;
double fitness = ind.livelearnAndReturnFitness (random, attempts):;
totalAttempts += attempts.value;
if (attempts.changed)
cnt++;
if (attempts.changed && attempts.value < bestAttempts)
bestAttempts = attempts.value;
if(fitness > 1)
{
largeFitness.put(ind, fitness);
totFitnessGreaterThanOne += fitness;
} else
fitnessOne.add (ind) ;
}
System.out.printf (
"GENERATION %4d\t\t0 --> %.6£\t\t\tl --> %.6£\t\t\t? -->
$.6f\t\t\taverage --> %$3.6f\t\t\tbest --> %3.6f\n",
generation, populationStats[0], populationStats[l], populationStats[2],
totalAttempts / cnt,
bestAttempts) ;

ArrayList<Chromosome> newGen = new ArrayList<>();
for(int i = 0; i < numberOfSamples; i++)
{
Chromosome sampl = Chromosome.sampleIndividualPropToFitness (random,
largeFitness, fitnessOne,
totFitnessGreaterThanOne) ;
Chromosome samp2 = Chromosome.sampleIndividualPropToFitness (random,
largeFitness, fitnessOne,
totFitnessGreaterThanOne) ;
Chromosome newSamp = Chromosome.mate (i, sampl, samp2, random);
newGen.add (newSamp) ;
}
inds = newGen;
populationStats = Chromosome.getGenomeProb (inds) ;
generation++;

}

System.out.println ("Done:\t" + Chromosome.sequenceToString(inds.get (0)
.getSequence()) + "\t" + populationStats[0] + "\t" + populationStats[1] + "\t" +
populationStats[2]);

Thread.sleep(1000);

}

class Attempts

{

public int wvalue;
public boolean changed;
public Attempts ()
{

value = 0;

changed false;

class Chromosome

{

private static int numberLearningAttempts = 1000;
private final boolean fixGenomeWhenSuccess = false;
private final double fitnessBoost = 19.;

private int[] genome;
private int ID;

public static void setNumberOflLearningAttempts (int numberLearningAttempts)
{

Chromosome. numberLearningAttempts = numberLearningAttempts;

public Chromosome (int ID, int[] genome)
{

this.ID = ID;

this.genome = genome;

public Chromosome (int ID, int size, int fixedElements, Random random)
{
this.ID = ID;
genome = new int[size];
ArraylList<Integer> positions = new ArrayList<>();
for(int 1 = 0; 1 < size; 1++)
{
genome[i] = 2; // init as ?
positions.add (i) ;
}

Collections.shuffle(positions, random);

for(int i = 0; i1 < fixedElements; i++)
{
int pos = positions.get (i);
genome [pos] = random.nextInt (2);
}
}
@Override

public String toString()
{
if (genome == null)
return "";
return String.valueOf(ID) + '\t' + sequenceToString(genome) ;

public int[] getSequence ()
{

return this.genome;

public static String sequenceToString(int[] genome)

if (genome == null)

return "";
StringBuilder s = new StringBuilder();
for (int aGenome : genome)

if (aGenome == 2)
s.append ('?");
else
s.append (aGenome) ;

return s.toString();

public static Chromosome mate (int ID, Chromosome indl, Chromosome ind2, Random rand)

{

int recPos = 1 + rand.nextInt (indl.genome.length - 1);

int[] genomeNew = new int[indl.genome.length];
System.arraycopy(indl.genome, 0, genomeNew, 0, recPos);
System.arraycopy(ind2.genome, recPos, genomeNew, recPos, genomeNew.length -

recPos) ;

return new Chromosome (ID, genomeNew) ;

public static int[] getCounts (int[] genome)

{

int[] cnts = new int[3];
for (int aGenome : genome)

cnts[aGenome] ++;
return cnts;

public double livelearnAndReturnFitness (Random random, Attempts att)

{

int len = genome.length;
if (getCounts(genome) [1] == len)
// this individual has correct sequence, no learning will happen
return 1 + fitnessBoost;
else if (getCounts(genome) [0] > O0)
// this individual has 0Os in the sequence, will not learn right solution
return 1;
else

{
// do learning

int[] sequence = genome.clone();
ArrayList<Integer> positionOfQuestionMarks = new ArrayList<>();
for(int i = 0; 1 < sequence.length; i++)

if (sequence[i] == 2)
positionOfQuestionMarks.add (i) ;
int attempts = 1;
for (; attempts <= numberLearningAttempts; attempts++)
{

random) ;

int[] learnedBits = getRandomBinaryString(positionOfQuestionMarks.size(),
for(int i = 0; i < positionOfQuestionMarks.size(); i++)

sequence [positionOfQuestionMarks.get(i)] = learnedBits[i];
if (getCounts(sequence) [1] == len)

{

if (fixGenomeWhenSuccess)

genome = sequence;
att.value = attempts;
att.changed = true;
return 1 + fitnessBoost * (numberLearningAttempts - attempts) / 1000.;

}
// could not learn

return 1;

public static int[] getRandomBinaryString(int len, Random random)

{

int[] s = new int[len];
for(int i = 0; 1 < len; i++)
s[i] = random.nextBoolean() ? 1 : 0;

return s;

public static Chromosome samplelIndividualPropToFitness (Random random,

HashMap<Chromosome, Double> largeFitness,
ArrayList<Chromosome> fitnessOne,

double totFitnessGreaterThanOne)

double totFitness = fitnessOne.size () + totFitnessGreaterThanOne;
if (random.nextDouble () < fitnessOne.size() / totFitness)

// sample from those with fitness = 1

return fitnessOne.get (random.nextInt (fitnessOne.size()));
else

{
// sample from those ith fitness > 1

double fitnessMark = random.nextDouble () * totFitnessGreaterThanOne;
double cumulativeFitness = 0.;
Chromosome sampledInd = null;
for (Chromosome ind : largeFitness.keySet())
{
cumulativeFitness += largeFitness.get (ind);
if (cumulativeFitness >= fitnessMark)
{
sampledInd = ind;
break;

}

return sampledInd;

public static boolean isFixated (ArrayList<Chromosome> inds)
{
int[] firstGenome = inds.get (0) .genome;
for (Chromosome ind : inds)
if (!Arrays.equals(firstGenome, ind.genome))
return false;
return true;

public static double[] getGenomeProb (Collection<Chromosome> inds)
{

double|[] res = new double[3];

for (Chromosome ind : inds)

{

int[] thisInd = getCounts(ind.genome) ;
res[0] += thisInd[0];
res[1l] += thisInd[1l];
res[2] += thisInd[2];
}
double sum = res[0] + res[l] + res[2];

res[0] /= sum;
res[1l] /= sum;
res[2] /= sum;
return res;

