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Abstract

Within the Linguistic Modeling �eld, one of the most important applications of Fuzzy

Rule-Based Systems, the automatic learning from numerical data of the fuzzy linguistic rules

composing these systems is an important task. In this paper we introduce a novel way of

addressing the problem making use of Ant Colony Optimization (ACO) algorithms. To do so,

the learning task will be formulated as an optimization problem and the features necessary

for an ACO algorithm will be introduced. The behavior of the proposed learning method

will be analyzed, compared with other ones, when solving of two applications with di�erent

characteristics: a three-dimensional function and a real-world electric engineering problem.

1 Introduction

Nowadays, one of the most important areas for the application of Fuzzy Set Theory are Fuzzy

Rule-Based Systems (FRBSs). These kinds of systems constitute an extension of classical Rule-

Based Systems, because they deal with fuzzy rules instead of classical logic rules [2]. An impor-

tant application of FRBSs is Linguistic Modeling, which in this �eld may be considered as an

approach used to model a system making use of a descriptive language based on Fuzzy Logic with

fuzzy predicates [11], where the interpretability of the obtained model is the main requirement.

Thus, the linguistic model consists of a set of linguistic descriptions regarding the behavior of

the system being modeled.

In this approach, fuzzy linguistic IF-THEN rules are formulated and a process of fuzzi�cation,

inference, and defuzzi�cation leads to the �nal decision of the system. Although sometimes the

fuzzy rules can be directly derived from expert knowledge, di�erent e�orts have been made to

obtain an improvement on system performance by incorporating learning mechanisms guided

by numerical information to de�ne the fuzzy rules. This issue, known as fuzzy rule learning

(FRL), is considered a hard problem and a large number of methods has been proposed to

automatically generate fuzzy rules from numerical data making use of di�erent techniques such

as ad hoc data-driven methods, neural networks, genetic algorithms, fuzzy clustering, etc. For

a review on some of them, refer to [1].

In this contribution we propose a novel way of facing the FRL problem making use of Ant Colony

Optimization (ACO) algorithms [3, 7]. To do so, the FRL problem will be formulated as an

optimization problem and the features related to these kinds of algorithms|such as heuristic

information, pheromone initialization, �tness function, solution construction, and pheromone

update|will be introduced.

With this aim, the paper is set up as follows. In Section 2, a brief introduction to FRBSs

and the FRL problem is presented. Section 3 is devoted to introduce all the aspects related to
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ACO algorithms particularized to the FRL problem. In Section 4, the behavior of the proposed

learning approach to solve two di�erent applications is analyzed. Finally, in Section 5, some

concluding remarks will be pointed out.

2 Fuzzy Rule-Based Systems and Fuzzy Rule Learning Problem

2.1 Introduction to Fuzzy Rule-Based Systems

An FRBS presents two main components: 1) the Knowledge Base (KB), representing the knowl-

edge about the problem being solved in the form of fuzzy linguistic IF-THEN rules, and 2) the

Inference Engine, which puts into e�ect the fuzzy inference process needed to obtain an output

from the FRBS when an input is speci�ed. The structure of a linguistic FRBS is shown in

Figure 1.
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Figure 1: Generic structure of a linguistic Fuzzy Rule-Based System

� The KB is composed of the Rule Base (RB), constituted by the collection of linguistic rules

themselves joined by means of the connective also, and of the Data Base (DB), containing

the term sets and the membership functions de�ning their semantics. The fuzzy linguistic

rule structure considered in linguistic FRBSs is the following:

Ri : IF X1 is Ai1 and ... and Xn is Ain THEN Y is Bj ;

with X1; : : : ;Xn and Y being the input and output linguistic variables, respectively, and

Ai1; : : : ; Ain and Bj being linguistic labels, each one of them having associated a fuzzy

set de�ning its meaning.

� The Inference Engine is comprised by three components: a Fuzzi�cation Interface, which

has the e�ect of transforming crisp input data into fuzzy sets, an Inference System, that

uses these together with the KB to perform the fuzzy inference process, and a Defuzzi-

�cation Interface, that obtains the �nal crisp output from the individual fuzzy outputs

inferred.

The Inference System is based on the application of the Generalized Modus Ponens, ex-

tension of the classical logic Modus Ponens. It is done by means of the Compositional

Rule of Inference, which in its simplest form is reduced to [5]:

Ri(x0; y) = �B0

i
(y) = I(�Ai

(x0); �Bj
(y)) ;

with x0 = (x1; : : : ; xn) being the current system input, �Ai
(x0) = T (�Ai1

(x1); : : : ; �Ain
(xn))

being the matching degree between the rule antecedent and the input |with �Aik
(�) being

the membership function of the label Aik and T being a conjunctive operator (a t-norm)|,

and I being a fuzzy implication operator.



2.2 The Fuzzy Rule Learning Problem

Several tasks have to be performed in order to design an FRBS for a concrete application. One of

the most important and diÆcult ones is to obtain an appropriate KB about the problem being

solved, in the following referred to as FRL problem. The diÆculty presented by the human

experts to express their knowledge in the form of fuzzy rules has made researchers develop

automatic techniques for performing this task. For a review on some of them, refer to [1].

All these methods are based on working with an input-output data set E = fe1; : : : ; eNg,

el = (xl
1
; : : : ; x

l
n; y

l), representing the behavior of the problem being solved, and with a previous

de�nition of the DB composed of the input and output primary fuzzy partitions. In our case,

we will consider symmetrical fuzzy partitions with a number of triangular membership functions

crossing at height 0.5 (as shown Figure 2 for the case of seven fuzzy sets). Therefore, our

FRL problem will be restricted to obtain the rules combining the labels of the antecedents and

assigning a speci�c consequent to each antecedent combination.
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Figure 2: Graphical representation of a uniform fuzzy partition with seven labels

3 Ant Colony Optimization Algorithms for Learning Fuzzy Rules

To apply ACO algorithms to a speci�c problem, the following steps have to be performed:

1. Obtain a problem representation as a graph or a similar structure easily covered by ants.

2. De�ne the way of assigning a heuristic preference to each choice that the ant has to take

in each step to generate the solution.

3. Establish an appropriate way of initializing the pheromone.

4. De�ne a �tness function to be optimized.

5. Select an ACO algorithm and apply it to the problem.

In the following subsections, these steps will be introduced to solve the FRL problem.

3.1 Problem Representation

To apply ACO algorithms to the FRL problem, it is convenient to see it as a combinatorial

optimization problem with the capability of being represented on a graph. In this way, we

can face the problem considering a �xed number of rules and interpreting the FRL problem as

the way of assigning consequents (i.e., labels of the output fuzzy partition) to these rules with

respect to an optimality criterion.



Hence, we are in fact dealing with an assignment problem and the problem representation can be

similar to the one used to solve the quadratic assignment problem (QAP) [3, 7], but with some

peculiarities. We may draw an analogy between rules and facilities and between consequents

and locations. However, unlike the QAP, the set of possible consequents for each rule may be

di�erent and it is possible to assign a consequent to more than one rule (two rules may have

the same consequent). We can deduce from these characteristics that the order of selecting each

rule to be assigned a consequent is not determinant, i.e., the assignment order is irrelevant.

To construct the graph, the following steps are taken:

1. Determine the rules: A rule Ri |i = 1; : : : ; Nr| de�ned by an antecedent combination,

Ri = IF X1 is Ai1 and : : : and Xn is Ain ;

will take part in the graph if and only if:

9el = (xl
1
; : : : ; x

l
n; y

l) 2 E such that �Ai1
(xl

1
) � : : : � �Ain

(xln) 6= 0 :

That is, there is at least one example located in the fuzzy input subspace de�ned by the

antecedents considered in the rule.

2. Link the rules to consequents: The rule Ri will be linked to the consequent Bj |j =

1; : : : ; Nc| (taken from the set of labels of the output fuzzy partition) if and only if it

meets the following condition:

9el = (xl
1
; : : : ; x

l
n; y

l) 2 E such that �Ai1
(xl

1
) � : : : � �Ain

(xln) � �Bj
(yl) 6= 0 :

That is, there is at least one example located in the fuzzy input subspace that is covered

by such a consequent.

Figure 3 shows an example of a system with four rules and one output variable with three

consequents. In Figure 3(a), the possible consequents for each antecedent combination are

shown. To construct a complete solution, an ant iteratively goes over each rule and chooses

a consequent with a probability that depends on the pheromone trail �ij and the heuristic

information �ij, as usual (see Figure 3(b)). As said, the order of selecting the rules is irrelevant.

In Figure 3(c) we may see the possible paths that an ant can take in a speci�c example.

3.2 Heuristic Information

The heuristic information on the potential preference of selecting a speci�c consequent, Bj, in

each antecedent combination (rule) is determined by considering covering criteria as follows (see

Figure 4 for a graphical interpretation of the heuristic assignment):

For each rule de�ned by an antecedent combination, Ri = IF X1 is Ai1 and : : : and Xn is Ain

|i = 1; : : : ; Nr| do:

1. Build the set E0
i composed of the input-output data pairs that are located in the input

subspace de�ned by Ri, i.e., E
0
i = fel = (xl

1
; : : : ; x

l
n; y

l) 2 E such that �Ai1
(xl

1
) � : : : �

�Ain
(xln) 6= 0g.
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Figure 3: Learning process for a simple problem with two input variables (n = 2), four rules

(Nr = 4), and three labels in the output fuzzy partition (Nc=3): (a) Set of possible consequent

for each rule (only the rules where at least one example is located in the corresponding subspace

are considered); (b) Graph of paths where �ij 6= 0 except �13, �31, �41, and �42, which are zero;

(c) It is possible to take twelve di�erent paths (combinations of consequents); (d) Rule decision

table for the third combination; (e) RB generated from the third combination

2. Make use of an initialization function based on covering criteria to give a heuristic prefer-

ence degree to each election. Many di�erent choices may be considered [4]. In this paper

we will work with the covering of the example best covered criterion shown in Figure 4.

Since the heuristic information is based on covering criteria, it will be zero for a speci�c conse-

quent when no examples located in the fuzzy input subspace are covered by it. This means that

for a rule, only those links to consequents whose heuristic information is greater than zero will

be considered. In Figure 3(b) we can observe the consequent B3 can not be assigned to the rule

R1, the consequent B1 can not be assigned to the rule R3, and the consequents B1 and B2 can

not be assigned to the rule R4 because their heuristic informations (covering degrees) are zero.

3.3 Pheromone Initialization

The initial pheromone value of each assignment is obtained as follows: �0 =

PNr

i=1
max

Nc
j=1

�ij

Nr
: In

this way, the initial pheromone will be the mean value of the path constructed taking the best

consequent in each rule according to the heuristic information (a greedy assignment).
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Figure 4: Heuristic assignment from the rule Ri to each consequent in a system with two input

variables, �ve labels for each of them, and Nc labels (consequents) in the output fuzzy partition.

The covering of the example best covered is considered to be the heuristic information

3.4 Fitness Function

The �tness function establishes the quality of a solution. The measure considered will be the

function called mean square error (MSE), which de�ned as MSE(RBk) = 1

2�jEj

P
el2E

(yl �

Fk(x
l
0
))2, with Fk(x

l
0
) being the output obtained from the FRBS (built using the RB generated

by the ant k, RBk) when receives the input xl
0
(input component of the example el), and y

l

being the known desired output. The closer to zero the measure is, the better the solution is.

3.5 Ant Colony Optimization Algorithm

Once the previous components have been de�ned, an ACO algorithm has to be given to solve

the problem. In this contribution, two well-known ACO algorithms will be considered: the

Ant System (AS) [9] and the Ant Colony System (ACS) [8]. Depending on the ACO algorithm

followed, two methods arise: the AS-FRL and the ACS-FRL ones. The so-known solution

construction and pheromone trail update rule considered by these ACO algorithms will be used.

Only some adaptations will be needed to apply them to the FRL problem:

� The set of nodes attainable from Ri (set of feasible neighborhood of node Ri) will be

Jk(i) = fj such that �ij 6= 0g in the transition rules considered by both ACO algorithms

when constructing the solution.

� The amount of pheromone ant k puts on the couplings belonging to the solution con-

structed by it will be 1=MSE(RBk), with RBk being the RB generated by ant k.

� In the local pheromone trail update rule of the ACS algorithm, the most usual way of

calculating ��ij, ��ij = �0, we will be used, thus considering the simple-ACS algorithm.

4 Examples of Application

With the aim of analyzing the behavior of the proposed ACO processes, we have chosen two

di�erent applications: the fuzzy modeling of a three-dimensional function and a real-world



electric engineering problem [6]. We will compare them with two well-known ad hoc rule learning

methods whose high performance has been clearly demonstrated: the method proposed by Wang

and Mendel (WM-method) [12] and the one proposed by Nozaki, Ishibuchi, and Tanaka (NIT-

method) [10]. Two new methods have also been developed with the aim of comparing the ACO

approach with other optimization ones. These two methods are based on the same problem

representation presented in this paper (combinatorial search of consequents among a set of

candidates for each rule) but using a Simulated Annealing algorithm (SA-FRL) and a Genetic

Algorithm (GA-FRL) to accomplish the search. Finally, a greedy algorithm directly based on

the heuristic information (HI-FRL) by taking the consequent with the highest value for each

rule, which was proposed in [4], will be also considered. The results presented for each algorithm

have been taken after a hard experimentation with the parameters in order to look for the best

behavior.

An initial DB constituted by a primary fuzzy partition for each variable will be considered in

each case. Every partition is formed by seven labels with triangular-shaped equally distributed

fuzzy sets giving meaning to them (as shown in Figure 2), and the appropriate scaling factors to

translate the generic universe of discourse into the one associated with each problem variable.

With respect to the FRBS reasoning method used, we have selected theminimum t-norm playing

the role of the implication and conjunctive operators, and the center of gravity weighted by the

matching strategy acting as the defuzzi�cation operator [5].

Concerning the parameters used in the ACO algorithms, the number of ants will be the number

of rules in each case, the number of iterations will be 50, and for the rest of parameters (�, �,

and �, for both AS-FRL and ACS-FRL, and q0 for ACS-FRL) an experimental study has been

performed, showing in the tables the best results.

4.1 Linguistic Modeling of a Simple Three-Dimensional Function

For this �rst experiment, a simple unimodal three-dimensional mathematical function is con-

sidered to be modeled, F (x1; x2) = x
2
1
+ x

2
2
, with x1; x2 2 [�5; 5] and hence F (x1; x2) 2 [0; 50].

A set with 1; 681 values has been generated for the training data set. Another set with 168

values (the ten percent of the training set) has been generated for its use as test set to evaluate

the performance of the learning methods, avoiding any possible bias related to the data in the

training set.

The results obtained by the seven methods analyzed are collected in Table 1, where #R stands

for the number of rules, MSEtra and MSEtst for the values obtained over the training and test

data sets respectively, and EBS for the number of evaluations needed to obtain the best solution.

The best results are shown in boldface.

Analyzing these results, we may note the high performance of the ACO methods. Opposite

to the three ad hoc learning methods, the models generated by AS-FRL and ACS-FRL are

clearly better in both approximation (MSEtra) and generalization (MSEtst). Focusing on the

methods based on combinatorial search, the ACS-FRL is the algorithm that performs the best

search process obtaining the most accurate model regarding approximation, and with a good

generalization. However, the four methods obtain similar results (being slightly worse the ap-

proximation degree of the model generated by AS-FRL) and is in the convergence speed where

the ACO approaches stand out. As notice, ACS-FRL found the best solution three times quicker

than the SA approach and seventeen times quicker than the GA. In AS-FRL, the di�erences are

still more signi�cant. This fact is due to the use of heuristic information that guides the ACO

algorithms in the search process.



Table 1: Results obtained in the modeling of F

Method #R MSEtra MSEtst EBS Parameters

WM-method 49 2.048137 2.255928 0 |

NIT-method 98 2.465487 1.768125 0 |

HI-FRL 49 2.048137 2.255928 0 |

SA-FRL 49 1.609891 1.213388 3,528 Init. temp. = 40, No. of neighbors = 98

GA-FRL 49 1.606097 1.514651 20,555 500 gen., 61 indiv., Pc = 0:6, Pm = 0:2

AS-FRL 49 1.660622 1.419587 686 � = 1, � = 2, � = 0:2

ACS-FRL 49 1.601071 1.350340 1,225 � = 1, � = 1, � = 0:2, q0 = 0:4

4.2 The Electrical Distribution Network Problem

Sometimes, there is a need to measure the amount of electricity lines that an electric company

owns. This measurement may be useful for several aspects such as the estimation of the main-

tenance costs of the network, which was the main goal in this application [6]. The problem

involves �nding a model that relates the total length of low voltage line installed in a rural town

with the number of inhabitants in the town and the mean of the distances from the center of

the town to the three furthest clients in it. This model will be used to estimate the total length

of line being maintained.

To compare the methods, we have randomly divided the sample, composed of 495 pieces of real

data obtained from direct measures in this number of villages, into two sets comprising 396 and

99 samples, labeled training and test. The results obtained with the considered methods are

collected in Table 2.

Table 2: Results obtained in the electrical application

Method #R MSEtra MSEtst EBS Parameters

WM-method 24 222,654 239,962 0 |

NIT-method 64 185,395 170,489 0 |

HI-FRL 32 239,393 275,953 0 |

SA-FRL 32 174,295 161,261 1,248 Init. temp. = 500, No. of neighbors = 32

GA-FRL 32 175,122 187,605 20,512 500 gen., 61 indiv., Pc = 0:6, Pm = 0:2

AS-FRL 32 178,119 158,662 384 � = 1, � = 2, � = 0:6

ACS-FRL 32 175,096 165,561 576 � = 1, � = 2, � = 0:2, q0 = 0:2

From the obtained results, we may again note the good performance of the ACO approaches

that outperform the three ad hoc learning methods. Among the four combinatorial search

algorithms, the AS-FRL performs a search a little worse than the rest but obtains the best

model with respect to generalization. ACS-FRL obtains a very good model only overcame to a

lesser extent by the SA-FRL method. Again, the main advantage of the ACO algorithms lies in

the convergence speed, which in the case of the ACS-FRL method is twice quicker than the SA

approach and thirty �ve times quicker than the GA-FRL method, moreover obtaining a most

accurate model in this latter case.



5 Concluding Remarks

In this paper, a novel and interesting application, the FRL problem (which involves automatically

learning from numerical data the RB composing an FRBSs), has been proposed to be solved

by the ACO meta-heuristic. In this way, two speci�c ACO-based learning methods have been

presented. Their high performance has been shown in the solving of two problems. Comparing

with other ad hoc learning algorithms, the models obtained by the ACO methods are clearly

better. Moreover, opposite to other kinds of optimization techniques as SA and GAs, the ACO

approach performs a quick convergence and sometimes obtains better results. The former is due

to the use of heuristic information to guide the global search. As further work, we propose to

apply new ACO approaches to the FRL problem using new features such as the local search to

improve the performance of the models designed.
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