
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <ctime>
#include <utility>
#include <cmath>
#include <fstream>

using namespace std;

vector<vector<int>> evolution(vector<vector<int>> gen, unsigned number_of_chr, unsigned
number_of_gen, unsigned number_of_par);
void mutation(vector<vector<int>> &generation, unsigned procent);
void vector_output(vector<vector<int>> vec);
double fitness(vector<int> chromosome);
double distance(int point1, int point2);
vector<int> desh(vector<int> vec);

int main()
{
 srand(time(0));
 vector<vector<vector<int>>> library;
 ofstream fout, stat;
 fout.open("D:\\test\\test.txt");
 fout.close();
 fout.open("D:\\test\\test.txt");
 stat.open("D:\\test\\test2.txt");

 int size = 7; //размер хромосомы
 int num = 10; //количество хромосом в поколении
 int par = 4; //количество родителей
 int aspects = 5; //количество видов

 vector<vector<int>> generation;
 for (int i = 0; i < num; i++) {
 vector<int> temp;
 for (int j = 0; j < size; j++) {
 temp.push_back(rand() % 8);
 }
 generation.push_back(temp);
 }
 library.push_back(generation);
 cout << "generation 0:" << endl;
 vector_output(generation);
 for (int i = 0; i < generation.size(); i++) {
 for (int j = 0; j < generation[i].size(); j++) {
 stat << generation[i][j];
 }
 stat << " ";
 stat << fitness(generation[i]) << " ";
 }
 stat << '\n' << '\n';
 int score = 1;
 vector<double> lib;
 while (true) {
 generation = evolution(generation, num, size, par);
 mutation(generation, 5);
 score++;
 cout << "generation " << score << ":" << endl;
 vector_output(generation);
 //if (score == 1000) break;
 bool check = 0;
 double min = 1000;
 int P;

 for (int i = 0; i < generation.size(); i++) {
 if (fitness(generation[i]) < min) {
 min = fitness(generation[i]);
 P = i;
 }
 }
 fout << score - 1 << " " << min << '\n';
 cout << min << endl;
 lib.push_back(min);
 int last = lib.size() - 1;
 if (score >= 6) {
 if (lib[last] == lib[last - 1] == lib[last - 2] == lib[last - 3] ==
lib[last - 4]) {
 check = 1;
 }
 }
 if (score == 400) {
 for (int i = 0; i < generation.size(); i++) {
 for (int j = 0; j < generation[i].size(); j++) {
 stat << generation[i][j];
 }
 stat << " ";
 stat << fitness(generation[i]) << " ";
 }
 stat << '\n' << '\n';
 }
 if (check == 1 || score == 10000) {
 for (int i = 0; i < generation.size(); i++) {
 for (int j = 0; j < generation[i].size(); j++) {
 stat << generation[i][j];
 }
 stat << " ";
 stat << fitness(generation[i]) << " ";
 }
 break;
 }
 }
 return 0;
}

vector<vector<int>> evolution(vector<vector<int>> gen, unsigned number_of_chr, unsigned
number_of_gen, unsigned number_of_par) {
 vector<vector<int>> par;
 vector<vector<int>> gen1 = gen;
 vector<double> mark;
 for (int i = 0; i < gen.size(); i++) {
 mark.push_back(fitness(gen[i]));
 }
 for (int i = 0; i < number_of_par; i++) {
 int min = 1000;
 int point = 0;
 for (int j = 0; j < gen1.size(); j++) {
 if (mark[j] < min) {
 min = mark[j];
 point = j;
 }
 }
 par.push_back(gen1[point]);
 gen1[point] = gen1[gen1.size() - 1];
 gen1.pop_back();
 }
 vector<vector<int>> result;
 for (int i = 0; i < number_of_chr; i++) {
 unsigned mother = rand() % par.size();

 unsigned father;
 while (true) {
 father = rand() % par.size();
 if (mother != father) break;
 }
 unsigned point = rand() % number_of_gen;
 vector<int> child;
 for (int j = 0; j < number_of_gen; j++) {
 if (j <= point) child.push_back(par[mother][j]);
 else child.push_back(par[father][j]);
 }
 result.push_back(child);
 }
 return result;
}

void mutation(vector<vector<int>> &generation, unsigned procent) {
 for (int i = 0; i < generation.size(); i++) {
 if (rand() % 100 + 1 >= procent) {
 int j = rand() % generation[i].size();
 generation[i][j] = rand() % 8;
 }
 }
}

void vector_output(vector<vector<int>> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vector<int> vec2 = desh(vec[i]);
 for (int j = 0; j < vec2.size(); j++) {
 cout << vec2[j];
 }
 cout << " " << fitness(vec[i]) << endl;;
 }
 cout << endl;
}

double fitness(vector<int> chromosome) {
 double result = 0;
 vector<int> temp;
 temp.push_back(1);
 temp.push_back(2);
 temp.push_back(3);
 temp.push_back(4);
 temp.push_back(5);
 temp.push_back(6);
 temp.push_back(7);
 int last_point = 0;
 for (int i = 0; i < chromosome.size(); i++) {
 int k = 0;
 for (int j = 0; j < chromosome[i]; j++) {
 k++;
 if (k >= temp.size()) k = 0;
 }
 result += distance(last_point, temp[k]);
 last_point = temp[k];
 for (int j = k; j < temp.size() - 1; j++) {
 temp[j] = temp[j + 1];
 }
 temp.pop_back();
 if (i == chromosome.size() - 1) result += distance(last_point, 0);
 }
 return result;
}

double distance(int point1, int point2) {

 pair<double, double> coord1, coord2;
 if (point1 == 1) {
 coord1.first = 0;
 coord1.second = 2.5;
 }
 if (point1 == 2) {
 coord1.first = 0;
 coord1.second = 7.5;
 }
 if (point1 == 3) {
 coord1.first = 2.5;
 coord1.second = 10;
 }
 if (point1 == 4) {
 coord1.first = 7.5;
 coord1.second = 10;
 }
 if (point1 == 5) {
 coord1.first = 7.5;
 coord1.second = 0;
 }
 if (point1 == 6) {
 coord1.first = 2.5;
 coord1.second = 0;
 }
 if (point1 == 7) {
 coord1.first = 10;
 coord1.second = 7.5;
 }
 if (point1 == 0) {
 coord1.first = 10;
 coord1.second = 2.5;
 }
 if (point2 == 1) {
 coord1.first = 0;
 coord1.second = 2.5;
 }
 if (point2 == 2) {
 coord1.first = 0;
 coord1.second = 7.5;
 }
 if (point2 == 3) {
 coord1.first = 2.5;
 coord1.second = 10;
 }
 if (point2 == 4) {
 coord1.first = 7.5;
 coord1.second = 10;
 }
 if (point2 == 5) {
 coord1.first = 7.5;
 coord1.second = 0;
 }
 if (point2 == 6) {
 coord1.first = 2.5;
 coord1.second = 0;
 }
 if (point2 == 7) {
 coord1.first = 10;
 coord1.second = 7.5;
 }
 if (point2 == 0) {
 coord1.first = 10;
 coord1.second = 2.5;
 }

 double result;
 result = sqrt(pow(abs(coord1.first - coord2.first), 2) + pow(abs(coord1.second -
coord2.second), 2));
 return result;
}

vector<int> desh(vector<int> vec) {
 vector<int> temp;
 vector<int> res;
 temp.push_back(1);
 temp.push_back(2);
 temp.push_back(3);
 temp.push_back(4);
 temp.push_back(5);
 temp.push_back(6);
 temp.push_back(7);
 res.push_back(0);

 for (int i = 0; i < vec.size(); i++) {
 int k = 0;
 for (int j = 0; j < vec[i]; j++) {
 k++;
 if (k >= temp.size()) k = 0;
 }
 res.push_back(temp[k]);
 for (int j = k; j < temp.size() - 1; j++) {
 temp[j] = temp[j + 1];
 }
 temp.pop_back();
 }
 res.push_back(0);
 return res;
}

X is generation

Y is fitness (our distance between cities)

Statistic from 1st generation:

way fitness

0300422 118

2477143 96

1356570 143

4512677 124

1344673 117

3326773 97

6077300 105

5662433 104

7713474 125

7725123 99

Example of way

Statisctic from 4th generation

4017335 65

4021335 58

7616730 46

7611730 41

1755330 49

6057770 52

7661730 71

1355030 47

1357275 59

4011355 65

Statistic from last generation

5511111 32

3201042 45

0307041 62

3306260 37

3206042 41

5306442 45

0306265 36

3206472 39

0106041 45

0406041 40

Example of way

