
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <ctime>
#include <fstream>

using namespace std;

int mark(int number, vector<vector<bool>> chrome);
vector<vector<bool>> selection(vector<vector<bool>> generation, vector<int> marks, int
number);
vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen);
void mutation(vector<vector<bool>> &generation, unsigned procent);
void vector_output(vector<vector<bool>> vec);

int main()
{
 srand(time(0));
 vector<vector<vector<bool>>> library;
 ofstream fout, stat;
 fout.open("D:\\test\\test.txt");
 fout.close();
 fout.open("D:\\test\\test.txt");
 stat.open("D:\\tets\\test2.txt");

 int size = 64; //размер хромосомы
 int num = 40; //количество хромосом в поколении
 int par = 10; //количество родителей

 vector<vector<bool>> generation;
 for (int i = 0; i < num; i++) {
 vector<bool> temp;
 for (int j = 0; j < size; j++) {
 temp.push_back(rand() % 2);
 }
 generation.push_back(temp);
 }
 library.push_back(generation);
 cout << "generation 0:" << endl;
 vector_output(generation);
 int score = 1;
 while (true) {
 vector<int> weight;
 int counter = 0;
 vector<vector<vector<bool>>> groups;
 groups.resize(4);
 for (int i = 0; i < num; i++) {
 if (i % 10 == 0 && i != 0) counter++;
 groups[counter].push_back(generation[i]);
 }
 for (int i = 0; i < groups.size(); i++) {
 for (int j = 0; j < groups[i].size(); j++) {
 weight.push_back(mark(j, groups[i]));
 }
 }

 int max = 0, min = 9;
 double mid = 0;
 for (int i = 0; i < weight.size(); i++) {
 if (weight[i] > max) max = weight[i];
 if (weight[i] < min) min = weight[i];
 mid += weight[i];
 }

 mid /= weight.size();
 fout << score << ' ' << max << ' ' << mid << ' ' << min << '\n';
 if (max == 9) break;

 vector<vector<bool>> parents;
 parents = selection(generation, weight, par);
 generation.clear();
 generation = evolution(parents, num, size);
 mutation(generation, 5);
 library.push_back(generation);
 cout << "generation " << score << ":" << endl;
 vector_output(generation);
 score++;
 if (score == 10000) break;
 }
 return 0;
}

int mark(int number, vector<vector<bool>> chrome) {
 int result = 0;
 for (int k = 0; k < chrome.size(); k++) {
 if (k == number) break;
 int res1 = 0, res2 = 0;
 for (int i = 0; i < chrome[0].size(); i++) {
 if (chrome[number][i] == false && chrome[k][i] == false) { //правила
 res1 += 3; res2 += 3;
 }
 else if (chrome[number][i] == false && chrome[k][i] == true) {
 res1 += 0; res2 += 5;
 }
 else if (chrome[number][i] == true && chrome[k][i] == false) {
 res1 += 5; res2 += 0;
 }
 else if (chrome[number][i] == true && chrome[k][i] == true) {
 res1 += 2; res2 += 2;
 }
 }
 if (res1 > res2) result++;
 }
 return result;
}

vector<vector<bool>> selection(vector<vector<bool>> generation, vector<int> marks, int
number) {
 vector<vector<bool>> result;
 for (int i = 0; i < number; i++) {
 int temp = marks[0];
 int point = 0;
 for (int j = 1; j < marks.size(); j++) {
 if (marks[j] > temp) {
 temp = marks[j];
 point = j;
 }
 }
 result.push_back(generation[point]);
 temp = marks[marks.size() - 1];
 marks[marks.size() - 1] = point;
 marks[point] = temp;
 marks.pop_back();
 generation[point] = generation[generation.size() - 1];
 generation.pop_back();
 }
 return result;
}

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of_chr, unsigned
number_of_gen) {
 vector<vector<bool>> result;
 for (int i = 0; i < number_of_chr; i++) {
 unsigned mother = rand() % par.size();
 unsigned father;
 while (true) {
 father = rand() % par.size();
 if (mother != father) break;
 }
 unsigned point = rand() % number_of_gen;
 vector<bool> child;
 for (int j = 0; j < number_of_gen; j++) {
 if (j <= point) child.push_back(par[mother][j]);
 else child.push_back(par[father][j]);
 }
 result.push_back(child);
 }
 return result;
}

void mutation(vector<vector<bool>> &generation, unsigned procent) {
 for (int i = 0; i < generation.size(); i++) {
 if (rand() % 100 + 1 >= procent) {
 int j = rand() % generation[i].size();
 if (generation[i][j] == 0) generation[i][j] = 1;
 else generation[i][j] = 0;
 }
 }
}

void vector_output(vector<vector<bool>> vec) {
 for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < vec[i].size(); j++) {
 cout << vec[i][j];
 }
 cout << " ";
 if (i % 2 == 0 && i != 0) cout << endl;
 }
 cout << endl;
}

X is iteration

Y is fitness

The blue line is maximum fitness in population.

The orange lane is average fitness in population.

Game examples:

1. From 6th iteration

First chromosome Second chromosome WIN

10011110101010111110111010010001
01101111111111110001111110111111

153 00010110101110111110110001010001
11011111111111100001111110111111

143 1

10011110101010111110111010010001
01101111111111110001111110111111

159 00010100101110111110110010000001
11011111111111110001111110110111

139 1

10011110101010111110111010010001
01101111111111110001111110111111

153 00010100101110111111110001010001
11011111111111110100011110111111

143 1

10011110101010111110111010010001
01101111111111110001111110111111

156 10010100101110111110110010010001
01101111111111110001111110011111

141 1

10011110101010111110111010010001
01101111111111110001111110111111

162 10010100101000111110110001010001
11011111111011100001111110111111

137 1

10011110101010111110111010010001
01101111111111110001111110111111

153 10001101011101101110110001010000
11011111111111110100111110111111

143 1

10011110101010111110111010010001
01101111111111110001111110111111

153 10001101001101101111110001010001
11011111111111100001111110111111

143 1

10011110101010111110111010010001
01101111111111110001111110111111

144 11011011001101101110110001010001
11011111111111110100111111111111

149 2

10011110101010111110111010010001
01101111111111110001111110111111

153 10011010101110111110110010010001
11101111111111110100011110111101

143 1

2. From last iteration

01000100011011001111010010101100
11011111111110110000111001100100

163 10111010000110111011101100111001
01100100101000010000110110011101

153 1

01000100011011001111010010101100
11011111111110110000111001100100

169 10011010111010001101001100100011
00110101010000001111011010010110

149 1

01000100011011001111010010101100
11011111111110110000111001100100

193 00011100000000100000011011010000
00100000100110011011101010111000

133 1

01000100011011001111010010101100
11011111111110110000111001100100

175 00011000010101001100101110100110
10100101010101000100111000111010

145 1

01000100011011001111010010101100
11011111111110110000111001100100

160 00101101101101111010011010110001
11110111100000000110010001111100

155 1

01000100011011001111010010101100
11011111111110110000111001100100

178 01001000001100110011011101010100
01011011000001000011100111001010

143 1

01000100011011001111010010101100
11011111111110110000111001100100

175 11111001101000100011101101011010
10010011100100101001000000011000

145 1

01000100011011001111010010101100
11011111111110110000111001100100

184 00010000001011110010100111010110
10001000000100101001100100110101

139 1

01000100011011001111010010101100
11011111111110110000111001100100

163 00000000101101111011100110100111
01010000110110101101010011101110

153 1

3. From 1st generation

01011010101000000110111010100101
11111000111001101001100011101100

135 11110110110111110111011001111010
00000110001101011110111010011111

175 2

01011010101000000110111010100101
11111000111001101001100011101100

162 00101110101011111000111111010010
00100011100001001101001001101100

157 1

01011010101000000110111010100101
11111000111001101001100011101100

183 00000010101001011001100010111001
01011000110001010010100010000110

143 1

01011010101000000110111010100101
11111000111001101001100011101100

165 11100101001101001010011111100000
10000110111000010100110111010100

155 1

01011010101000000110111010100101
11111000111001101001100011101100

171 00010000001100010001101110111111
01110000001010110100000100111011

151 1

01011010101000000110111010100101
11111000111001101001100011101100

153 00100111001011010101110011101111
01001010000101111101100000110111

163 2

01011010101000000110111010100101
11111000111001101001100011101100

171 11000000110010010111010001110110
01010101011000111000110100100010

151 1

01011010101000000110111010100101
11111000111001101001100011101100

162 11111010101001100011000101101000
10110110001100000100011110101011

157 1

01011010101000000110111010100101
11111000111001101001100011101100

165 11011000010001000100001101101101
11110101010011001011000010110110

155 1

