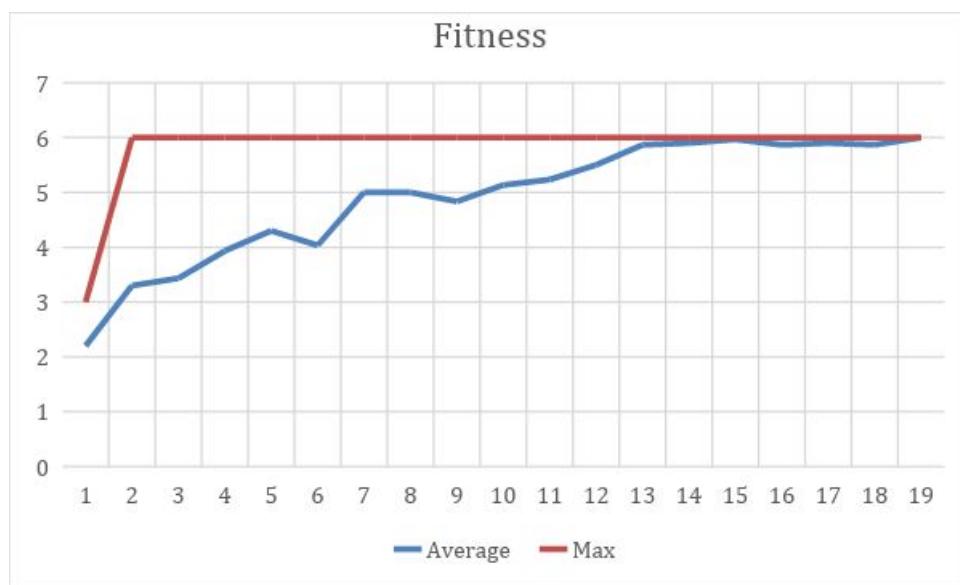


Contemporary intelligent information

Artificial intelligence


Sorting network

The First scenario:

Population: 30

Gen in chromosome: 12

Crossover: uniform

[0, 0, 2, 1, 1, 3, 1, 2, 0, 1, 2, 2] - the first population / best chromosome fitness 3

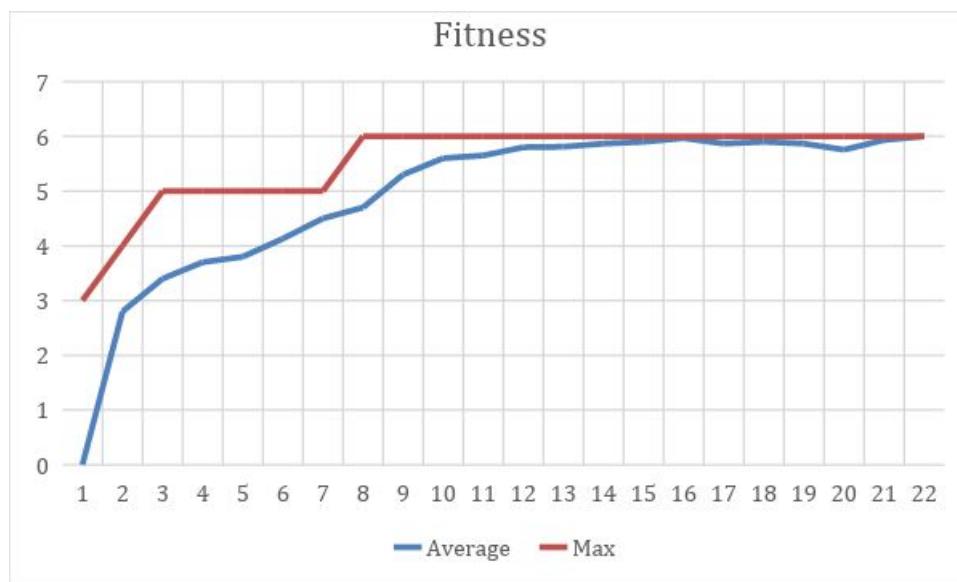
[3, 2, 0, 3, 0, 1, 2, 3, 2, 2, 1, 2] - the intermediate population / best chromosome fitness 6

[3, 2, 0, 3, 0, 1, 2, 3, 2, 2, 1, 2] - the final population / best chromosome fitness 6

0 equals 00 in binary system

1 equals 01 in binary system

2 equals 10 in binary system


3 equals 11 in binary system

The Second scenario:

Population: 30x2

Gen in chromosome: 6

Crossover: Multi-point

The first population / best chromosome

parent1: [0, 0, 1, 2, **3**, **3**, **1**, **0**, **0**, 1, 2, 1] after multi-point crossover [3, 3, 1, 0, 0, 1]

parent2: [1, 2, 0, 1, 3, 2, **1**, **0**, **1**, **3**, **2**, **1**] after multi-point crossover [1, 0, 1, 3, 2, 1]

than create children (concat parent1 and parent2)

children: [3, 3, 1, 0, 0, 1, 1, 0, 1, 3, 2, 1]

Result: fitness 3

The intermediate population / best chromosome

parent1: [1, 0, **2**, **2**, **0**, **2**, **0**, 1, 3, 2, 0, 3] after multi-point crossover [2, 2, 0, 2, 0, 1]

parent2: [2, 2, **1**, **0**, **1**, **3**, **1**, **2**, 0, 1, 3, 2] after multi-point crossover [1, 0, 1, 3, 1, 2]

than create children (concat parent1 and parent2)

children: [2, 2, 0, 2, 0, 1, 1, 0, 1, 3, 1, 2]

Result: fitness 5

The final population / best chromosome fitness

parent1: [1, 2, 0, 2, 3, 3, **1**, **0**, **0**, **1**, **3**, **1**] after multi-point crossover [1, 0, 0, 1, 3, 1]

parent2: [**2**, **0**, **1**, **0**, **1**, **3**, 1, 2, 1, 3, 2, 0] after multi-point crossover [2, 0, 1, 0, 1, 3]

than create children (concat parent1 and parent2)

children: [1, 0, 0, 1, 3, 1, 2, 0, 1, 0, 1, 3]

Result: fitness 6

0 equals 00 in binary system

1 equals 01 in binary system

2 equals 10 in binary system

3 equals 11 in binary system