#include "stdafx.h"
#include <iostream>
#include <vector>
#include <ctime>
#include <utility>
#include <cmath>
#include <fstream>

using namespace std;

vector<vector<int>> evolution(vector<vector<int>> gen, unsigned number of chr,

number_of gen, unsigned number_of par);

void mutation(vector<vector<int>> &generation, unsigned procent);
void vector_output(vector<vector<int>> vec);

double fitness(vector<int> chromosome);

double distance(int pointl, int point2);

vector<int> desh(vector<int> vec);

int main()

{

srand(time(0));
vector<vector<vector<int>>> library;
ofstream fout, stat;
fout.open("D:\\test\\test.txt");
fout.close();
fout.open("D:\\test\\test.txt");
stat.open("D:\\test\\test2.txt");

int size = 7; //pa3mep XpomMOCOMbI

int num = 10; //KonM4ecTBO XpPOMOCOM B MOKOJIEHUU
int par = 4; //Konn4ecTBO poauTenei

int aspects = 5; //Konu4ecTBO BUAOB

vector<vector<int>> generation;
for (int i = 0; i < num; i++) {
vector<int> temp;
for (int j = 0; j < size; j++) {
temp.push_back(rand() % 8);
}
generation.push_back(temp);
}
library.push_back(generation);
cout << "generation 0:" << endl;
vector_output(generation);
for (int i = @; i < generation.size(); i++) {
for (int j = @; j < generation[i].size(); j++) {
stat << generation[i][]j];
}

stat <« ;
stat << fitness(generation[i]) << " "

}
stat << '\n' << '"\n';
int score = 1;
vector<double> lib;
while (true) {
generation = evolution(generation, num, size, par);
mutation(generation, 5);
score++;
cout << "generation << score <<
vector_output(generation);
//if (score == 1000) break;
bool check = 0;
double min 1000;
int P;

" w,n

<< endl;

unsigned

for (int i = @; i < generation.size(); i++) {
if (fitness(generation[i]) < min) {
min = fitness(generation[i]);
P =1;
}
}

fout << score - 1 <<
cout << min << endl;
lib.push_back(min);
int last = lib.size() - 1;
if (score >= 6) {

if (lib[last] == lib[last - 1] == lib[last - 2] == lib[last - 3] ==

<< min << '\n';

lib[last - 4]) {
check = 1;
}
}
if (score == 400) {
for (int i = @; i < generation.size(); i++) {
for (int j = @; j < generation[i].size(); j++) {
stat << generation[i][]j];

}
stat << " "
stat << fitness(generation[i]) << ™ "

}
stat << '\n' << '\n';
}
if (check == 1 || score == 10000) {
for (int i = @; i < generation.size(); i++) {
for (int j = 0; j < generation[i].size(); j++) {
stat << generation[i][]j];

}
stat << " "
stat << fitness(generation[i]) << " "5
}
break;
}
}
return 0;

vector<vector<int>> evolution(vector<vector<int>> gen, unsigned number of chr, unsigned
number_of_gen, unsigned number_of par) {
vector<vector<int>> par;
vector<vector<int>> genl = gen;
vector<double> mark;
for (int i = @; i < gen.size(); i++) {
mark.push_back(fitness(gen[i]));
}
for (int i = @; i < number_of par; i++) {
int min = 1000;
int point = 0;
for (int j = 0; j < genl.size(); j++) {
if (mark[j] < min) {
min = mark[j];
point = j;
}

}
par.push_back(genl[point]);

genl[point] = genl[genl.size() - 1];
genl.pop_back();

}

vector<vector<int>> result;

for (int i = @; i < number_of chr; i++) {
unsigned mother = rand() % par.size();

unsigned father;
while (true) {
father = rand() % par.size();
if (mother != father) break;
}
unsigned point = rand() % number_of gen;
vector<int> child;
for (int j = ©; j < number_of gen; j++) {
if (j <= point) child.push_back(par[mother][j]);
else child.push_back(par[father][j]);

}
result.push_back(child);

}

return result;

}

void mutation(vector<vector<int>> &generation, unsigned procent) {
for (int i = @; i < generation.size(); i++) {
if (rand() % 100 + 1 >= procent) {
int j = rand() % generation[i].size();
generation[i][j] = rand() % 8;

}

void vector_output(vector<vector<int>> vec) {
for (int i = @; i < vec.size(); i++) {
vector<int> vec2 = desh(vec[i]);
for (int j = 0; j < vec2.size(); j++) {
cout << vec2[j];

}

cout <«

<< fitness(vec[i]) << endl;;

}

cout << endl;

}

double fitness(vector<int> chromosome) {

double result = 0;

vector<int> temp;
temp.push_back(1);
temp.push_back(2);
temp.push_back(3);
temp.push_back(4);
temp.push_back(5);
temp.push_back(6);
temp.push_back(7);

int last_point = 0;

for (int i = @; i < chromosome.size(); i++) {

int k = 0;
for (int j = ©; j < chromosome[i]; j++) {
k++;

if (k >= temp.size()) k = 0;
}
result += distance(last_point, temp[k]);
last_point = temp[k];
for (int j = k; j < temp.size() - 1; j++) {
temp[j] = temp[j + 1];
}

temp.pop_back();

if (i == chromosome.size() - 1) result += distance(last_point, 0);

}

return result;

}

double distance(int pointl, int point2) {

pair<double, double> coordl, coord2;
if (pointl == 1) {
coordl.first = 0;
coordl.second = 2.5;

if (pointl == 2) {
coordl.first = 0;
coordl.second = 7.5;

if (pointl == 3) {
coordl.first = 2.5;
coordl.second = 10;

if (pointl == 4) {
coordl.first = 7.5;
coordl.second = 10;

if (pointl == 5) {
coordl.first = 7.5;
coordl.second = 0;

if (pointl == 6) {
coordl.first = 2.5;
coordl.second = 0;

¥

if (pointl == 7) {
coordl.first = 10;
coordl.second = 7.5;

b

if (pointl == @) {
coordl.first = 10;
coordl.second = 2.5;

if (point2 == 1) {
coordl.first = 0;
coordl.second = 2.5;

if (point2 == 2) {
coordl.first = 0;
coordl.second = 7.5;

if (point2 == 3) {
coordl.first = 2.5;
coordl.second = 10;

if (point2 == 4) {
coordl.first = 7.5;
coordl.second = 10;

if (point2 == 5) {
coordl.first = 7.5;
coordl.second = 0;

if (point2 == 6) {
coordl.first = 2.5;
coordl.second = 0;

¥

if (point2 == 7) {
coordl.first = 10;
coordl.second = 7.5;

}

if (point2 == @) {
coordl.first = 10;
2.

coordl.second = 5;

double result;

result = sqrt(pow(abs(coordl.first - coord2.first), 2) + pow(abs(coordl.second -
coord2.second), 2));

return result;

}

vector<int> desh(vector<int> vec) {

vector<int> temp;
vector<int> res;

temp.push_back(1);
temp.push_back(2);
temp.push_back(3);
temp.push_back(4);
temp.push_back(5);
temp.push_back(6);
temp.push_back(7);
res.push_back(0);

for (int i = @; i < vec.size(); i++) {

int k = 0;
for (int j = 0; j < vec[i]; j++) {
k++;

if (k >= temp.size()) k = 0;

}
res.push_back(temp[k]);

for (int j = k; j < temp.size() - 1; j++) {
temp[j] = temp[]j + 1];
temp.pop_back();
}

res.push_back(9);
return res;

100
90
80
70
60
50
40
30
20
10

X is generation

Y is fitness (our distance between cities)

Statistic from 1°° generation:

way fitness
0300422 118
2477143 96
1356570 143
4512677 124
1344673 117
3326773 97
6077300 105
5662433 104
7713474 125
7725123 99

Example of way

12

10

Statisctic from 4" generation

4017335 65
4021335 58
7616730 46
7611730 41
1755330 49
6057770 52
7661730 71
1355030 47
1357275 59
4011355 65

Statistic from last generation

5511111 32
3201042 45
0307041 62
3306260 37
3206042 41
5306442 45
0306265 36
3206472 39
0106041 45
0406041 40

Example of way

12

