
An Ant Colony Based System for Data Mining:
Applications to Medical Data

Rafael S. Parpinelli1 Heitor S. Lopes1 Alex A. Freitas2

 1 CEFET-PR, CPGEI
 Av. Sete de Setembro, 3165
 Curitiba - PR, 80230-901
 Brazil
 rsparpin@cpgei.cefetpr.br
 hslopes@cpgei.cefetpr.br

2 PUC-PR, PPGIA-CCET
 Rua Imaculada Conceicao, 1155
 Curitiba - PR, 80215-901
 Brazil
 alex@ppgia.pucpr.br
 http://www.ppgia.pucpr.br/~alex

Abstract

This work describes an algorithm for rule
discovery in databases called AntMiner. The
objective of the algorithm is the extraction of
classification rules to be applied to unseen data
as a decision aid. The algorithm used to
discover such rules is inspired in the behavior
of a real ant colony, as well as some concepts
of information theory and data mining.
AntMiner was applied to medical databases to
obtain classification rules.

1 INTRODUCTION

Recently, there has been a growing interest in the data
mining area, where the objective is the discovery of
knowledge that is not only correct, but also
comprehensible and even surprising to the user [Fayyad
et al, 1996; Freitas and Lavington, 1998]. Therefore, the
user can quickly understand the results of the system
and combine them with his/her own knowledge of the
problem in order to support a decision-making process.

When using data mining techniques, the discovered
knowledge is frequently represented in the form of IF
<conditions> THEN <class> rules. The <conditions>
part is the antecedent of the rule and is a logical
combination of the predicting attributes (for instance:
term1 AND term2 AND...). Each term is a triple
<attribute, operator, value>, where the element
operator is a relational operator. In this work it is aimed
to mine data only with categorical attributes, therefore
the element operator of the triple will be ‘=’. The
<class> (consequent) contains the predicted class for
the case whose attributes satisfy the <conditions> part
of the rule.

There are several tasks in data mining and the most
usual in the literature is classification. The classification
task consists in associating an object/case to a class

(among a predefined set of classes) based on the
object/case’s attributes.

To the best of our knowledge, the application of
artificial Ant Colony Systems (ACS) [Dorigo et al,
1996] as a tool for classification-rule discovery is still
unexplored and, probably, this is the first work to
explore such approach. ACS use simple agents
(artificial ants) that, when working together, cooperate
with each other allowing the solution of problems with
very large search spaces. In the context of rule
discovery, this is achieved due to its ability to perform a
flexible search over all possible logic combinations of
the predicting attributes. Based on this feature of
ACS’s, we believe that they can be very promising for
the data mining task addressed here. The only previous
work on ant-based rule discovery that we are aware of
is [Cordon et al, 2000]. However, in this work the rules
are fuzzy rules, used in a fuzzy control system, rather
than classification rules in the sense of data mining.

2 SOCIAL INSECTS AND REAL ANT
SYSTEMS

Social insects like ants, bees and termites work by
themselves in their simple tasks, independently of
others members of the colony. However, when they act
as a community, they are able to solve complex
problems emerging in their daily lives, by means of
mutual cooperation. This emergent behavior of a group
of social insects is known as “swarm intelligence”
[Bonabeau et al, 1999].

Ants are able to find the shortest path between a
food source and the nest without the aid of visual
information, and also to adapt to a changing
environment [Dorigo et al, 1996]. It was found that the
way ants communicate with each other to find the right
way to follow is based on pheromone1 trails. While ants
move, they drop a certain amount of pheromone on the

1
 Pheromone is a chemical substance used as the communication

media among individuals of the same species.

floor, leaving behind a trail of this substance that can be
followed by other ants. The more ants follow a
pheromone trail, the more attractive the trail becomes to
be followed in the near future. This is a kind of
autocatalytic behavior, described by a loop of positive
feedback, where the probability of an ant choosing a
path increases directly with the number of ants that
have passed in the path before.

Finding the shortest path around an obstacle is an
interesting emerging feature of the above-described
autocatalytic behavior. In this case, an interaction
between the obstacle shape and the distributed behavior
of the ants takes place [Bonabeau et al, 1999]. The basic
idea is illustrated in figure 1.

Figure 1: Ants finding the shortest path around an
obstacle

Ants move roughly at the same speed and drop
pheromone at the same rate. However, to go around the
longer path an ant takes more time than going by the
shorter path. This makes the pheromone to be
accumulated faster in the shorter path than in the longer
one. Besides, ants prefer to follow paths with more
pheromone, leading to a faster convergence to the
shorter path.

3 ARTIFICIAL ANT COLONY SYSTEMS

An artificial Ant Colony System is an algorithm based
on agents that simulate the natural behavior of ants,
developing mechanisms of cooperation and learning.
The ACS was first proposed by [Dorigo et al, 1996] to
be applied to combinatorial optimization. This new
heuristics has been shown to be robust and versatile for
different problems. In addition, ACS is a population-
based heuristics that enables the exploration of the
positive feedback between agents as a search
mechanism.

There are some differences between real ants and
ACS: artificial ants have memory and are not
completely blind. Also, in the environment where they
exist, time is discrete.

On the other hand, besides the pheromone-based
communication medium, an ACS has another
characteristic found in real ants: an artificial ant has a
probabilistic preference for paths with a larger amount
of pheromone. Consequently, shorter paths tend to have
a high rate of growth in the amount of pheromone.

Essentially, an ACS algorithm performs a loop
applying two basic procedures:

• A procedure specifying how ants construct or modify
a solution for the problem in hand;

• A procedure for updating the pheromone trail.

The construction or modification of a solution is
performed in a probabilistic way. The probability of
adding a new item to the solution under construction is,
in turn, a function of a problem-dependent heuristic (η)
and the amount of pheromone (τ) previously deposited
in this trail. The pheromone trails are updated
considering the evaporation rate and the quality of the
current solution. Therefore, a practical implementation
of an ACS includes the following definitions [Bonabeau
et al, 1999]:

• An appropriate representation for the problem with
which ants can incrementally construct or modify
solutions, by means of a probabilistic transition
rule based on the amount of pheromone in the trail
and on a local heuristic;

• A heuristic function (η) that measures the quality of
the items that can be added to the current partial
solution;

• A method to enforce the construction of valid
solutions (in the real-world search space);

• A rule that specifies how a pheromone trail (τ) should
be updated;

• A probabilistic transition rule that uses the current
value of the heuristic function (η) and the current
amount of pheromone in the trail (τ).

4 ANTMINER – THE PROPOSED ACS
FOR CLASSIFICATION RULE
DISCOVERY

This section discusses in detail the proposed system and
it is divided into seven parts: AntMiner overview,
heuristic function, pheromone updating, rule
construction, rule pruning, classification of unseen
cases and system parameters.

4.1 ANTMINER OVERVIEW

Recall that each ant can be regarded as an agent that
incrementally constructs/modifies a solution for the
target problem. In our case the target problem is the
discovery of classification rules. As mentioned before,
the rules are expressed in the form: IF <conditions>
THEN <class>.

The <conditions> part (antecedent) of the rule
contains a logical combination of predictor attributes, in
the form: term1 AND term2 AND Each term is a
triple <attribute, operator, value>. The current version
of AntMiner copes only with categorical attributes, so
that the operator element in the triple is always "=".
Continuous (real-valued) attributes are discretized as a
preprocessing step. The <class> part (consequent) of
the rule contains the class predicted for cases (objects or

Food Food Food

Nest Nest Nest

records) whose predictor attributes satisfy the
<conditions> part of the rule.

Each ant starts with a rule with no term in its
antecedent (empty rule), and adds one term at a time to
its current partial rule. The current partial rule
constructed by an ant corresponds to the current partial
path followed by that ant. Similarly, the choice of a
term to be added to the current partial rule corresponds
to the choice of direction for which the current path will
be extended, among all the possible directions (all terms
that could be added to the current partial rule).

The choice of a term (attribute-value pair) to be
added depends on both a problem-dependent heuristic
function and on the amount of pheromone associated
with each term, as will be discussed in detail in
subsections 4.2 and 4.3, respectively.

An ant keeps adding terms one-at-a-time to its
current partial rule until the ant is unable to continue
constructing its rule. This situation can arise in two
cases (described in more detail in subsection 4.4),
namely: (a) when whichever term which could be added
to the rule would make the rule cover a number of cases
smaller than a user-specified threshold, called
Min_cases_per_rule (minimum number of cases
covered per rule); (b) when all attributes have already
been used by the ant, so that there are no more attributes
to be added to the rule antecedent.

When one of these two stopping criteria is satisfied
the ant has built a rule (i.e. it has completed its path),
and, in principle, we could use the discovered rule for
classification. In practice, however, it is desirable to
prune the discovered rules in a post-processing step, to
remove irrelevant terms that might have been unduly
included in the rule. These irrelevant terms may have
been included in the rule due to stochastic variations in
the term selection procedure and/or due to the use of a
shortsighted, local heuristic function - which considers
only one-attribute-at-a-time, ignoring attribute
interactions. The pruning method used in Ant-Miner
will be described in subsection 4.5.

When an ant completes its rule and the amount of
pheromone in each trail is updated, another ants start to
construct its rule, using the new amounts of pheromone
to guide its search. This process is repeated for at most
a predefined number of ants. This number is specified
as a parameter of the system, called No_of_ants.
However, this iterative process can be interrupted
earlier, when the current ant has constructed a rule that
is exactly the same as the rule constructed by the
previous No_Rules_Converg – 1 ants.
No_Rules_Converg (number of rules used to test
convergence of the ants) is also a system parameter.
This second stopping criterion detects that the ants have
already converged to the same constructed rule, which
is equivalent to converging to the same path in real Ant
Colony Systems.

The best rule among the rules constructed by all ants
is considered a discovered rule. The other rules are
discarded. This completes one iteration of the system.

Then all cases correctly covered by the discovered
rule are removed from the training set, and another
iteration is started. Hence, the AntMiner algorithm is
called again to find a rule in the reduced training set.
This process is repeated for as many iterations as
necessary to find rules covering almost all cases of the
training set. More precisely, the above process is
repeated until the number of uncovered cases in the
training set is less than a predefined threshold, called
Max_uncovered_cases (maximum number of uncovered
cases in the training set).

A summarized description of the above-discussed
iterative process is shown in the algorithm of Figure 2.

TrainingSet = {all training cases};
DiscoveredRuleList = []; /* rule list is initialized with an
empty list */
WHILE (TrainingSet ≥ Max_Uncovered_Cases)

i = 1; /* ant index */
No_Ants_Converg = 1; /* convergence test index */
Initialize all trails with the same amount of pheromone;
REPEAT

Anti starts with an empty rule and incrementally
constructs a classification rule Ri, by adding one term at
a time to the current rule;
Prune rule Ri;
Update the pheromone of all trails, by increasing
pheromone in the trail followed by Anti (in proportion to
the quality of Ri) and decreasing pheromone in the other
trails (simulating pheromone evaporation);
IF (Ri is equal to Ri – 1) /* update convergence test */

THEN No_Ants_Converge = No_Ants_Converge + 1;
ELSE No_Ants_Converge = 1;

END IF
i = i + 1;

UNTIL (i ≥ No_of_Ants) OR
 (No_Ants_Converg ≥ No_Rules_Converg)
Choose the best rule Rbest among all rules Ri constructed by
all the ants;
Add rule Rbest to DiscoveredRuleList;
TrainingSet = TrainingSet - {set of cases correctly covered
by Rbest};

END WHILE
Figure 2: Overview of AntMiner

When the number of cases left in the training set is
less than Max_uncovered_cases the search for rules
stops. At this point the system has discovered several
rules. The discovered rules are stored in an ordered rule
list (in order of discovery), which will be used to
classify new cases, unseen during training. The system
also adds a default rule to the last position of the rule
list. The default rule has an empty antecedent (i.e. no
condition) and has a consequent predicting the majority
class in the set of training cases that are not covered by
any rule. This default rule is automatically applied if
none of the previous rules in the list cover a new case to
be classified.

Once the rule list is complete, the system is finally
ready to classify a new test case unseen during training.
In order to do this the system tries to apply the
discovered rules, in order. The first rule that covers the
new case is applied – i.e. the case is assigned the class
predicted by that rule’s consequent.

4.2 HEURISTIC FUNCTION

The heuristic function (η) is based on the amount of
information (measured by the entropy2) associated with
the attribute i with value j, i.e., (i|j) [Weiss and
Kulikowski, 1991]. The amount of information is given
by equation 1:

∑
=

−= 






















k

w ijT

w
ijfreqT

ijT

w
ijfreqT

ijT
1

2log*info

[1]

where:

• k is the number of classes in the dataset;

• |Tij| is the total number of cases in the data partition Tij

(partition that contains the cases where the attribute
i is equal to the value j);

• freq Tij
w represents the number of cases in Tij that

belong to class w.

The larger the entropy (infoTij), meaning classes
more evenly distributed, the smaller the predictive
power of the attribute-value pair (i|j).

In the case that attribute i with value j (i|j) does not
appear in any case of the partition Tij, that is, the value j
is not present in the training set, then we set infoTij =
log2(number of classes), which is the maximum
entropy. If the attribute i with value j identifies only one
class in the partition Tij, then infoTij = 0, which is the
minimum entropy. The larger the value of infoTij (0 ≤
infoTij ≤ log2(number of classes)), the smaller the
probability that the ant chose attribute i with value j.
Therefore, the heuristic criterion is given by equation 2:

∑ ∑ −

−
=

a

i

ib

j
k

k

ijinfoT)(2log

ijinfoT)(2log
ijç [2]

where:

• a is the total number of attributes;

• bi is the number of values in the domain of attribute i.

4.3 PHEROMONE UPDATING

Initially, for all attributes i and their possible values j, a
given initial amount of pheromone is deposited in the
respective position. This initial normalized amount is
proportional to the total number of values of all
attributes, and is given by equation 3:

2
 The entropy models the degree of ‘disorganization’ of the training

cases considering the distribution of the classes to be predicted.






 ∑

== a

i
ib

tij
1

)0(τ [3]

where:

• a is the total number of attributes;

• bi is the number of possible values that can be taken
by attribute i.

At the completion of a rule, the amount of
pheromone in the i|j (attributes i | values j) that
constitute the rule must be updated. This is
accomplished with a rule quality criterion given by the
product sensitivity ∗ specificity [Lopes et al, 1998].
Equation 4 shows the rule quality criterion in detail.
The larger the value of Q, the higher the quality of the
rule (0 ≤ Q ≤ 1).

)
TrueNegFalsePos

TrueNeg
()

FalseNegTruePos

TruePos
(Q

+
∗

+
= [4]

where:

• TruePos (true positives) is the number of cases
covered by the rule that have the class predicted by
the rule;

• FalsePos (false positives) is the number of cases
covered by the rule that have a class different from
the class predicted by the rule;

• FalseNeg (false negatives) is the number of cases that
are not covered by the rule but that have the class
predicted by the rule;

• TrueNeg (true negatives) is the number of cases that
are not covered by the rule and do not have the
class predicted by the rule.

The pheromone updating is performed as follows: for
all terms i|j belonging to the rule created by the ant, the
amount of pheromone is increased proportionally to Q,
according to equation 5. The factor that represents the
pheromone evaporation for the terms i|j that do not
belong to the rule is obtained by normalizing the overall
distribution of pheromone (given by equation 5) by the
sum of all τij.

rule the to| ,)()()1(∈∀∗+=+ jiQtijtijtij τττ [5]

4.4 RULE CONSTRUCTION

The probability Pij of an ant chooses a given i|j not yet
used in its current rule is given by equation 6. Note that
ants build rules using two memories: memories for the
attributes|values (i|j) and memories for the attributes (i).
These memories contain the attribute-value pair i|j and
the attribute i that was already used in the partial rule
built by the ant.

∑ ∑ ∈∀

=
a

i

ib

j
Iiijtij

ijtij
ijP

 ,).(

).(

ητ

ητ
 [6]

where:

• a is the total number of attributes;

• bi is the total number of values on i domain;

• I are the attributes i not yet used by the ant.

These memories are updated according to the
following conditions:

• If the attribute i was not yet used by the ant, its
memory value is zero, being free to be chosen;

• If the insertion of the i|j in the current rule of the ant
would yield a rule covering a number of cases
smaller than a given threshold (called
Min_cases_per_rule), then this i|j cannot be
included in the rule. Thus, the memory value for
this i|j is adjusted to -1, a flag indicating that this i|j
will not be chosen anymore.

This term-inclusion procedure is repeated until all
attributes are analyzed.

The definition of which class the rule generated by
the ant predicts is given by the class of the majority
(positive class) of the cases covered by the rule.

At the end of each iteration, the best rule generated
so far by the ants (the rule with the highest Q) is kept.
Then, all trails are reinitialized with the same amount of
pheromone and a new iteration takes place (see Figure
2).

The search for better rules is stopped in two
situations: either when the training set has a number of
cases smaller than a specified threshold
(Max_uncovered_cases), or when an ant cannot proceed
constructing the rule. The latter condition occurs when
any new attribute value to be inserted in the rule would
cause the rule to cover a number of cases smaller than
Min_cases_per_rule.

4.5 RULE PRUNING

A pruning procedure is used to reduce the number of
terms of a rule in order to increase its quality (measured
by equation 4). This procedure induces the discovery of
more comprehensible (smaller) rules and helps to avoid
the overfitting of rules to the training dataset.

An ant can build a rule as long as the number of
partitions that can be done in the training set, respecting
the threshold Min_cases_per_rule. After an ant builds a
rule, the pruning procedure takes place by iteratively
removing one condition at time. More precisely at each
iteration the procedure computes, for each condition
currently in the rule, what would be the value of the
quality Q of the rule if that condition was removed.
(This might require to modify the class predicted by the

rule, since this is always the majority class among all
cases covered by the rule antecedent.) After doing this
for all conditions, the condition whose removal most
improves the rule quality Q is effectively removed from
the rule, and another iteration of the rule pruning
procedure starts. This procedure is repeated until one
can not improve the quality of the rule.

4.6 USING THE DISCOVERED RULES FOR
 CLASSIFYING NEW CASES

To classify a new test case, unseen during training, we
try to apply the discovered rules, in the order they were
discovered. The first rule that covers a new case is
applied - i.e. the case is assigned the class predicted by
that rule's consequent.

It is possible that no rule in the list of discovered
rules covers the new case. In this situation the new case
is classified by the default rule, which simply predicts
the majority class in the set of training examples that
are not covered by any discovered rule.

4.7 SYSTEM PARAMETERS

Our Ant Colony System has the following four user-
defined parameters:
• Number of Ants (No_of_ants) � This is also the

maximum number of complete candidate rules
constructed during a single iteration of the system,
since each ant constructs a single rule (see Figure
2). In each iteration, the best candidate rule
constructed in that iteration is considered a
discovered rule. Note that the larger the
No_of_ants, the more candidate rules are evaluated
per iteration, but the slower the system is;

• Mimimum number of cases per rule
(Min_cases_per_rule) � Each rule must cover at
least Min_cases_per_rule, to enforce at least a
certain degree of generality in the discovered rules.
This helps avoiding overfitting to the training data;

• Maximum number of uncovered cases in the training
set (Max_uncovered_cases) � The process of rule
discovery is iteratively performed until the number
of training cases that are not covered by any
discovered rule is smaller than this threshold (see
Figure 2);

• Number of rules used to test convergence of the ants
(No_Rules_Converg) � If the current ant has
constructed a rule that is exactly the same as the
rule constructed by the previous
No_Rules_Converg – 1 ants, then the system
concludes that the ants have converged to a single
rule (path). The current iteration is therefore
stopped, and another iteration is started (see Figure
2).

 In all the experiments reported in this paper these
parameters were set as follows:

• No_of_ants = 3000;

• Min_cases_per_rule = 10;

• Max_uncovered_cases = 10;

• No_Rules_Converg = 10.

We have made no serious attempt to optimize the
setting of these parameters. Such an optimization
should be tried in future research. It is interesting to
notice that even the above non-optimized parameters’
setting has produced quite good results, as will be seen
in the next section. In addition, the fact that Ant-Miner
parameters were not optimized for the data sets used in
our experiments makes the comparison with C4.5
(reported in the next section) fair, since we used the
default, non-optimized parameters for C4.5 as well. (In
passing we mention that unfortunately this kind of fair
comparison is not very often seen in the literature.
Authors often report results comparing a parameter-
optimized version of their algorithm with a non-
parameter-optimized version of another algorithm. This
makes the comparison less fair.)

5 DATA SETS USED IN THE
EXPERIMENTS

Experiments were done using four public-domain
datasets, obtained from the Machine Learning
Repository [Aha and Murphy, 1994].

For all datasets, the continuous attributes were
discretized using the C4.5-Disc algorithm [Kohavi and
Sahami, 1996]. For each continuous attribute to be
discretized, this class-driven discretization algorithm
consists of using the well-known C4.5 algorithm
[Quinlan, 1993] for generating a decision tree where:
(a) internal nodes are tests on the values of the attribute
being discretized; and (b) leaf nodes are classes. Each
leaf node of the generated decision tree is associated
with an interval of values of the attribute being
discretized (defined by the path from the root node to
that leaf node). Each of these generated intervals is
considered a discrete value for the attribute being
discretized. (See the above reference for details.)

The AntMiner system was tested using the
following datasets:

• Ljubljana breast cancer: this database has 282 cases,
two classes and nine predicting attributes (all
categorical);

• Wisconsin breast cancer: This database has 683 cases,
two classes and nine predicting attributes. All
predicting attributes are continuous (in the range of
1 to 10) and were discretized;

• Hepatitis: This database has 155 cases, two classes
and 19 predicting attributes (six of them were
continuous, and so were discretized);

• Dermatology: This database has 358 cases, six classes
and 34 predicting attributes (only one is continuous
– age, and so was discretized).

6 COMPUTATIONAL RESULTS

Among the several criteria that could be used to
evaluate the predictive accuracy of discovered rules, the
cross-validation accuracy rate3 was used. Although this
measure is computationally expensive, it gives a wide
exploration of the characteristics of the cases in the
dataset [Weiss and Kulikowski, 1991]. For all datasets,
a 10-fold cross validation (k=10) was used. In this
procedure, all cases are used only once as testing and
(k-1) times as training. The final accuracy rate is simply
the average of the accuracy rate of the k iterations. All
the k data partitions are randomly generated considering
all available cases.

Table 1 summarizes the results obtained by the
proposed AntMiner algorithm in the four datasets. The
table shows the accuracy rate, the number of rules
found and the number of terms (the shown values are
the average values of the cross-validation procedure
followed by the corresponding standard deviation).

Table 1: Results With The AntMiner Algorithm

Data Sets Predictive
Accuracy

Number of
Rules

Number of
Conditions

Ljubljana Breast
Cancer

75.13% ± 6.00 5.20 ± 0.87 8.80 ± 1.89

Wisconsin Breast
Cancer

95.47% ± 1.62 5.60 ± 0.80 12.50 ± 2.84

Hepatitis 88.75% ± 6.73 2.70 ± 0.46 7.50 ± 2.01
Dermatology 84.21% ± 6.34 6.00 ± 0.00 79.00 ± 3.46

The obtained results were compared with other
machine learning methods found in the literature, for
the same datasets. Table 2 compares the accuracy rate
(on the test set) of AntMiner with the accuracy rate of
the well-known C4.5 algorithm [Quinlan, 1993] using a
10-fold cross-validation procedure for both algorithms.

Table 2: AntMiner Versus C4.5

Accuracy Number of
Rules

Number of
Conditions

Ljubljana Breast Cancer Data Set
AntClass 75.13% ± 6.00 5.20 ± 0.87 8.80 ± 1.89

C4.5 73.34% ± 3.21 6.2 ± 4.2 12.8 ± 9.83
Wisconsin Breast Cancer Data Set

AntClass 95.47% ± 1.62 5.60 ± 0.80 12.50 ± 2.84
C4.5 95.02% ± 0.31 11.1 ± 1.45 44.1 ± 7.48

Hepatitis Data Set
AntClass 88.75% ± 6.73 2.70 ± 0.46 7.50 ± 2.01

C4.5 85.96% ± 1.07 4.4 ± 0.93 8.5 ± 3.04
Dermatology Data Set

AntClass 84.21% ± 6.34 6.00 ± 0.00 79.00 ± 3.46
C4.5 89.05% ± 0.62 23.2 ± 1.99 91.7 ± 10.64

Furthermore, Table 3 compares AntMiner with an
evolutionary algorithm for rule discovery called ESIA -
Extended Genetic Rule Induction Algorithm [Liu and
Kwok, 2000], on the Wisconsin breast cancer dataset.

3 Accuracy rate is defined as the quotient between the number of test
cases correctly classified and the total number of test cases.

Table 3: Comparison between AntMiner and ESIA
 (Wisconsin breast cancer data set)

Accuracy Number of
Rules

Number of
Conditions

AntClass 95.47% ± 1.62 5.60 ± 0.80 12.50 ± 2.84
ESIA 94.71% ±0.04 23.9 -

7 CONCLUSIONS

We have described an Ant Colony System called
AntMiner for the discovery of classification rules in
databases. We have also shown results indicating that
AntMiner had a good classification performance on the
four datasets used in our experiments. These results
also show that the proposed algorithm is able to achieve
both good predictive accuracy and a reduced number of
rules at the same time. This facilitates the practical use
of the system, since it usually generates comprehensible
rules. The main drawback is still its computational cost,
especially when the search space (number of predicting
attributes) is too large. Notwithstanding the algorithm
proposed here is very promising, and more experiments
will be done in the future, as well as other
improvements.

REFERENCES

D.W. Aha and P.M. Murphy (1994). UCI Repository of
machine learning databases. [http://www.ics.
uci.edu/~mlearn/MLRepository.html]. Irvine, CA:
University of California, Department of Information
and Computer Science.

E. Bonabeau, M. Dorigo, and G. Theraulaz (1999).
Swarm Intelligence: From Natural to Artificial
Systems. New York: Oxford University Press.

O. Cordón, J. Casillas, and F. Herrera (2000). Learning
Fuzzy Rules Using Ant Colony Optimization. Proc.
ANTS’2000 – From Ant Colonies to Artificial Ants:
Second International Workshop on Ant Algorithms,
pp. 13-21.

M. Dorigo, A. Colorni, and V. Maniezzo (1996). The
ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, vol. 26, no 1, pp. 1-13.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth
(1996). From data mining to knowledge discovery:
an overview. In: U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth and R. Uthurusamy (Eds.)
Advances in Knowledge Discovery & Data Mining,
1-34. Cambridge: AAAI/MIT.

A. A. Freitas and S. H. Lavington (1998). Mining Very
Large Databases with Parallel Processing. London:
Kluwer.

R. Kohavi and M. Sahami (1996). Error-based and
entropy-based discretization of continuous features.
Proc. 2nd Int. Conf. Knowledge Discovery and Data
Mining, pp. 114-119.

J. J. Liu and J. T. Kwok (2000). An Extended genetic
rule induction algorithm. In Proc. CEC’2000, pp.
458-463.

H. S. Lopes, M. S. Coutinho, and W. C. Lima (1998).
An Evolutionary approach to simulate cognitive
Feedback learning in medical domain. In Genetic
algorithms and Fuzzy Logic Systems. Soft
Computing Perspectives, Singapore: World
Scientific, pp. 193-207.

J. R. Quinlan (1993). C4.5: Programs for Machine
Learning. San Francisco: Morgan Kaufmann.

S. M. Weiss and C. A. Kulikowski (1991). Computer
Systems that Learn - Classification and Prediction
Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems, San Francisco:
Morgan Kaufmann.

