
Number of players 40
Size of chromosome 64

Temptation 5
Reward 3

Punishment 1
Mutate probability 0.001

Crossover probability 0.95

Graph 1 (start)

Chromosome Iteration Sum

1 010110110 22

2 010101011 21

1 010010101 20

3 001010101 23

1 010100101 20

4 011100101 25

1 010111001 23
5 000111001 22
1 010001110 25
6 110011001 22
1 010011100 20
7 110011110 21
1 010111100 23
8 110010111 24
1 010011001 22
9 001111001 25
1 010111010 20
10 000111010 23

Graph 2 (medium)

11 110010111 21

12 001111100 20

11 110111010 22

13 111010111 23

11 110001011 25

14 110101110 22

11 110010101 23

15 101000011 21

11 110110010 20

16 010101100 24

11 110111000 21

17 000011100 20

11 110000111 22

18 110000110 23
11 110110011 24

19 100100011 21

11 110001100 22

20 000001111 20

Graph 3 (finish)

21 111000111 23

22 111001100 25
21 111111000 21
23 010111010 23
21 111010101 21
24 000111000 20
21 111101010 22
25 010101010 24
21 111110011 21
26 001100111 24
21 111001100 25
27 001110101 23
21 111001001 21
28 010101111 23
21 111110110 24
29 001101110 20
21 111000001 21
30 110000101 24

The tables show 3 samples: chromosome sequence number, chromosome selection at each iteration,

the sum obtained by "playing" with another chromosome. So we get what were the chromosomes at

the beginning of the dilemma, in the middle and at the end. The amount is needed in order to

understand what fitness in the chromosome (we compare the amounts and get the fitness).

GRAPHICS

GAME HISTORY

C – 0 (COOPERATED)
D – 1 (DEFETEAD)

package ie.errity.pd;

import ie.errity.pd.graphics.*;
//Import GUI components
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.plaf.metal.*;

/**
 *MAIN class. Contains code which launches an instance of the Evolutionary
 *Prisoner's Dilemma application.
 *@author Andrew Errity 99086921
 */
public class epd
{
 /**
 *MAIN class. Contains code which launches an instance of the Evolutionary
 *Prisoner's Dilemma application.
 *@param args command line agruments (not processed)
 */
 public static void main(String[] args)
 {
 //Make sure we have window decorations.
 JFrame.setDefaultLookAndFeelDecorated(true);

 //Create a frame and container for the game panels.
 MenuFrame progFrame = new MenuFrame("Evolutionary Prisoner's Dilemma");

 // THEMES
 // user selected theme
 MetalTheme theme = new EmeraldTheme();
 // set the chosen theme
 MetalLookAndFeel.setCurrentTheme(theme);
 try
 {
 UIManager.setLookAndFeel(
 UIManager.getCrossPlatformLookAndFeelClassName());
 SwingUtilities.updateComponentTreeUI(progFrame);
 }
 catch(Exception e){}

 // Exit when the window is closed.
 progFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Show the program
 progFrame.pack();
 progFrame.setVisible(true);

 }

}

package ie.errity.pd;

import java.util.BitSet;

/**
 *A game of the Iterated Prisoner's Dilemma between two
 *{@link ie.errity.pd.Prisoner Prisoners}
 *@author Andrew Errity 99086921
 */
public class Game
{
 //Two Players
 private Prisoner P1;
 private Prisoner P2;

 //Histories from each players view
 private BitSet P1History;
 private BitSet P2History;

 //Payoffs recieved
 private int P1Score;
 private int P2Score;

 //Rules for the IPD
 private Rules rules;

 /**
 *Create a new game of the Iterated Prisoner's Dilemma between two players
 *@param p1 player 1
 *@param p2 player 2
 *@param r the rules which govern the game
 */
 public Game(Prisoner p1, Prisoner p2, Rules r)

 {
 P1 = p1;
 P2 = p2;
 rules = r;
 }

 /**Play a game of IPD according to the rules*/
 public void Play()
 {
 //Init
 int length = rules.getIterations();
 int iteration = 0;
 P1Score = 0;
 P2Score = 0;
 BitSet P1History = new BitSet();
 BitSet P2History = new BitSet();
 boolean P1move, P2move;

 //Play the specified number of PD games
 for(iteration = 0; iteration < length; iteration++)
 {
 //Get each players move
 P1move = P1.play(iteration,P1History);
 P2move = P2.play(iteration,P2History);

 //Update scores according to payoffs
 if(P1move && P2move) //CC
 {
 P1Score += rules.getR();
 P2Score += rules.getR();
 }
 else if(P1move && !P2move) //CD
 {
 P1Score += rules.getS();
 P2Score += rules.getT();

 }
 else if(!P1move && P2move) //DC
 {
 P1Score += rules.getT();
 P2Score += rules.getS();

 }
 else if(!P1move && !P2move) //DD
 {
 P1Score += rules.getP();
 P2Score += rules.getP();

 }

 //Update player histories
 if(P1move)
 {
 P1History.set(iteration*2);
 P2History.set((iteration*2)+1);
 }
 else
 {
 P1History.clear(iteration*2);
 P2History.clear((iteration*2)+1);
 }

 if(P2move)
 {
 P1History.set((iteration*2)+1);
 P2History.set((iteration*2));
 }
 else
 {
 P1History.clear((iteration*2)+1);
 P2History.clear((iteration*2));
 }
 }
 //Update each players score
 P1.updateScore(P1Score);
 P2.updateScore(P2Score);
 }

 /**
 *Get game results
 *@return array containing player 1 and player 2's score - [p1,p2]
 */
 public int[] getScores()
 {
 int [] scores = {P1Score, P2Score};
 return scores;
 }
}

Conclusion: in the prisoner's dilemma, betrayal strictly dominates cooperation, so the only possible

balance is the betrayal of both parties. Simply put, it does not matter what the other player will do,
everyone will win more if he betrays. Since in any situation betraying is more profitable than

cooperating, all rational players will choose betrayal.

Behaving individually individually, rationally, together the participants come to an irrational decision:
if both betray, they will get a smaller payoff than if they were cooperating (the only equilibrium in this

game does not lead to a Pareto-optimal decision). This is the dilemma.

