#include "stdafx.h"
#include <iostream>
#include <vector>
#include <time.h>
#include <cmath>
#include <fstream>

using

const
const

const
const

const
const

const

namespace std;

long double speed = 0.99;

long double Em

int n = 5;
int m = 5;
int len = 32;

long double e

int iterations

= 0.0001;

= 2.71828;

= 100;

int _tmain(int argc, _TCHAR* argv[])

{

setlocale(LC_ALL, "Russian");
srand(time(9));
ofstream fout;
fout.open("D:\\Test.txt");
//dataset inicialisation
vector<vector<double>> learn;
vector<bool> answers;
srand(time(9));
for (int i = 0; i < len; i++) {

vector<double> temp;

int val = 0;

for (int j = 0; j < 6; j++) {

}

temp.push_back(rand() % 101 / 100);
if (rand() % 2 == @) temp[j] = -temp[j];
else val++;

learn.push_back(temp);
if (val % 2 == @) answers.push_back(true);
else answers.push_back(false);

}

vector<vector<double>> population;

vector<int> fitness;

for (int i = 0; i < 100; i++) {
vector<double> gene;
vector<vector<long double>> wil;
for (int i = 0; i < n; i++) {

}

vector<long double> temp;

for (int j = 0; j < m; j++) {
temp.push_back(rand() / (RAND_MAX + 1.));
gene.push_back(temp[j]);

}
wl.push_back(temp);

vector<long double> w2;
vector<long double> T1;
for (int i =0; i < m; i++) {

w2.push_back(rand() / (RAND_MAX + 1.));
T1l.push_back(rand() / (RAND_MAX + 1.));
gene.push_back(w2[i]);

for (int i = 0; i <

m; i++) {

gene.push_back(T1[i]);

}

long double T2 = rand() / (RAND_MAX + 1.);

gene.push_back(T2);

population.push_back(gene);

int v = 0;
vector<double> y;

// MonyyeHune BbIXOAA HEWpOHOB M CeTU B LESoM

for (int i =

0; i < len; i++) {

vector<vector<long double>> s1;
vector<long double> s2, resi;
for (int u =0, j =n; u<n; u++, j--) {

}

vector<long double> temp;
for (int k = 0; k < m; k++) {
temp.push_back(wl[u][k] * learn[i][u]);

}
sl.push_back(temp);

for (int u = 0; u < m; u++) {

CKpbITOro cnoA

}

long double temp = ©;
for (int k = @; k < n; k++) {
temp += s1[k][u];
}
temp -= T1[u];
temp =1 / (1 + pow(e, -temp)); // Bbixos HeNpoHOB

resl.push_back(temp);

vector<long double> Fs;
for (int u = 0; u < m; u++) {

}

Fs.push_back(resi[u] * (1 - resif[u]));

for (int k = 0; k < m; k++) {

}

s2.push_back(w2[k] * resi[k]);

long double temp = 0;
for (int k = 0; k < m; k++) {

}
temp -

temp += s2[k];

= T2; // BbiXoh ceTu

y.push_back(temp);

}

int error = 0;

for (int i =

0; i1 < answers.size(); i++) {

if (y[i] < @ && !answers[i] || y[i] >= © && answers[i])

error++;

}

fitness.push_

}

int number = 0;
while (true) {
number++;

back(len - error);

vector<vector<double>> parents;

int mid = o;
for (int i = 0; i <

iterations; i++) {

mid += fitness[i];

}
mid /= iterations;
for (int i = 0; i <

15; i++) {

if (fitness[i] >= mid) parents.push_back(population[i]);

}

population.clear();

fitness.clear();
cout << "Population << number + 1 << endl;
for (int i = 0; i < iterations; i++) {
int parentl = rand() % parents.size();
int parent2 = rand() % parents.size();
while (true) {
if (parentl == parent2) parent2 = rand() % parents.size();
else break;

}

int cross = rand() % parents[parentl].size();
vector<double> child;
for (int i = @; i < parents[parentl].size(); i++) {
child.push_back(parents[parentl][i] * 2 + parents[parent2][i]
/ 4);
}
population.push_back(child);
int point = rand() % child.size();
child[point] = rand() / (RAND_MAX + 1.);
int f = 0;
vector<vector<long double>> wil;
for (int i = 0; i < n; i++) {
vector<long double> temp;
for (int j = 0; j < m; j++) {
temp.push_back(child[f]);
f++;
}
wl.push_back(temp);
}
vector<long double> w2;
vector<long double> T1;
for (int i =0; i < m; i++) {
w2.push_back(child[f]);
f++;
}
for (int i =0; i < m; i++) {
T1l.push_back(child[f]);
f++;
}
long double T2 = child[f];

int v = 0;
vector<double> y;
// Tlony4eHue BbIXxoAa HEWPOHOB M CETU B LEIOM
for (int i = 0; i < len; i++) {
vector<vector<long double>> s1;
vector<long double> s2, resi;
for (int u =0, j =n; u<n; u++, j--) {
vector<long double> temp;
for (int k = 0; k < m; k++) {
temp.push_back(wl[u][k] * learn[i][u]);

}
sl.push_back(temp);
}
for (int u = 0; u < m; u++) {
long double temp = 0;
for (int k = 0; k < n; k++) {
temp += s1[k][u];
}
temp -= T1[u];
temp =1 / (1 + pow(e, -temp)); // BbixoA HENpOHOB
CKpbLITOTO CJos
resl.push_back(temp);
}
vector<long double> Fs;
for (int u = 0; u < m; u++) {

Fs.push_back(resi[u] * (1 - resif[u]));
}
for (int k = 0; k < m; k++) {
s2.push_back(w2[k] * resi[k]);
}
long double temp = 0;
for (int k = 0; k < m; k++) {
temp += s2[k];

}
temp -= T2; // Bbixon ceTu
bool res;

y.push_back(temp);
}
int error = 0;
for (int i = @; 1 < answers.size(); i++) {
if (y[i] < @ && 'answers[i] || y[i] >= © && answers[i])

error++;
}
fitness.push_back(len - error);
cout << len - error << " "
}
bool compl = false;
for (int i = @; i < fitness.size(); i++) {
if (fitness[i] == iterations) compl = true;
}
cout << endl << endl;
if (compl == true) break;
if (number == 10000) break;
}
fout.close();
return 0;

W26

35

30

25

20

15

10

X — number of iteration
Y — best fitness in generation

Values:

W1 | -0.0807887385975517

W2 -0.360210900362679

W3 | -0.221398853334318

W4 | 0.969727301490366

W5 | 0.934620120066507

W6 | 0.00298415217687569

W7 | -0.676656131482057

W8 | -0.0981439766931087

W9 -0.447110412850562

W10 | 0.131837159456609

W11 | -0.595922192370483

W12 | 0.930679468405749

W13 | 0.564169297723178

W14 | 0.987798357842396

W15 | 0.0474480120686106

W16 | -0.687640359014105

W17 | -0.828826693738264

W18 | 0.761352861188982

W19 | 0.0500075295800378

W20 | -0.699063556128677

W21 | 0.0303105195194066

W22 | 0.421785137812507

W23 | -0.908295810645584

W24 | 0.355323450805304

W25 | 0.868160644019097

W26 | 0.742539797789669

W27 | 0.839499257895862

W28 | 0.263068553182794

25

30

W29

0.595387210415391

W30

-0.650466014002667

