#include "stdafx.h"
#include <iostream>
#include <vector>
#include <ctime>
#include <fstream>

using namespace std;

int mark(int number, vector<vector<bool>> chrome);

vector<vector<bool>> selection(vector<vector<bool>> generation, vector<int> marks, int
number);

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number_of chr, unsigned
number_of_gen);

void mutation(vector<vector<bool>> &generation, unsigned procent);

void vector_output(vector<vector<bool>> vec);

int main()

{
srand(time(9));
vector<vector<vector<bool>>> library;
ofstream fout, stat;
fout.open("D:\\test\\test.txt");
fout.close();
fout.open("D:\\test\\test.txt");
stat.open("D:\\tets\\test2.txt");

int size = 64; //pa3mep XpOMOCOMbI
int num = 40; //Konn4ecTBO XPOMOCOM B MOKOJIEHUU
int par = 10; //Konu4ecTBO poauTenei

vector<vector<bool>> generation;
for (int i = 0; i < num; i++) {
vector<bool> temp;
for (int j = 0; j < size; j++) {
temp.push_back(rand() % 2);
}
generation.push_back(temp);
}
library.push_back(generation);
cout << "generation 0:" << endl;
vector_output(generation);
int score = 1;
while (true) {
vector<int> weight;
int counter = 0;
vector<vector<vector<bool>>> groups;
groups.resize(4);
for (int i = @; i < num; i++) {
if (i % 10 == 0 & i != @) counter++;
groups[counter].push_back(generation[i]);
¥
for (int i = @; i < groups.size(); i++) {
for (int j = @; j < groups[i].size(); j++) {
weight.push_back(mark(j, groups[i]));
}
}

int max = @, min = 9;

double mid = 9;

for (int i = 0; i < weight.size(); i++) {
if (weight[i] > max) max = weight[i];
if (weight[i] < min) min = weight[i];
mid += weight[i];

mid /= weight.size();
fout << score << ' '
if (max == 9) break;

<< max << << mid << << min << '\n';

vector<vector<bool>> parents;

parents = selection(generation, weight, par);
generation.clear();

generation = evolution(parents, num, size);
mutation(generation, 5);
library.push_back(generation);
cout << "generation " << score <<
vector_output(generation);
score++;

if (score == 10000) break;

<< endl;

}

return 0;

}

int mark(int number, vector<vector<bool>> chrome) {
int result = 0;
for (int k = @; k < chrome.size(); k++) {
if (k == number) break;
int resl = @, res2 = 0;
for (int i = @; i < chrome[@].size(); i++) {
if (chrome[number][i] == false && chrome[k][i] == false) { //npasuna
resl += 3; res2 += 3;

else if (chrome[number][i] == false && chrome[k][i] == true) {
resl += 0; res2 += 5;

}

else if (chrome[number][i] == true && chrome[k][i] == false) {
resl += 5; res2 += 0O;

else if (chrome[number][i] == true && chrome[k][i] == true) {
resl += 2; res2 += 2;
}
}

if (resl > res2) result++;

}

return result;

}

vector<vector<bool>> selection(vector<vector<bool>> generation, vector<int> marks, int
number) {
vector<vector<bool>> result;
for (int i = @; i < number; i++) {
int temp = marks[0];
int point = 0;
for (int j = 1; j < marks.size(); j++) {
if (marks[j] > temp) {
temp = marks[j];
point = j;
}
}

result.push_back(generation[point]);

temp = marks[marks.size() - 17;

marks[marks.size() - 1] = point;

marks[point] = temp;

marks.pop_back();

generation[point] = generation[generation.size() - 1];
generation.pop_back();

}

return result;

vector<vector<bool>> evolution(vector<vector<bool>> par, unsigned number of chr, unsigned
number_of_gen) {
vector<vector<bool>> result;
for (int i = @; i < number_of chr; i++) {
unsigned mother = rand() % par.size();
unsigned father;
while (true) {
father = rand() % par.size();
if (mother != father) break;
}
unsigned point = rand() % number of gen;
vector<bool> child;
for (int j = ©; j < number_of gen; j++) {
if (j <= point) child.push_back(par[mother][j]);
else child.push_back(par[father][j]);

}
result.push_back(child);

}

return result;

}

void mutation(vector<vector<bool>> &generation, unsigned procent) {
for (int i = @; i < generation.size(); i++) {
if (rand() % 100 + 1 >= procent) {
int j = rand() % generation[i].size();
if (generation[i][j] == @) generation[i][j] = 1;
else generation[i][j] = @;

}

void vector_output(vector<vector<bool>> vec) {

for (int i = @; i < vec.size(); i++) {

for (int j = 0; j < vec[i].size(); j++) {
cout << vec[i][]];

}
cout << " "
if (1 %2 ==10 8&& i !=0) cout << endl;

}

cout << endl;

10

2 S~ N\

Xis iteration

Y is fitness

The blue line is maximum fitness in population.

The orange lane is average fitness in population.

Game examples:

1. From 6" iteration

10 12 14

First chromosome Second chromosome WIN
10011110101010111110111010010001 | 153 | 00010110101110111110110001010001 | 143 1
01101111111111110001111110111111 110111111111111000011111101111112
10011110101010111110111010010001 | 159 | 00010100101110111110110010000001 | 139 1
01101111111111110001111110111111 110111111111111100011111101101112
10011110101010111110111010010001 | 153 | 00010100101110111111110001010001 | 143 1
01101111111111110001111110111111 110111111111111101000111101111112
10011110101010111110111010010001 | 156 | 10010100101110111110110010010001 | 141 1
01101111111111110001111110111111 0110111112111211110001111110011111
10011110101010111110111010010001 | 162 | 10010100101000111110110001010001 | 137 1
01101111111111110001111110111111 11011111111011100001111110111111
10011110101010111110111010010001 | 153 | 10001101011101101110110001010000 | 143 1
01101111111111110001111110111111 110111111111111101001111101111112
10011110101010111110111010010001 | 153 | 10001101001101101111110001010001 | 143 1
01101111111111110001111110111111 110111111111111000011111101111112
10011110101010111110111010010001 | 144 | 11011011001101101110110001010001 | 149 2
01101111111111110001111110111111 11011111111111110100111111111112
10011110101010111110111010010001 | 153 | 10011010101110111110110010010001 | 143 1

01101111111111110001111110111111

11101111111111110100011110111101

2. From last iteration

01000100011011001111010010101100
11011111111110110000111001100100

163

10111010000110111011101100111001
01100100101000010000110110011101

153

01000100011011001111010010101100
11011111111110110000111001100100

169

10011010111010001101001100100011
00110101010000001111011010010110

149

01000100011011001111010010101100
11011111111110110000111001100100

193

00011100000000100000011011010000
00100000100110011011101010111000

133

01000100011011001111010010101100
11011111111110110000111001100100

175

00011000010101001100101110100110
10100101010101000100111000111010

145

01000100011011001111010010101100
11011111111110110000111001100100

160

00101101101101111010011010110001
11110111100000000110010001111100

155

01000100011011001111010010101100
11011111111110110000111001100100

178

01001000001100110011011101010100
01011011000001000011100111001010

143

01000100011011001111010010101100
11011111111110110000111001100100

175

11111001101000100011101101011010
10010011100100101001000000011000

145

01000100011011001111010010101100
11011111111110110000111001100100

184

00010000001011110010100111010110
10001000000100101001100100110101

139

01000100011011001111010010101100
11011111111110110000111001100100

163

00000000101101111011100110100111
01010000110110101101010011101110

153

3. From 1* generation

01011010101000000110111010100101
11111000111001101001100011101100

135

11110110110111110111011001111010
00000110001101011110111010011111

175

01011010101000000110111010100101
11111000111001101001100011101100

162

00101110101011111000111111010010
00100011100001001101001001101100

157

01011010101000000110111010100101
11111000111001101001100011101100

183

00000010101001011001100010111001
01011000110001010010100010000110

143

01011010101000000110111010100101
11111000111001101001100011101100

165

11100101001101001010011111100000
10000110111000010100110111010100

155

01011010101000000110111010100101
11111000111001101001100011101100

171

00010000001100010001101110111111
01110000001010110100000100111011

151

01011010101000000110111010100101
11111000111001101001100011101100

153

00100111001011010101110011101111
01001010000101111101100000110111

163

01011010101000000110111010100101
11111000111001101001100011101100

171

11000000110010010111010001110110
01010101011000111000110100100010

151

01011010101000000110111010100101
11111000111001101001100011101100

162

11111010101001100011000101101000
10110110001100000100011110101011

157

01011010101000000110111010100101
11111000111001101001100011101100

165

11011000010001000100001101101101
11110101010011001011000010110110

155

