
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <time.h>
#include <cmath>
#include <fstream>

using namespace std;

const long double speed = 0.99;
const long double Em = 0.0001;

const int n = 5;
const int m = 5;

const int len = 32;

const long double e = 2.71828;

const int iterations = 100;

int _tmain(int argc, _TCHAR* argv[])
{
 setlocale(LC_ALL, "Russian");
 srand(time(0));
 ofstream fout;
 fout.open("D:\\Test.txt");
 //dataset inicialisation
 vector<vector<double>> learn;
 vector<bool> answers;
 srand(time(0));
 for (int i = 0; i < len; i++) {
 vector<double> temp;
 int val = 0;
 for (int j = 0; j < 6; j++) {
 temp.push_back(rand() % 101 / 100);
 if (rand() % 2 == 0) temp[j] = -temp[j];
 else val++;
 }
 learn.push_back(temp);
 if (val % 2 == 0) answers.push_back(true);
 else answers.push_back(false);
 }

 vector<vector<double>> population;
 vector<int> fitness;
 for (int i = 0; i < 100; i++) {
 vector<double> gene;
 vector<vector<long double>> w1;
 for (int i = 0; i < n; i++) {
 vector<long double> temp;
 for (int j = 0; j < m; j++) {
 temp.push_back(rand() / (RAND_MAX + 1.));
 gene.push_back(temp[j]);
 }
 w1.push_back(temp);
 }
 vector<long double> w2;
 vector<long double> T1;
 for (int i = 0; i < m; i++) {
 w2.push_back(rand() / (RAND_MAX + 1.));
 T1.push_back(rand() / (RAND_MAX + 1.));
 gene.push_back(w2[i]);
 }

 for (int i = 0; i < m; i++) {
 gene.push_back(T1[i]);
 }
 long double T2 = rand() / (RAND_MAX + 1.);
 gene.push_back(T2);
 population.push_back(gene);

 int v = 0;
 vector<double> y;
 // Получение выхода нейронов и сети в целом
 for (int i = 0; i < len; i++) {
 vector<vector<long double>> s1;
 vector<long double> s2, res1;
 for (int u = 0, j = n; u < n; u++, j--) {
 vector<long double> temp;
 for (int k = 0; k < m; k++) {
 temp.push_back(w1[u][k] * learn[i][u]);
 }
 s1.push_back(temp);
 }
 for (int u = 0; u < m; u++) {
 long double temp = 0;
 for (int k = 0; k < n; k++) {
 temp += s1[k][u];
 }
 temp -= T1[u];
 temp = 1 / (1 + pow(e, -temp)); // выход нейронов
скрытого слоя
 res1.push_back(temp);
 }
 vector<long double> Fs;
 for (int u = 0; u < m; u++) {
 Fs.push_back(res1[u] * (1 - res1[u]));
 }
 for (int k = 0; k < m; k++) {
 s2.push_back(w2[k] * res1[k]);
 }
 long double temp = 0;
 for (int k = 0; k < m; k++) {
 temp += s2[k];
 }
 temp -= T2; // выход сети
 y.push_back(temp);
 }
 int error = 0;
 for (int i = 0; i < answers.size(); i++) {
 if (y[i] < 0 && !answers[i] || y[i] >= 0 && answers[i])
error++;
 }
 fitness.push_back(len - error);

 }
 int number = 0;
 while (true) {
 number++;
 vector<vector<double>> parents;
 int mid = 0;
 for (int i = 0; i < iterations; i++) {
 mid += fitness[i];
 }
 mid /= iterations;
 for (int i = 0; i < 15; i++) {
 if (fitness[i] >= mid) parents.push_back(population[i]);
 }
 population.clear();

 fitness.clear();
 cout << "Population " << number + 1 << endl;
 for (int i = 0; i < iterations; i++) {
 int parent1 = rand() % parents.size();
 int parent2 = rand() % parents.size();
 while (true) {
 if (parent1 == parent2) parent2 = rand() % parents.size();
 else break;
 }
 int cross = rand() % parents[parent1].size();
 vector<double> child;
 for (int i = 0; i < parents[parent1].size(); i++) {
 child.push_back(parents[parent1][i] * 2 + parents[parent2][i]
/ 4);
 }
 population.push_back(child);
 int point = rand() % child.size();
 child[point] = rand() / (RAND_MAX + 1.);
 int f = 0;
 vector<vector<long double>> w1;
 for (int i = 0; i < n; i++) {
 vector<long double> temp;
 for (int j = 0; j < m; j++) {
 temp.push_back(child[f]);
 f++;
 }
 w1.push_back(temp);
 }
 vector<long double> w2;
 vector<long double> T1;
 for (int i = 0; i < m; i++) {
 w2.push_back(child[f]);
 f++;
 }
 for (int i = 0; i < m; i++) {
 T1.push_back(child[f]);
 f++;
 }
 long double T2 = child[f];

 int v = 0;
 vector<double> y;
 // Получение выхода нейронов и сети в целом
 for (int i = 0; i < len; i++) {
 vector<vector<long double>> s1;
 vector<long double> s2, res1;
 for (int u = 0, j = n; u < n; u++, j--) {
 vector<long double> temp;
 for (int k = 0; k < m; k++) {
 temp.push_back(w1[u][k] * learn[i][u]);
 }
 s1.push_back(temp);
 }
 for (int u = 0; u < m; u++) {
 long double temp = 0;
 for (int k = 0; k < n; k++) {
 temp += s1[k][u];
 }
 temp -= T1[u];
 temp = 1 / (1 + pow(e, -temp)); // выход нейронов
скрытого слоя
 res1.push_back(temp);
 }
 vector<long double> Fs;
 for (int u = 0; u < m; u++) {

 Fs.push_back(res1[u] * (1 - res1[u]));
 }
 for (int k = 0; k < m; k++) {
 s2.push_back(w2[k] * res1[k]);
 }
 long double temp = 0;
 for (int k = 0; k < m; k++) {
 temp += s2[k];
 }
 temp -= T2; // выход сети
 bool res;
 y.push_back(temp);
 }
 int error = 0;
 for (int i = 0; i < answers.size(); i++) {
 if (y[i] < 0 && !answers[i] || y[i] >= 0 && answers[i])
error++;
 }
 fitness.push_back(len - error);
 cout << len - error << " ";

 }
 bool compl = false;
 for (int i = 0; i < fitness.size(); i++) {
 if (fitness[i] == iterations) compl = true;
 }
 cout << endl << endl;
 if (compl == true) break;
 if (number == 10000) break;
 }
 fout.close();
 return 0;
}

X – number of iteration

Y – best fitness in generation

Values:

W1 -0.0807887385975517

W2 -0.360210900362679

W3 -0.221398853334318

W4 0.969727301490366

W5 0.934620120066507

W6 0.00298415217687569

W7 -0.676656131482057

W8 -0.0981439766931087

W9 -0.447110412850562

W10 0.131837159456609

W11 -0.595922192370483

W12 0.930679468405749

W13 0.564169297723178

W14 0.987798357842396

W15 0.0474480120686106

W16 -0.687640359014105

W17 -0.828826693738264

W18 0.761352861188982

W19 0.0500075295800378

W20 -0.699063556128677

W21 0.0303105195194066

W22 0.421785137812507

W23 -0.908295810645584

W24 0.355323450805304

W25 0.868160644019097

W26 0.742539797789669

W27 0.839499257895862

W28 0.263068553182794

W29 0.595387210415391

W30 -0.650466014002667

