
An Investigation of Supervised Learning

in Genetic Programming

Chris Gathercole
T

H
E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Ph�D�

University of Edinburgh
����

Abstract

This thesis is an investigation into Supervised Learning �SL� in Genetic Program�
ming �GP�� With its �exible tree�structured representation� GP is a type of Genetic
Algorithm� using the Darwinian idea of natural selection and genetic recombination�
evolving populations of solutions over many generations to solve problems� SL is a
common approach in Machine Learning where the problem is presented as a set of
examples� A good or �t solution is one which can successfully deal with all of the
examples�

In common with most Machine Learning approaches� GP has been used to solve many
trivial problems� When applied to larger and more complex problems� however� several
di	culties become apparent� When focusing on the basic features of GP� this thesis
highlights the immense size of the GP search space� and describes an approach to
measure this space� A stupendously �exible but frustratingly useless representation�
Anarchically Automatically De�ned Functions� is described� Some di	culties associ�
ated with the normal use of the GP operator Crossover �perhaps the most common
method of combining GP trees to produce new trees� are demonstrated in the simple
MAX problem� Crossover can lead to irreversible sub�optimal GP performance when
used in combination with a restriction on tree size� There is a brief study of tournament
selection which is a common method of selecting �t individuals from a GP population
to act as parents in the construction of the next generation�

The main contributions of this thesis however are two approaches for avoiding the
�tness evaluation bottleneck resulting from the use of SL in GP� To establish the
capability of a GP individual using SL� it must be tested or evaluated against each
example in the set of training examples� Given that there can be a large set of train�
ing examples� a large population of individuals� and a large number of generations�
before good solutions emerge� a very large number of evaluations must be carried out�
often many tens of millions� This is by far the most time�consuming stage of the GP
algorithm� Limited Error Fitness �LEF� and Dynamic Subset Selection �DSS� both
reduce the number of evaluations needed by GP to successfully produce good solutions�
adaptively using the capabilities of the current generation of individuals to guide the
evaluation of the next generation� LEF curtails the �tness evaluation of an individual
after it exceeds an error limit� whereas DSS picks out a subset of examples from the
training set for each generation�

Whilst LEF allows GP to solve the comparatively small but di	cult Boolean Even N
parity problem for large N without the use of a more powerful representation such as
Automatically De�ned Functions� DSS in particular has been successful in improving
the performance of GP across two large classi�cation problems� allowing the use of
smaller population sizes� many fewer and faster evaluations� and has more reliably
produced as good or better solutions than GP on its own�

The thesis ends with an assertion that smaller populations evolving over many gener�
ations can perform more consistently and produce better results than the
established�
approach of using large populations over few generations�

ii

Acknowledgements

I�d like to take this opportunity to thank the many people who have assisted� coerced�
guided� bullied� ridiculed� encouraged� or otherwise contributed to my completing this
thesis� Many thanks to my supervisor� Dr� Peter Ross� for knowing the answers to many
questions� Many thanks to Dave Corne for lending an ear� and likewise to his better�
groomed replacement� Emma Hart� Many thanks to the attendees and organisers of the
GP�
 and GP�� conferences for many inspiring conversations and talks� and especially
to Bill Langdon for his many helpful comments� Many thanks to the denizens of E��
and E�� for the endlessly diverting chats� Many thanks to many other people� And
last but not least� many thanks to SERC� who became EPSRC� for funding nearly the
whole of my PhD with grant number �����
���

iii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research�

C� S� Gathercole
Edinburgh
March ��� ����

iv

Contents

Abstract ii

Acknowledgements iii

Declaration iv

List of Figures xi

List of Tables xii

I Overview of Genetic Programming �

� Introduction �

��� Why Look At GP �

��� Why Read this Thesis �

��� What is in this thesis �

��� Search Algorithms �

��� GP� The What and the How ��

��
 Basics of Supervised Learning ��

� Rami�cations of a Large and Messy Problem ��

��� Why Choose the Thyroid Problem ��

��� Starting Point ��

��� First Impressions ��

��� Early Snags and Decisions ��

��� Longer Term Snags� Workarounds� and Hindsight � � � � � � � � � � � � � ��

v

��
 Applying GP to a problem ��

��� Summary ��

II A Closer Look At Genetic Programming ��

� GP Tree Representation ��

��� The standard GP tree ��

��� Counting Trees �

��� Extending the Function and Terminal Sets � � � � � � � � � � � � � � � � � ��

��� Summary ��

� GP Tree Recombination and Selection �	

��� Crossover and the MAX problem �
�

����� Why Restrict Tree Size �
�

����� The MAX Problem �

����� Crossover in GP ��

����� Experiment Details ��

����� Results ��

����
 Analysis of Crossover ��

����� Discussion of MAX problem ��

����� Summary �

��� Tournament Selection ��

����� Various Selection Methods ��

����� Some E�ects of Tournament Selection � � � � � � � � � � � � � � � ���

��� Discussion ��

III Genetic Programming and Supervised Learning ���

� Making use of the Training Set in GP ��	

��� Training Sets in Machine Learning ���

��� Selecting Training and Test Sets ���

vi

��� Approaches for Evolutionary Algorithms � � � � � � � � � � � � � � � � � � ���

��� Approaches for GP in this thesis ��

 Dynamic Subset Selection ���

�� Subset Selection Methods ���

�� Historical Subset Selection �HSS� � the algorithm � � � � � � � � � � � � � ���

�� Dynamic Subset Selection �DSS� � the algorithm � � � � � � � � � � � � � ���

�� Random Subset Selection �RSS� � the algorithm � � � � � � � � � � � � � � ���

�� GP Details ���

�
 The
Large and Messy� Thyroid Problem � � � � � � � � � � � � � � � � � � ���

�� Thyroid Results ��

�� A Smaller Problem� TicTacToe Endgames � � � � � � � � � � � � � � � � � ���

�� TicTacToe Results ���

��� A quick summary of results from other runs � � � � � � � � � � � � � � � � ���

��� Smaller Populations over More Generations � � � � � � � � � � � � � � � � ���

��� DSS Discussion ���

� Limited Error Fitness ��	

��� LEF � the algorithm ���

��� GP Details ���

��� The Even N Parity problem ��

��� Results ���

��� LEF Discussion ���

� Small Populations
 Many Generations �
�

��� Solving the TicTacToe problem with a small population � � � � � � � � � �
�

����� GP parameters �
�

����� LEF parameters �
�

����� DSS parameters �
�

����� Comparison of GP� GP�LEF� and GP�DSS� on TicTacToe � � � �
�

��� Solving the Thyroid problem with a small population � � � � � � � � � � � �
�

��� Discussion �
�

vii

IV Summary and Conclusion ���

	 Further Work ���

�� Summary ��

�� Conclusion ��	

Glossary ���

Bibliography ���

viii

List of Figures

��� Linear String� tree ��

��� LISP�like Program� tree ��

��� Algebraic Expression� GP tree ��

��� A
Large and Messy� Problem ��

��� Easy Thyroid subproblem ��

��� Structure of IFLTE subtree � �If Less Than Or Equal to�� arity�� � � � ��

��� Example of an ADF tree ��

��� example AADF tree �

��� Spike and Decay with Parsimony �
�

��� Optimal Tree for MAX�depth���f�gf�g � � � � � � � � � � � � � � � � � � �
�

��� Optimal Tree for MAX�depth���f���gf�g � � � � � � � � � � � � � � � � � �
�

��� Optimal Tree for MAX�depth���f���gf�	
g � � � � � � � � � � � � � � � � �
�

��� Optimal Tree for MAX�depth�
�f���gf�	�
g � � � � � � � � � � � � � � � � �
�

��
 Optimal Tree for MAX�depth���f���gf�	
g � � � � � � � � � � � � � � � � � �
�

��� An optimal tree for MAX�nodes����f���gf�	�
g � � � � � � � � � � � � � � � ��

��� Avg gens needed by MAX�depth�D runs using Crossover � � � � � � � � � ��

��� StdDev of gens needed by MAX�depth�D runs using Crossover � � � � � � ��

���� Failure of MAX�depth�D runs using Crossover � � � � � � � � � � � � � � � ��

���� Failure of MAX�depth�D runs using Crossover � Mutations � � � � � � � � ��

���� Sub�Optimal tree for MAX�depth���f���gf���g � � � � � � � � � � � � � � ��

���� Sub�Optimal tree for MAX�depth���f���gf���g � � � � � � � � � � � � � � ��

���� Sub�Optimal tree for MAX�nodes����f���gf����g � � � � � � � � � � � � � ��

ix

���� Gens needed for MAX�nodes�N�f���gf�	�
g with Crossover � � � � � � � � �

���
 Gens needed for MAX�nodes�N�f���gf�	
g with Crossover � � � � � � � � � �

���� Gens needed for MAX�nodes�N�f���gf�g with Crossover � � � � � � � � � � �

���� Gens needed for MAX�nodes�N�f���gf�	�
g with Crossover � Mutations � ��

���� Gens needed for MAX�nodes�N�f���gf���g with Crossover � Mutations ��

���� Gens needed for MAX�nodes�N�f���gf�g with Crossover � Mutations � � ��

���� Success of MAX�nodes�N�f���gf�	�
g runs with Crossover � � � � � � � � � ��

���� Success of MAX�nodes�N�f���gf�	
g runs with Crossover � � � � � � � � � ��

���� Success of MAX�nodes�N�f���gf�g runs with Crossover � � � � � � � � � � ��

���� Success of MAX�nodes�N�f���gf�	�
g runs with Crossover � Mutations � ��

���� Success of MAX�nodes�N�f���gf�	
g runs with Crossover � Mutations � � ��

���
 Success of MAX�nodes�N�f���gf�g runs with Crossover � Mutations � � � ��

���� Average Parent Selection Frequency ���

���� Average Distribution of Repeated Selections � � � � � � � � � � � � � � � � ���

���� Average Likelihood of Non�Selection ���

���� Average Number of Unchecked Parents ���

�� Simple GP tree for class � and class � cases � � � � � � � � � � � � � � � � ���

�� GP tree for class � cases ���

�� Errors made on Thyroid test set by DSS � RSS � � � � � � � � � � � � � � ���

�� Errors made on Thyroid test set by GP � GP�HSS � � � � � � � � � � � ���

�� Errors made on Thyroid training set by GP � GP�DSS � � � � � � � � � ���

�
 Errors made on Thyroid training set by GP � GP�DSS � � � � � � � � � ���

�� Dynamics of DSS� showing the varying di	culty and age weights � � � � ���

��� Best�of�gen Fitness of GP on Even N Parity� N�
� Pop���� � � � � � � � ���

��� Best�of�gen Fitness of GP�LEF on Even N Parity� N�
� Pop���� � � � ���

��� Best�of�gen Bushiness of GP on Even N Parity� N�
� Pop���� � � � � � ���

��� Best�of�gen Bushiness of GP�LEF on Even N Parity� N�
� Pop���� � � ���

��� Fitness Std Dev of standard GP on Even N Parity� N�
� Pop���� � � � ���

��
 Fitness Std Dev of GP�LEF on Even N Parity� N�
� Pop���� � � � � � ���

x

��� Error Limit of GP�LEF on Even N Parity� N�
� Pop���� � � � � � � � ���

��� Evals per Gen of GP�LEF on Even N Parity� N�
� Pop���� � � � � � � ���

xi

List of Tables

��� The number of possible GP trees with N nodes � � � � � � � � � � � � � � ��

��� Details of the optimal trees for MAX�nodes�N�f���gf����g � � � � � � � ��

��� Details of the optimal trees for MAX�nodes�N�f���gf���g � � � � � � � � ��

��� Details of the optimal trees for MAX�nodes�N�f���gf�g � � � � � � � � � �

�� Distribution of Classes in Thyroid Data � � � � � � � � � � � � � � � � � � ���

�� Best results by GP �and NN� on Thyroid Problem � � � � � � � � � � � � ���

�� Best results by GP on TicTacToe problem � � � � � � � � � � � � � � � � � ���

�� Further Thyroid Training and Test Results � � � � � � � � � � � � � � � � ���

��� Summary of results from runs on the Even N Parity problem � � � � � � ���

��� Looking for a good Population Size for the TicTacToe problem � � � � � �
�

��� Looking for a good Tournament Size for the TicTacToe problem � � � � �
�

��� Looking for good LEF Pause Parameters on TicTacToe problem � � � � �
�

��� Comparison of GP� GP�DSS� GP�LEF on TicTacToe Problem � � � � � �

��� Results for GP and GP�DSS on Thyroid Problem � � � � � � � � � � � � �
�

xii

Part I

Overview

of Genetic Programming

�

Chapter �

Introduction

��� Why Look At GP

Genetic Programming is an evolutionary�based search technique which can be ap�

plied to many di�erent types of problems� and it has had some notable successes�

Gruau has developed a method for encoding
growth� instructions for Neural Net�

works� evolving both the structure and weights of networks� �Gruau et al� �
�� Howley

has used GP to discover near optimal control laws for the minimum time reorientation

for a spacecraft!� �Howley �
�� Garces�Perez et al have used GP to produce superior!

results in the facility layout problem� �Garces�Perez et al� �
�� Walsh and Ryan have

used GP to develop a technique for the Autoparallelisation of Sequential Programs!�

�Walsh � Ryan �
��

As can be seen in these examples� GP is a �exible� widely applicable algorithm� It is

simple� easy to explain and understand� with a huge potential for solving large and

complex problems beyond the ken of the programmer� The fact that GP does not often

achieve this potential gives rise to an intriguing area of study�

A large part of GP�s appeal stems from its simplicity� Using its basic but �exible tree�

structured representation� GP is capable of solving some di	cult problems with little

input or external knowledge� However� it soon becomes clear that GP can be made

faster� more e	cient� and more e�ective� by relaxing the simplicity requirement and

instead looking at how to allow GP to take more advantage of the problem structure�

or properties of its own evolving population of solutions� In particular� in Supervised

�

CHAPTER �� INTRODUCTION �

Learning problems� the speed and capability of GP is highly dependent on the size and

make up of the training data� i�e� the way the problems are presented to GP as a set

of examples�

��� Why Read this Thesis

This thesis is not aimed at convincing the ignorant that GP is best in certain situations�

Instead it dodges that issue in favour of looking at ways of improving standard GP and

the use of GP in the particular area of Supervised Learning classi�cation problems�

GP has many obvious but circumventable weaknesses� most notable among these are

its rapacious demands for computer memory and CPU time� There is lots of scope for

improvement� This thesis highlights some weaknesses of GP with Supervised Learning�

and describes some procedures which can improve GP�s performance� In e�ect� this

thesis adds some utilities to a tool�box which can be used to repair GP when it doesn�t

work well� or needs a boost�

��� What is in this thesis

This chapter introduces GP and the entire thesis� It looks at GP from two view�

points� how it �ts in with other search algorithms� in Section ���� and the mechanics

of how GP works� in Section ���� Section ��
 looks at the idea of Supervised Learning�

Chapter � takes a look at some of the lessons learned whilst using GP� highlighting

several di	culties that could have been avoided� and some of which are dealt with in

this thesis�

Chapter � looks at some aspects of the tree�based representation in GP� including the

huge size of the search space� and Automatically De�ned Functions �ADF� where GP

can evolve its own representation� Chapter � looks at some aspects of GP operators�

including restrictions on tree size� the adverse interaction of Crossover �a standard GP

operator� and restricted tree size� and the use of Tournament Selection for choosing

parents from the population�

Chapters � to � contain most of the research done for this thesis� looking at a variety of

CHAPTER �� INTRODUCTION �

methods for dealing with the training set in supervised learning� taking advantage of

the current abilities of the GP population to reduce the computational e�ort necessary

to �nd good solutions� The two main methods are Dynamic Subset Selection �DSS��

where a di�erent subset of the training set is selected for each generation of GP� and

Limited Error Fitness �LEF�� where each individual in the population is only allowed

to make a limited number of errors before its �tness evaluation is curtailed� Chapter �

concentrates on the bene�cial use of much smaller population sizes to tackle the same

problems as those in earlier chapters� needing many more generations but requiring

less computational e�ort�

Chapter � describes what could or should be done to follow up the work in this thesis�

There is a summary in Chapter ��� and a conclusion in Chapter ��� Following the

concluding chapter there is a Glossary of many of the terms and acronyms used in this

thesis� including a page reference to where each is �rst mentioned or de�ned in the

thesis�

But �rst� looking at GP in the context of other computer�based search algorithms���

��� Search Algorithms

For a given problem� a computer�based search algorithm may be needed to �nd good

or optimal solutions� Problem solving is equivalent to searching for solutions� The

problem may be beyond the capabilities of current knowledge of direct� calculus�based

solutions� or perhaps the problem owner is simply lazy�

Choosing or designing a representation� along with a method for moving from one

solution to another or a description of the interrelationships between solutions� de�nes

a Search Space� which is simply the collection of all possible
reachable� solutions to the

given problem� To be sure� the vast majority of possible solutions are likely to be very

bad ones� But� for a problem to be solvable� the representation has to be su	ciently

powerful that the search space contains at least one good or acceptable solution� and

it must be possible to
reach� such solutions�

A measure of the merit of each particular solution has also to be codi�ed in some

CHAPTER �� INTRODUCTION �

way� The computer�based search algorithm has to be given a method for identifying

acceptable solutions when they are discovered by the search process� i�e� a measure

of how good or
�t� a particular solution is relative to other solutions� or perhaps an

absolute measure of the �tness of a solution� By the same token� there should be some

way of identifying unacceptable solutions�

A search algorithm can make use of earlier results to guide its search through the

space� The simplest two� Enumeration and Random search� shown below� use no

feedback from earlier search results� Alpha�Beta pruning allows Enumeration to use

earlier results to shorten the search� Hill Climbing and Simulated Annealing keep

a record of the current best individual and use it as guide to further search� More

complex approaches� such as TABU search� and Evolutionary Algorithms such as GP�

maintain a record of several individuals to help guide their later searches�

Without Feedback

The most straightforward approach for �nding an optimal solution is to enumerate all

possible solutions to a problem� i�e� check every possible solution in the search space�

and pick the best one� If the problem is to �nd the largest of a small set of numbers�

the Enumeration approach is perfectly satisfactory but� alas� it should be obvious that

this isn�t going to be the approach of choice for most other problems� If the search

space is �nite� the Enumeration approach will be able to �nd the optimal solution�

but it will only know which it is when it has completed the enumeration� All but the

simplest of problems have in�nite� or �nite but extremely large search spaces� It will

be either impractical �i�e� it will take too long� or impossible �i�e� it will take forever� to

search them in their entirety� With GP� the search space is often �nite but enormous�

increasing massively in size with every increase in permitted tree size �see Section �����

Random search is perhaps the simplest option for searching large search spaces� Ran�

dom solutions are generated and tested until a su	ciently good one is found or a

su	ciently large sample of the search space has been made� There is no guarantee

that this approach will �nd an optimal solution unless it is allowed to run for an in�n�

ite time� It is highly susceptible to the content of the search space� If there are very

few non�bad solutions� Random search is unlikely to �nd any useful solutions� However

CHAPTER �� INTRODUCTION

it can be used to form an impression of the distribution of solutions throughout the

space� giving an idea of the possible e�ectiveness of searching via other methods�

With Feedback

One common use of the Enumeration approach is in game�playing programs� The

computer looks ahead in the game tree at all possible moves and their consequences

and picks the best move� i�e� the one least likely to lead to a loss� or most likely to

lead to a win� The addition of Alpha�Beta pruning is required to allow this approach

to work on any but the most trivial of games� In this specialised problem area� Alpha�

Beta pruning can reduce the size of the search space by allowing certain regions to be

ignored on the basis that they can�t possibly contain acceptable solutions� using the

information gained in an earlier part of the search� Even with Alpha�Beta pruning� it

is not possible to exhaustively search the entire game tree for chess� The addition of

some human expert chess knowledge encoded in the program allows the search to be

curtailed still further with some educated guesswork�

The Enumeration approach with Alpha�Beta pruning and some expert chess knowledge�

running on a very fast computer with dedicated chess circuitry� known as Deep Blue�

�Tan ��� Hsu et al� ���� has successfully taken on� drawn with� and beaten the human

world chess champion� Gary Kasparov �considered to be the best ever player in the

history of chess� over several competitive games� though it lost the tournament overall�

The chess world awaited with interest the next incarnation of Deep Blue �Deeper Blue�

with essentially the same algorithm but even faster hardware� which it was generally

acknowledged would overcome even Kasparov to become world chess champion �unless

the powers�that�be in the World Chess Organisations got their act together in time to

change the rules to prevent non�humans from winning the title�� Sure enough� Deeper

Blue was better and did cause Kasparov all sorts of problems� even going on to win the

competition on points� winning several games along the way� Interestingly� the main

di	culty Kasparov had was not that Deeper Blue was playing especially wonderful

chess �it wasn�t bad� though�� but that Deeper Blue was deciding on its moves so

quickly that Kasparov wasn�t able to much thinking during his opponent�s clock time�

and consequently was put under a great deal of pressure leading to numerous major

CHAPTER �� INTRODUCTION �

un�Kasparov�like mistakes�

Hill Climbing� a form of neighbourhood search� is perhaps the simplest modi�cation to

random search which makes use of previous search results to guide its current search�

An initial random solution is generated and tested� Instead of then generating a

completely new solution� as would be the case with purely random search� one or more

close variants of the current solution are generated and tested� The best variant �or

perhaps an equally good variant� if none are actually better� then becomes the focus

of the search� and one or more variants are generated from this new solution� and

tested� and so on� If after several iterations no improvement is found� the search is

considered to have ended� and the current solution is the best one found during the

entire search� This method can be very fast at �nding the optimal solution in certain

search spaces� Some modi�cations to Hill Climbing� described below� have produced

benchmark solutions �i�e� the best solutions found so far by any method� to some quite

di	cult problems� �Ross � Corne ���� However� in its simple form described here� Hill

Climbing can quickly become trapped on sub�optimal hills� i�e� it reaches a region in

the search space where all variants of the current focus solution are worse� but the

focus solution is not the optimal solution� Another way of looking at this situation is

that there is no way� using the idea of close variants� to move from the current solution

to the optimal solution� where each variant is no worse than the last�

Simulated Annealing �SA�� �Press et al� ���� is an approach which attempts to over�

come the di	culty just mentioned for Hill Climbing� As with Hill Climbing� a random

solution is generated and tested� Rather than only choosing as�good or better variants

to be the next focus� SA can accept worse variants with some probability� The probab�

ility and �in some versions of SA� the randomness of the variations change with time�

so that SA becomes less likely to accept worse variants after the algorithm has been

running for a while� Eventually the size of the variations reaches zero� and the search is

considered to have ended at the current focus solution� This more complex approach is

much less likely to
get stuck� on sub�optimal hills than simple Hill Climbing� and has

been used by O�Reilly� �O�Reilly � Oppacher ��a�� to match GP on several problems�

using the same tree�based GP representation� described below in Section ����

Hill Climbing �HC� can be made more �exible by removing the requirement that the

CHAPTER �� INTRODUCTION �

best variant becomes the new focus solution� With Stochastic Hill Climbing �SHC��

a better variant becomes the new focus with a certain probability� and it is even

possible that a worse variant might become the focus solution with a certain �smaller�

probability� as with SA� This allows the algorithm to
travel� across the search space

without necessarily getting
trapped� on small sub�optimal hills�

A comparison of GP� Stochastic Iterated Hill Climbing �SIHC� described below�� and

SA� in �O�Reilly � Oppacher �
�� shows that the simple hill climbing algorithms work

well with the tree�based GP representation and powerful mutation operators� Hybrids

of GP and SIHC and SA can improve upon standard GP� A comparison of Genetic

Algorithms �GA� described below�� SA� and SHC on several real timetabling problems�

using equivalent operators� �Ross � Corne ���� shows that SA and SHC can outperform

GA�

With Feedback and Memory

TABU search is a metaheuristic which can be added to algorithms such as Hill Climb�

ing� One weakness of Stochastic Hill Climbing is that the search might traverse the

same part of the search space repeatedly� wastefully re�visiting and re�testing solu�

tions� This is especially true when reaching the top of a
hill� in the search space" the

search has nowhere to go except back upon its earlier route� With TABU� a list is kept

of forbidden moves� When the underlying search algorithm makes an allowed move�

that move or something abstracted from it is added to the TABU list� The TABU

list is normally of �xed length and so loses a move from its end which then becomes

as acceptable move again� The list of forbidden moves helps stop the Hill Climbing

search from getting stuck on sub�optimal hills� enabling it to explore other regions of

the search space�

Although not really a modi�cation of the Hill Climbing algorithm� Iterated Hill Climb�

ing is nonetheless a powerful approach� As its name suggests� it consists of repeated

runs of the Hill Climbing algorithm� starting from a di�erent random solution each

time� likewise Stochastic Iterated Hill Climbing �SIHC�� This is another way of avoid�

ing getting stuck on sub�optimal hills� The best solution can then be taken from several

independent searches� As already mentioned� Hill Climbing is very quick� Iterated Hill

CHAPTER �� INTRODUCTION �

Climbing can carry out a reasonable search of the search space in much less time than

that required by the Evolutionary Algorithms described below�

Take the simple Stochastic Iterated Hill Climbing algorithm� and expand its one focus

solution into a collection of several focus solutions� called a population� Test all the

individuals in the population� using a �tness function� which assigns a score to each

individual based on how well it solves the problem in hand� Then construct some

variants of the better solutions in the population� test them� and insert them into the

population by replacing some of the existing worse solutions� What you now have is

a simple model of evolution through Natural Selection �or unnatural selection� if you

prefer�� Better solutions are likely to
survive� �i�e� remain in the population� long

enough to reproduce �i�e� have variants made�� and worse solutions are likely to be

killed o�� �i�e� replaced by new solutions�� This approach is known generally as an

Evolutionary Algorithm �EA��

The
child� solutions� i�e� variants of the existing
parent� solutions� can be produced

in several ways� A simple random variation of the parent can be made� known as

Mutation� i�e� a copy of the parent with small random changes� Copies of two or more

parent solutions can be combined in a simple way known generally as Crossover to

produce one or more child solutions which contain a mixture of features copied from

the parent solutions� though this term covers many di�erent types of combination�

The solutions in the population can be regarded as a very simplistic form of genetic

material� analogous to chromosomes�

EAs come in many di�erent �avours� Evolutionary Programming �EP��

�Fogel ��� Fogel ��� Fogel ��� Fogel � Fogel �
� typically use Mutation on repres�

entations of Finite State Machines� Evolution Strategie �ES�� �B#ack et al� ���

Ho�meister � Back ���� originally only used Mutation� but now also incorporate Cross�

over� ES can perhaps be characterised by the use of real�value encodings and
strategy

vectors� which guide the way Mutation is carried out on each individual� Evolution�

ary Algorithms which make some use of Crossover are commonly known as Genetic

Algorithms �GA�� �Holland ��� Goldberg ��a�� GA and ES were developed more or

less simultaneously� though the proponents of ES would insist that GA and ES are

distinctly di�erent�

CHAPTER �� INTRODUCTION ��

A GA is essentially a simple model of the theory of Darwinian evolution by Natural

Selection and Genetic Recombination� The theory was proposed by Charles Darwin

�Darwin ��� and Alfred Russell Wallace �whose surprise letter to Darwin detailing his

own thoughts on evolution� arrived at independently� kick�started Darwin�s publication

of
Origin of the Species� and the ensuing shake�up of the Creationist orthodoxy of the

time� during the last century� There is little sensible argument against its descriptive

and explanatory power of what occurs in the natural world� In its much simpli�ed �and

much more recent� form as a GA� for computer�based search� the model of evolution

performs very well� Crossover� sometimes considered the principle distinguishing fea�

ture between a GA and other search strategies� seems to be a help in some situations

and a hindrance in others�

The typical representation used in a GA is linear� This stems from Holland�s early

attempts to duplicate natural genetic evolution by mimicking the linear chromosomes

found in natural DNA� Linear solutions are simple to work with� and can be applied to

many di�erent problems� They are easy to code if the solutions are all of a �xed length�

with simple ways of modifying or recombining solutions together� However� not all

problems are amenable to this �xed�size representation� where the size is set before the

search begins� In many cases the size of an acceptable solution is not known in advance�

A more �exible approach known as Messy GAs� �Goldberg ��b� Goldberg et al� ����

allows variable length linear solutions� though requires di�erent methods of mutating

and recombining solutions� The increased expressive power of the Messy GA adds to

the algorithm�s complexity�

An alternative approach is to drop the linear format� instead adopting a tree�structured

representation� This is a natural variation of the standard GA� There are many obvious

and straightforward ways of mutating and recombining solutions of this form� described

below� such as the exchange of subtrees� Genetic Programming �GP� is a GA using

this particular tree�based representation�

The term
Genetic Programming� is a little misleading� implying that the algorithm�s

sole use is to generate programs� although that may have been the original aim during

its development� There are many approaches to the evolution of computer programs in�

CHAPTER �� INTRODUCTION ��

cluding tree�based GA �aka GP�� �Kinnear Jr� ��� Langdon ��� Crosbie � Spa�ord �
�

Brave �
�� machine�code GA� �Nordin � Banzhaf ���� and Arti�cial Life methods�

�Ray ��� Thearling � Ray ���� etc� Unfortunately the term
Genetic Programming�

is used to refer to both tree�based GAs and the evolutionary generation of programs�

This thesis concentrates on the aspect of GP which is a tree�based GA�

��� GP� The What and the How

Perhaps the best introduction to GP can be found in Genetic Programming� on

the Programming of Computers by means of Natural Selection!� �Koza ���� Whilst

not the �rst or only proponent of the automatic generation of programs by com�

puters� �Cramer� amongst others� did some earlier work� �Cramer ����� Koza�s book

helped popularise the �eld� A large and weighty� but easy to read� tome� it de�

scribes and delves into many aspects of GP� His next GP book� �Koza ���� similarly

weighty� takes GP a bit further� expanding on some of the themes in the previous

book� notably Automatically De�ned Functions �described in this thesis in Section

����� The collection Advances in Genetic Programming!� �Kinnear ���� provides a

very good snapshot of the wide range of GP�related research� as does the more re�

cent Advances in Genetic Programming �!� �Angeline � Kinnear� Jr� �
�� which also

includes Langdon�s extensive GP bibliography� �Langdon � Koza ��� Langdon �
�� An�

other good collection of GP research can be found in the GP��
 conference proceedings�

�Koza et al� �
�� and GP��� proceedings� �Koza et al� ���� Since GP is just a simple�

natural variation of a GA� there are any number of relevant GA�related books and pa�

pers available� The classic� seminal GA book is Adaptation in Natural and Arti�cial

Systems! by Holland� �Holland ���� There are proceedings of numerous annual and bi�

annual conferences which have focussed on aspects of Evolutionary Computation such

as International Conference on Genetic Algorithms!� ICGA� Parallel Problem Solv�

ing from Nature!� PPSN� IEEE Conference on Evolutionary Computation!� Genetic

Algorithms in Engineering Systems� Innovations and Applications!� Galesia�

GP can be considered to have two main components�

CHAPTER �� INTRODUCTION ��

� an evolutionary search algorithm

� a tree�structured representation

The two components are quite separate� The evolutionary algorithm which searches

for solutions is independent of the way the solutions are represented�

Evolutionary Search

The underlying search algorithm� known as a Genetic Algorithm �GA�� uses a simple

model of Darwinian evolution to search for good solutions� The success �or not� of

natural selection and genetic recombination relies on the potential for o�spring to

occasionally be
better� than or improve upon their parents� A GA starts with an

initial group or population of individuals� generated at random� These individuals can

be thought of as chromosomes� if the biological analogy is taken far enough� Each

individual is tested to see how good it is at solving the problem in hand� using a �tness

function� The problem in hand could be to design a bridge that is both light and

strong� or construct a timetable that satis�es as many constraints as possible� or to

design a Neural Network to classify phonemes� or to predict the next major �uctuation

in share prices given the previous �ve days worth of trading �gures� In short� almost

anything goes�

Each individual in the population is a possible solution to the problem� Whilst all

of these initial individuals will almost certainly be very poor or un�t solutions� some

of them will be slightly less un�t than others� These �tter solutions are selected to

act as parents for the next generation of solutions� Individual parent solutions are

copied or mutated� or pairs of parent solutions are mixed together �in a process known

as Crossover�� to produce new or child solutions� The child solutions can be placed

back into the population� replacing the most un�t individuals� �in a process known

as steady�state replacement�� updating the population� or can be collected together

to create a completely new generation of individuals which then replaces the previous

generation� The latter option �generational replacement� is the one described more

fully here� and used throughout this thesis�

CHAPTER �� INTRODUCTION ��

The choice of which method �or operator� to use in constructing each child is made at

random for each child� The user speci�es
operator selection frequencies�� i�e� the bias

given towards choosing Mutation� Crossover� and any other operators which may have

been de�ned to create new individuals�

Once the new generation of individuals has been created� they are all tested� and the

�tter ones are selected to act as parents of the next generation� This generational cycle

is repeated until one of four things occurs�

� an individual is produced which solves the problem completely but not necessarily

optimally and the search process ends �in some cases it is possible to know when

an optimal solution has been discovered�

� an individual is produced which solves the problem su	ciently well that the user

decides to end the search

� it becomes apparent that the search process will not produce suitable individuals

and the user decides to end the search

� something goes wrong and the process has to be debugged and restarted

�There are no prizes for guessing which two of these possibilities occur most often in

practice��

A GA is an extremely �exible algorithm� and there are a great many variations upon

the basic theme� Some common ones are�

� Elitism� The best individual�s� of one generation are explicitly copied into the

next generation� ensuring that the GA doesn�t lose or
forget� good individuals�

� Seeding the initial generation with some possibly good solutions� This allows the

GA to take advantage of any extra domain knowledge the user might have� or to

make use of earlier results� allowing the population to start evolving with �tter

individuals�

� Parallel populations and Migration� Several populations are evolved simultan�

eously� all working on the same problem� with occasional individuals transfered

CHAPTER �� INTRODUCTION ��

or migrated from one population to another� This allows the e	cient use of fast

parallel computers� A GA is eminently parallelise�able�

Each aspect of a GA is subject to minute and seemingly never�ending adjustments� and

many many parameters� The design of particular GAs and their assorted parameter

values is still very much an intuitive process� based on experience and feedback from

earlier runs�

Representing Solutions in GP

The standard GA uses a linear representation� such as a string of bits� or numbers� or

characters� for each solution� Ideally� it should be able to represent all possible solutions

to a problem using the particular representation� The linear representation is simple�

concise� and easy to modify� For example� a linear solution string can be mutated by

randomly changing one or more of the characters in the string� Two parent strings

can be combined via Crossover by exchanging substrings between them to produce two

child solutions which contain a mixture of material from both parents� in a process

analogous to genetic crossover� The linear representation is suited to many problems�

especially when the structure and maximum size of likely good solutions are known in

advance�

However� when solution sizes are open�ended� or solutions are likely to have some kind

of hierarchical structure� the linear representation can be restrictive� Genetic Program�

ming is a GA which uses a tree�structured representation� This �exible representation

can be used to encode LISP�like programs �Figure ����� algebraic expressions �Fig�

ure ����� hierarchical relationships between di�erent parts of a solution� and linear

solutions �Figure ����� among other things �see Section ��� for more examples��

GP is given a set of functions �i�e� nodes which support subtrees� and terminals �i�e�

leaf nodes which do not support subtrees�� A subtree can be a single terminal node or

consist of functions and terminals� Standard GP ensures that there is closure� i�e� any

function can have any subtree�s� and the whole tree is still valid� A simple example of

a supervised learning problem should make this clear�

Imagine the problem is to �nd an equation for mapping between two input vari�

CHAPTER �� INTRODUCTION ��

Linear String

A B C D E F G H

�

Tree

seq

A seq

seq

B seq

C D

seq

E seq

seq

F G

H

Figure ���� Linear String� tree

LISP�like Program

�cons �append �car q�� �car q����

�

Tree

cons

append

car

q1

car

q2

Figure ���� LISP�like Program� tree

Algebraic Expression

X�Y � X�Y � Y

�

GP Tree

+

*

X Y

+

div

X Y

negate

negate

Y

Figure ���� Algebraic Expression� GP tree

CHAPTER �� INTRODUCTION �

ables X and Y and an output variable� GP is allowed to use the functions

f �� �� div� �� negate g� and the terminals f X� Y g� The functions are the basic arith�

metic operations
plus��
times��
divide�� and
multiply� which take two arguments each�

and the function
negate� which negates its one argument �i�e� multiplies by ���� The

terminals are the two problem�speci�c variables� and have real number values�

An example GP tree is shown in Figure ���� The binary arity functions�
���
���
div��

each have two subtrees� whilst the single arity function
negate� has one subtree� The

subtree on the left containing
���
X� and
Y�� represents the arithmetic expression

X�Y�� The tree as a whole represents
�X�Y� � �X�Y � �� �� Y���� or� more simply�

X�Y � X�Y � Y�� With the standard closure condition� any function node can have

any tree as a subtree� In the case of the division function� this presents a problem� If

Y ever has a value of zero� there would be a division by zero� which is mathematically

unde�ned� and would normally result in a computer error� In such an instance� a GP

function is
protected�� i�e� it is de�ned to produce a legal value whenever it would

not normally do so� and thus the function is protected from values it cannot handle�

The divide function is often de�ned to return � �or perhaps �� if the denominator �i�e�

the value returned by the right�hand subtree� is zero� The two
negate� nodes in the

same subtree are obviously redundant� but there is no requirement for GP trees to be

sensible or e	cient�

New or child trees can be created from parent trees very easily� A parent tree can be

mutated by replacing a randomly selected node with a di�erent one of the same arity�

e�g� by replacing the
div� �a function node of arity �� by a
�� node �also of arity ��� or

by replacing one of the
Y� nodes �arity �� by an
X� node �also arity ��� Another form

of Mutation is to replace a randomly chosen subtree by a new� randomly generated

subtree� Two parent trees can be combined by exchanging a randomly selected subtree

from one parent with a randomly selected tree in the other parent in a process known

as Crossover� There are many variations of these operations for producing new trees�

The closure constraint means that all of these operations on GP trees only ever produce

valid trees�

In such a problem� there would usually be a set of examples of input values �X and

Y� and their associated output value� A GP individual would be tested or evaluated

CHAPTER �� INTRODUCTION ��

on each example by instantiating the variables X and Y in the tree to their respective

values� calculating the return value of the tree� and comparing this value with the

correct or target output value� The sum of absolute di�erences over all the examples

could be used as a measure of how good or �t the solution is� i�e� the smaller the better�

This method of evaluating the �tness of an individual is known as Supervised Learning

�or perhaps supervised training��

Several useful variations of basic GP are�

� Strongly�Typed GP

The closure constraint is removed� and constraints based upon data�types are

used instead� This means that not all possible trees will be valid trees� Function

nodes can only have subtrees as arguments which return the correct data�type�

�Montana ��� Haynes et al� �
��

� Mutation�only GP

Some research suggests that the standard crossover operator may not necessarily

be A Good Thing� �Gathercole � Ross �
�� �see Section ����� Some modi�cations

to Crossover have worked well� �Angeline �
a� Angeline �
b�� as has an assort�

ment of mutation operators� �O�Reilly � Oppacher ��b��

� Hill Climbing and Simulated Annealing

Ignoring the population aspect of GP� but making use of the tree�structured

representation� �O�Reilly � Oppacher ��b�

� Automatically De�ned Functions

A more powerful representation� allowing GP to evolve hierarchical function

de�nitions� especially suited to problems whose solutions have a strong hier�

archical structure� �Koza ��� Koza ��� Kinnear� Jr� ��� �see Section �����

� A Compiling Genetic Programming System that Directly Manipulates the Ma�

chine Code!� with an awesome speedup in evaluation times� and only a few

restrictions� �Nordin ���

� Representing the GP population using a Directed Acyclic Graph

This highly e	cient method for representing a collection of trees can lead to

CHAPTER �� INTRODUCTION ��

massive savings in memory usage� and huge speedups in evaluation time by cach�

ing earlier results of subtree evaluations� �Ehrenburg �
��

��	 Basics of Supervised Learning

Supervised Learning can be any one of a variety of ways for presenting a problem to

a computer�based learning algorithm� The simplest analogy is that of a Pupil�Teacher

arrangement� The teacher presents the pupil with a problem �or sub�problem�� The

pupil works out an answer and returns it to the teacher� The teacher compares the

pupil�s answer with the correct answer� and then gives the pupil a reward or punishment

�or an error score� accordingly� The pupil can use this feedback to try an improve its

method for calculating answers in future�

In terms of GP� the teacher is the �tness function� Knowledge of the problem in hand

is encoded in the �tness function� enabling it to assess the worth �i�e� �tness� of all the

candidate solutions produced by GP �the pupil�� Good solutions get a good score� i�e�

a reward� and bad solutions get a bad score� i�e� e�ectively a punishment�

A problem can sometimes be de�ned in terms of a set of examples� The learning

algorithm has to come up with a mapping between input and output values that

correctly deals with the training set� The �often unspeci�ed� hope is that this mapping

will transfer well to previously unseen examples and be able to cope with all possible

examples of this type� In such a problem� the �tness of an individual would relate to

the sum of errors it makes on the whole training set of examples� It is not possible then

to work out from the �tness score exactly what errors were made on each training case�

This is known as batch�learning� If the problem is to win at chess� the only feedback

the learning algorithm would normally receive is a noti�cation of whether it had won

or lost a game� known as delayed feedback� There is no way of working out from the

feedback what aspects of the way the game was played were good or bad� An even

more di	cult situation would be when the chess learning algorithm is presented with

feedback only after several games had been played�

The main problems tackled in this thesis are of the batch�learning type� in Chapters �

to �� The aim is to correctly classify a training set of� say� ���� example cases� In

CHAPTER �� INTRODUCTION ��

one problem there is also a test set which is used as a guide to see how well a solution

generalises to cases which were unseen during the training phase�

So that was an overview of Genetic Programming and Supervised Learning� The

next chapter looks as actually using GP to try and solve problems���

Chapter �

Rami�cations of

a Large and Messy Problem

This chapter illustrates some of the di	culties of using GP in practice by applying

GP to a largish messy supervised learning classi�cation problem� The Thyroid Prob�

lem� described in Section ���� has been extensively tackled elsewhere using Neural

Networks� �Schi�mann et al� ��a� Schi�mann et al� ��b�� among other algorithms� and

has a benchmark score associated with it� The process of applying GP to the problem

is discussed� Of the many di	culties encountered� the �tness evaluation bottleneck is

the most fundamental and hardest to avoid� To combat this� Dynamic Subset Selec�

tion �DSS�� �Gathercole � Ross ��a� Gathercole � Ross ��b� Gathercole � Ross ��a��

a modi�cation of the standard supervised learning approach was designed� DSS en�

ables GP to produce good solutions to the Thyroid Problem� and is described in greater

detail in Chapter
�

In general� published papers seem to miss out a lot of detail concerning the di	culties

and choices made along the way to the development of a particular method� These

unspeci�ed choices� perhaps dead�ends or mistakes� will likely be repeated by later

researchers� unaware that some of their di	culties have already been tackled� What

follows is a description of how the features of the Thyroid Problem led to the steps

taken towards its solution� using GP� giving the reasons for some choices made along

the way� This should allow for a re�examination of the approach� Hindsight now shows

where several decisions could or should have been made di�erently�

��

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

��� Why Choose the Thyroid Problem

Attempting toy problems with GP� such as the Iris Problem� �Fisher �
�� �a stalwart

of Machine Learning research which is denounced with feeling as being far too simple

a problem in �Francone et al� �
��� can be a profoundly unsatisfying experience�� If a

problem has one or several simple and easily�attainable solutions� it is di	cult to learn

more about GP� and in particular to explore GP�s limitations� The GP literature� e�g�

�Atkin � Cohen ���� suggests that it is di	cult to scale GP up to work successfully on

larger problems�

The Thyroid Problem� available from �Werner ���� is considerably larger than the Iris

Problem� It is a Supervised Learning task� like the Iris Problem� but consists of a

set of approximately ���� training cases and a set of ���� test cases� where each case

comprises twenty�one �elds� In contrast� the Iris Problem consists of ��� training

cases� �� test cases� and each case comprises four �elds� The task in both problems

is to correctly assign each case into one of three possible classes� The Thyroid data

is messy and noisy� and like the Iris data �measured by hand from an assortment

of irises�� is based on real measurements� A solution to the Thyroid Problem is of

practical importance� since it relates to the identi�cation of hospital in�patients who

are likely to go on and develop later complications with their thyroid gland� The data

falls into three separate classes� two of which signify a thyroid illness� and are thus the

important ones to identify� and one much larger class ���$ of all cases� which signi�es

no thyroid illness�

Described by Schi�mann et al is an attempt to use a variety of Neural Network ap�

proaches to solve the Thyroid Problem� �Schi�mann et al� ��a� Schi�mann et al� ��b��

Their results indicate it is possible to solve the problem to a high degree of accuracy�

nearly ��$ correct� but that it is not easy to do so ���$ correct is actually a trivial

solution since one of the three classes consist of ��$ of all of the cases�� The Neural

Network results set up a good benchmark� or a target to aim at using GP� enabling a

useful comparison between the two di�erent approaches�

Possibly the earliest published report on using the thyroid dataset in Machine Learning

research is �Quinlan �
�� Later� in �Quinlan ���� Quinlan reports error rates of ���$

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

and writes�

 This domain is a good starting point becase it uses
live� data from which�

warts and all� extremely accurate classi�ers can be constructed�!

A variety of ML algorithms are applied to the thyroid dataset in

�Weiss � Kapouleas ���� including an assortment of statistical pattern recogni�

tion algorithms such as Linear Discriminant� Quadratic Discriminant� Nearest

Neighbour� Bayes Independence� and Neural Networks �back propogation�� and

some decision tree induction methods� The best results reported are for CART

�Classi�cation and Regression Trees� �Breiman et al� ���� scoring ����$ training and

��
�$ test error rates� Weiss and Kapouleas state that the NN runs took by far

the longest of all they carried out� requiring up to ���� hours per run for the larger

networks�

Turney tackles the thyroid problem with a variety of algorithms from the point of view

of cost of classi�cation� �Turney ���� where each �eld in the data� corresponding to a

medical test� has an associated cost� The aim is to minimise the error rate and the

total cost per classi�cation� and the combined error scores reported make it di	cult to

compare with work done in this thesis� In �Raymer et al� ���� Raymer et al also look

to minimise classi�cation costs� by attempting to reduce the number of �elds used in

the classi�cations� The best error rate reported for the GA� which evolves a weight set

for use by a K Nearest Neighbours algorithm� is ����$ on unbiased holdout tests� but

the time taken for a typical run is not reported�

In summary� several di�erent algorithms have been used to tackle the thyroid problem�

The decision tree induction algorithms in particular have produced the best results

in the shortest time� and there have been several investigations into reducing decision

tree sizes or the number of �elds used� Neural networks have not managed to perform

as well� and the larger networks appear to require training times roughly equivalent to

GP �i�e� runs for GP�DSS reported in Chapter �����

There are many other Supervised Learning tasks in the public domain whose datasets

are readily available over the Internet� e�g� �UCI ���� The Thyroid Problem is one of

the larger problems� Its data is already split into Training and Testing sets� It is

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

relatively straightforward to apply the standard GP algorithm� although there was a

large initial hurdle� described below in Section ���� of how to interpret a GP tree�s

output as indicating one of three categories�

Whilst it is easy to apply GP to solving the Thyroid Problem� it rapidly becomes

obvious that there are many hurdles to overcome� such as very slow �tness evaluations�

premature convergence� the need for a large population� and many more� for GP to

tackle the problem successfully� Although not common to many simple problems�

these di	culties are what makes the Thyroid Problem interesting� and will have to be

overcome if GP is to be applied to larger� more di	cult problems in the future�

��� Starting Point

The starting point for the attempt� in this thesis� to tackle the Thyroid Problem using

GP consisted of�

� the Thyroid papers� �Schi�mann et al� ��a� Schi�mann et al� ��b��

and data� �Werner ����

The Thyroid papers indicate that the Thyroid problem is solvable to a high degree

of accuracy� and give a benchmark �gure� approx ��$ correct on the Test set�

enabling a good comparison to be made with GP� The data is already split into

Training and Test sets� When viewed using XGOBI� �Swayne et al� ���� shown in

Figure ���� a large degree of overlap is obvious between the three di�erent classes

of the Thyroid data� Also� one of the three classes is much more common than

the other two�

� Koza�s huge book� �Koza ����

This opus covers many di�erent example problems� which suggest sensible initial

settings for the many GP parameters� It gives an idea of what might be a

reasonable set of functions to complement the problem�speci�c terminals �i�e�

the terminals corresponding to the �elds in the problem�� Koza also strongly

recommends the addition of an ephemeral random constant to the terminal set�

Each time this terminal is selected as a leaf node in a randomly generated subtree�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

Var 19

Var 21

Var 20

Figure ���� A
Large and Messy� Problem� This �gure shows a �D Slice �of �� dimen�
sions� of a ��� case subset of the Thyroid training data showing the overlap between
the � classes� Classes � and �� signifying a thyroid illness� are represented by� and ��
Most of the cases belong to the largest class� signifying no thyroid illness� represented
here by �� Only a subset of these cases have been included since they would obscure
most of the �gure�
The view presented here has been selected by hand on the basis that it shows the three
classes more clearly than any other view� though the classes still overlap a great deal�
From most other viewpoints� the classes overlap even more and are much less distinct�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

for example when a random individual is created at generation � or during a

mutation operation� it will take on a random �oating�point value� This value

remains �xed throughout the remainder of that particular node�s existence in the

population� where it might be spread by the actions of the crossover operator�

� o��the�peg GP code� Simple Genetic Programming in C! �SGPC��

�Tackett � Carmi ����

The SGPC code is a well�written implementation of the standard GP algorithm�

written in C� and available in the public domain� It is easy to adapt to supervised

training problems� In SGPC� a GP tree is represented using C pointers� a �exible

approach� but slow and uses up a great deal of memory�

� several Sun and HP workstations�

Once the GP program was ready to run� there were several Sun and HP work�

stations available� Each was able to handle jobs of no more than approximately

��Mb or so� There was also a large server available� able to handle much larger

jobs up to ���Mb or so� These machine limitations imposed an upper limit on

population
volume�� i�e� total number and size of individuals in the population�

��� First Impressions

The overriding initial impression from the early runs of GP on the Thyroid Problem

was that GP is very slow� ine	cient� and impractical� The runs would converge early

to bad solutions and then enter long periods of no improvement at all� producing large

numbers of un�t individuals� Population sizes of several thousand were needed to

improve solution quality� which had a severe impact on the turnaround time for GP

runs� taking many days to achieve non�trivial solutions�

��� Early Snags and Decisions

Choosing Parameter Values One of the most daunting aspects of using GP is the

very large number of parameters that need to be speci�ed before the algorithm can be

used� Parameters include the function and terminal sets� population size and structure�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM �

replacement method� operator type and selection frequencies� etc� All of these a�ect

GP�s performance to varying degrees� More often than not� wrong choices will lead to

GP performing very badly�

To some extent� Koza�s book answers all of the questions raised above� Among the

many examples in the book are practical suggestions for parameter settings� This is

a great help when starting out on a problem� but it quickly becomes clear that each

problem is unique� and GP responds di�erently to di�erent parameter settings on each

problem� What is left after Koza�s book is educated guesswork� and feedback from

previous runs�

Perhaps the most important GP parameters to
get right� are the terminal set� the

function set� population size �and structure and replacement strategy�� in combination

with fairly
standard� settings for other parameters such as the operators and operator

selection frequencies�

For the Thyroid problem� the terminal set is speci�ed by the �� �elds in the problem�

where each variable in the terminal set refers to one of the �elds in the Thyroid data�

Koza recommends including an ephemeral random constant� described above in Sec�

tion ���� but early runs indicated that this had no signi�cant e�ect �for the Thyroid

problem� and was replaced with a small group of �xed constants� f �� � g� which also�

it later appeared� had no signi�cant e�ect� The selection of sets of functions and ter�

minals� constant or otherwise� is a topic of much debate within the GP community� It

wasn�t the focus of work done in this thesis and is not pursed further here�

Constructing the function set is something of an art form� It has to be powerful

enough to allow GP to construct good solutions� �exible enough to allow for variety�

and not too large that it reduces the e	ciency of GP�s search� The function set is

f IFLTE� �� �� �� $� tanh� log� minimum of �� negate� sqrt g� where the functions be�

have as follows�

� IFLTE �If arg� is Less Than or Equal to arg� then the answer is arg� else it is

arg��

� ����� �plus� minus� multiply�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

� $ �protected division where division by zero is de�ned to be ��

� tanh

� log �protected natural logarithm� where log��� is de�ned to be ������

� minimum of � �returns the smallest of its three arguments�

� negate �multiplies by ���

� sqrt �protected square root of the absolute value of its argument�

The function set seems to have most of these properties� and was found through a

combination of Koza�s book� guesswork� and feedback from early runs�

Koza makes no bones about recommending that population size should be set as large

as possible� i�e� at least in the �����s� Whilst this is certainly more likely to enable GP

to �nd non�trivial solutions it is not very practical from the point of view of computing

resources �see below��

Population structure can take many forms� The simplest� used in this thesis� is pan�

mitic� where any individual can be combined with any other individual during the

breeding stage� Another structure involves the population topologically separated into

demes or islands� where only neighbours �in some sense� can be combined during breed�

ing�

There are many proponents of the two di�erent replacement strategies� generational�

where an entirely new generation is constructed from the previous generation� or

steady�state� where new individuals replace old individuals in the same population�

Generational replacement requires the addition of Elitism� where the best individual�s�

from the previous generation is included in the next generation� to ensure that the pop�

ulation does not lose its best individuals� Steady�state replacement is implicitly elitist

since the best individual will never be replaced� Early results indicated that steady�

state replacement was perhaps a bit more susceptible to prematurely converging to

bad solutions� so generational replacement was used throughout this thesis� A pan�

mitic population requires fewer parameters than a distributed population� so for this

reason alone it was used throughout this thesis� Population structure and replacement�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

as with the choice of functions and terminals� are topics of much current debate within

the GP �and GA� community� and are not pursued further here�

How to distinguish between more than two classes The task in the Thyroid

Problem is to construct a solution which distinguishes between three classes of examples

in the training data� For GP� this means that when an individual tree is evaluated on

a particular case� the tree�s output must be interpreted as indicating which one of the

three classes the case belongs to� It quickly becomes clear that this is not a trivial

step�

The obvious approach is to subdivide possible GP tree outputs into ranges such as

� output � �� signi�es class �

� output � �� signi�es class �

� output � �� signi�es class �

Thus a tree output of ���� say� would be interpreted as class �� Early results with this

choice of ranges and others� such as

� output � �

� � � output � ���

� ��� � output

were discouraging� GP seems unable to cope with this extra step� instead �xating on

the largest class� �� with trivial trees� To be successful� GP individuals would have to

cope with the extra translation step for their outputs to be interpreted correctly� as

well as distinguishing between the di�erent classes using the information in the �elds

of each example�

Fortunately� with the Thyroid Problem� there exists a
natural� division into two sub�

problems� where each subproblem is simpler than the whole problem� and one of the

subproblems involves a much smaller training set� This natural division creates two

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

Var 20

Var 19

Var 21

Figure ���� Easy Thyroid subproblem� �D Slice �of �� dimensions� of all �� class �
cases� represented by �� and ��� class � cases� represented by �� showing the distinct
split between the two classes� This subproblem is simple to solve�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

binary classi�cation problems� The �rst is to distinguish between cases from class �

�the largest class� which signi�es that the patient has no thyroid trouble� and all the

others �much smaller classes� which signify that the patient has some form of thyroid

trouble�� and then if the case is not in class �� to distinguish between cases from class

� and from class � �two distinct thyroid ailments�� Even more fortunate is the fact

that the smaller subproblem� distinguishing between classes � and �� is very easy� The

split between these two classes is obvious in Figure ���� Using the same setup as used

to tackle the larger subproblem� it is easy for GP to discover a ���$ correct solution

for distinguishing between classes � and �� This means that most of the e�ort can be

focussed on the one binary classi�cation task of identifying class � cases� Interpreting

a GP tree�s output as identifying one of two possible classes is much easier than the

situation involving three classes� For this thesis�

� output � �� signi�es class �

� output � �� signi�es not class �

The approach of splitting a large� multi�class �i�e� more than two� classi�cation problem

into smaller binary classi�cation subproblems can� in principle� be expanded to cope

with any number of possible classes in the training data� A group of cases belonging

to N classes could be classi�ed using log�N binary classi�cation steps� Experi�

ment and�or pre�processing for dependencies would be needed to �nd the best way

to subdivide the main problem� The initial approaches of translating from ranges of

possible tree outputs to an indication of particular classes emerged as being too great

a hurdle for GP to overcome� and although an interesting topic for further study� was

not pursued further in this thesis�

Fitness Measure One of the simplest �tness measures possible in this type of clas�

si�cation problem is the error count� i�e� the number of misclassi�cations made� but

it does su�er from several de�ciencies� It is unable to distinguish between two trees

which make di�erent errors but make the same total number of errors� It is also heavily

a�ected by the relative sizes of classes in the data� In the Thyroid data� class � is much

more prevalent than the other two classes combined� so it is possible for a tree to score

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

well �only �$ errors %� by always choosing class �� In hindsight� an obvious approach

is to re�scale the size of an error corresponding to a misclassi�cation� according to the

relative size of the classes� Thus choosing the largest class incorrectly would incur a

higher penalty than choosing one of the other smaller classes incorrectly� However�

the simple error count was used in this thesis� until the addition of Dynamic Subset

Selection� described below in Section
�

Bad Solutions All the early runs failed to produce anything like good solutions�

i�e� they failed to evolve individuals which signi�cantly outperformed the randomly

generated trees in generation � of each run� Runs quickly �xated on solutions which

classi�ed all cases as belonging to the largest class� producing small trees� and rapidly

converging in a few generations to close copies of one individual� In such a situation

the population quickly loses most of the variety in the function and terminal sets� An

obvious approach to the problem of small trees is to forbid the addition of small trees

to the population� by imposing restrictions on the operators� But� as with rescaling

the error count� it was not used here on the Thyroid problem�

Need for many runs to provide good Statistics In order to get useful informa�

tion about GP performance� say the e�ect of some parameter changes� many runs are

needed to provide adequate statistics about their e�ectiveness since� in some circum�

stances� GP can produce widely di�ering results using the same parameters� This is

very di	cult to achieve with GP since the runs are very slow� When starting on a prob�

lem� there are so many parameter choices that need to be made and tested that a large

element of guesswork is necessary� leaving later choices vulnerable to being a�ected by

spurious results� Unfortunately� GP seems quite sensitive to a variety of parameters�

Many decisions taken during this thesis were based on a very few successful runs� and

have no doubt led to some bad choices for parameter settings�

Bugs GP is a robust algorithm� It is very e�ective at hiding errors in the program�

or even taking advantage of them in the �tness evaluation stage� producing poor but

extremely
�t� individuals% The C language used in SGPC is susceptible to many

subtle bugs� in particular the pointer representation used can easily produce obscure

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

bugs that are di	cult to track down� To deal with bugs in C� the
assert� function is

extremely helpful� It is best used at every stage in the program to con�rm that things

are as they should be� A good programming methodology involving frequent testing is

needed right from the start to prevent later GP research from descending into an ever

more desperate search for wily and elusive bugs�

GP is slow As indicated in �Koza ���� GP may need a large population size� This�

plus the needs of supervised training �i�e� evaluation of individuals on each training

case�� combined with the �exible but ine	cient C�pointer approach used by SGPC to

represent GP trees� leads to a major bottleneck at the �tness evaluation stage of the

GP algorithm� The GP program becomes very large� requiring many megabytes of

computer run�time memory� and very slow� due to the large number of evaluations�

Runs can take many days� The large process size exacerbates CPU use� making it

much less e	cient� This is due to thrashing� where a CPU spends most of its time

swapping pages of memory in and out of swap space� rather than allocating processing

time to its processes� A further problem is that GP produces a large number of un�t

trees�

There are several ways of tackling the �tness evaluation bottleneck�

Increasing the speed of the algorithm can be done through better coding� This

involves a major rewrite of the code� which is a lengthy process� and a detailed look

at e	cient representations such as in �Keith � Martin ���� The approach of e	cient

coding has been taken to a successful extreme in �Nordin ��� Nordin � Banzhaf ���

Francone et al� �
�� producing linear GP individuals which are evaluated directly as

raw machine code� Nordin et al seem to have surmounted the obvious di	culties

which might occur when allowing GP to produce and execute raw machine code� They

report speedups in the region of ���x faster than traditional C�based programs� Such

a speedup would allow a much faster turnaround time for GP runs� allowing a great

deal more study to done on optimising parameters� However this approach does have

several limitations such as lack of �exibility� and the functions and terminals can have

no side�e�ects �which means they do not a�ect the context of any subsequent function

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

calls or terminals� e�g� a node whose evaluation causes a robot to turn left has a side�

e�ect� but a node which simply returns a value does not�� A more expensive speed

increase can be gained through the purchase of larger and faster computers� but this

is perhaps not an option available to the average researcher� A more feasible approach

might be to make use of smaller computers in parallel� since the basic GP algorithm

can be easily adapted to work in parallel� This is probably
the way of the future��

but unfortunately it brings up a large number of new parameters� Andre and Koza

seem to have the best of both worlds� using a parallel network of powerful computers�

�Andre � Koza �
��

Looking once again at the bottleneck of �tness evaluation� another approach is to

reduce the need for so many �tness evaluations� Reducing the size of the population

leads immediately to worse solutions� but as can be seen in Chapter �� when allowed to

run for many more generations� a small population can outperform a large population

using fewer �tness evaluations overall�

It would be nice to be able to reduce the size of the training set� since it is directly

proportional to the length of the �tness evaluation step� A closer inspection of the

performance of a GP population on the Thyroid training set reveals that many of the

training cases are easy� given that most of the population can correctly classify them�

This leaves a core of more di	cult cases which are frequently misclassi�ed� Using only

this core of di	cult cases ���� out of ����� as a training set leads to Historical Subset

Selection �HSS�� described in Chapter
� HSS allows much faster �tness evaluations�

whilst still producing good solutions� A more �exible approach is to select a subset

of the training set dynamically� If each case in the training set is assigned a weight

based on its di	culty� i�e� how often it was misclassi�ed when it was last part of a

�tness evaluation stage� and the number of generations since it was last selected� a

subset of cases can be selected and used to evaluate the �tness of each generation�

With the subset size around ��$ of the full Thyroid training set� Dynamic Subset

Selection �DSS�� described in Section
� leads to roughly a ��x speed increase in the

GP generation rate� and produced better solutions than when the whole set was used

to evaluate each generation�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

What runtime information to look at and store The aim in the Thyroid prob�

lem is to construct a solution which performs well at classifying the training data�

Consequently� the ultimate measure of success of a run is the �tness of the best indi�

vidual it produces� The next most important measure of a run is how long to let it

continue running� which could be for a �xed number of generations or� more usually�

until the run shows no signs of further improvement� A measure of improvement can

be taken from the change in �tness of the best individual in successive generations�

However� this approach ignores any dynamics within the population� Fitness diversity

is a useful guide but it is hard to measure� Average population �tness does not in�

dicate how the trees themselves are changing� Tracking the frequencies of nodes in

the population involves the output of a lot of information� especially when runs can

take many thousands of generations� Tracking tree structure� and the frequencies of

subtrees can be CPU intensive as well as requiring even more output� and is represent�

ation independent� By storing a unique seed for the random number generator for each

run� it should be possible to reproduce earlier runs exactly� and extract more details

at a later stage� This saves memory use for storing output but runs the risk of missing

important information �rst time round� and is very slow�

��� Longer Term Snags
 Workarounds
 and Hindsight

Longer term di	culties and decisions can be divided into two main categories� coding

strategy� and research method�

Coding Strategy

Old Bugs One of the most disheartening aspects of using a computer program to

produce data in a series of runs over an extended period of time is uncovering old bugs�

These well hidden monsters have remained incognito until the most recent modi�cation

to the program� or perhaps an inspired test run� Having found a bug it is necessary to

check its impact �if any� on previous runs� If the bug is su	ciently serious there might

be nothing for it but to go back and repeat all the previous runs� Obviously� the best

approach is to avoid or prevent bugs in the �rst place but� as mentioned above� the

GP algorithm is very robust� and its output and performance can be very deceptive�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

The best strategy is to assume bugs will arise� to pepper the code with error checks

right from the start� and to carry out frequent and varied tests�

Tweak Parameters or Add New Code Tweaking parameters allows you to im�

prove the existing setup� but there is the possibility that tweaking will be a never ending

process� especially if the solution is not achievable with the current setup� Adding new

code or extending the algorithm� however� is an excellent way to add more parameters

to the system� adding complexity to the code and the algorithm� No matter what high

hopes there are for getting these new parameters right �rst time� they and the others

will still need tweaking�

Reproduce�ability One of the major problems which arises after adding modi�c�

ations to the code is that the code is likely not to be backwards compatible� unless

great e�orts are made every step� This causes di	culties when it comes to reproducing

old results� which means it is more important to store key information from each run

instead of relying on being able to reproduce the data later from re�runs� A version

control system such as RCS �Tichy ��� is �and indeed would have been� extremely

useful�

Research Method

Being led astray An insidious consequence of very slow runs is the idle time between

starting a run and viewing its results� It is very easy to extrapolate from earlier and

partial results to make changes to parameters and start new runs� following up the

assumptions made� This can lead to dead�ends� where parameter changes do not

improve GP performance� By the time this is realised� a great deal of time can be

wasted� It is important to base modi�cations on good statistics� involving many runs

using the same parameters but di�erent random number seeds� Unfortunately� given

that GP is very slow� this is somewhat di	cult to achieve�

Use of Test set as a Training set Ideally� for comparisons with other algorithms�

or assessment of an algorithm�s performance on a problem� there should be a test

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM �

set of unseen data� Only after all the development and training has �nished should

the algorithm be checked on the unseen data� There are many established methods for

selecting representative test and training sets from one large data set of examples� some

of which are described in Section ���� For the Thyroid problem� the data was already

split into training and test sets by Schi�mann et al� In this thesis� every e�ort was

made to
ignore� the test set when making modi�cations to improve GP�s performance�

The test set was certainly never explicitly used to guide modi�cations towards making

GP better at generalisation from the training set�

Data Explosion Completing many long runs� each with a large population� over

many generations� produces a vast volume of data to be processed and�or stored�

There are many details which may or may not be important later� The approach

of making runs reproduce�able runs into the di	culties mentioned above� and still

requires the storing of all parameter settings and random seed numbers for each runs�

and makes data mining impossible�

Parameter Explosion Extending the GP algorithm throws up a huge number of

parameters� It is important to document each one� use clear names� make the defaults

clear� and to assume idiocy on the parts of the user and especially the programmer

by including extensive error checks on the bounds of all the parameter ranges� If not�

chaos could well ensue� At the end of the programming done for this thesis� there were

��� input parameters� �� special data types� ��� function de�nitions� and over ������

lines of C code�

Reputation with other non�GP users Given that GP is CPU intensive� memory

intensive� sometimes increasing greatly in size during a run� when runs can last several

days� and many runs are needed to produce adequate statistics� the GP user won�t win

any popularity awards on multi�user computers� There seems to be no way of avoiding

this �apart from obtaining your own computer�� so it is best to get used to the idea of

receiving hate e�mail�

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

��	 Applying GP to a problem

The procedure for using GP can be divided into four main parts�

� Knowledge Acquisition

� Knowledge Representation

� GP Tuning

� GP Runs

Knowledge Acquisition is the �rst stage in problem solving� For the purposes of

this thesis� the problems were chosen in order to investigate the performance of GP�

rather than from any particular urge or need to actually solve them� Having selected

a problem� the next step is to analyse it and extract any salient features� Armed with

this information� it should be possible to make an informed choice about what might

be the best approach to use in order to try and solve the problem� Once again� for the

purposes of this thesis� the approach is always GP�

Knowledge Representation is a key stage� With a good representation� a prob�

lem can be made much more amenable� With GP� the underlying representation is

obviously a tree structure� but that is only the start of the process of designing a rep�

resentation� Most test problems come prepackaged with data �elds� These can often

be taken directly as the terminal set for GP� but in many cases some pre�processing�

such as Principal Components Analysis �Jolli�e �
�� is needed to identify the relevant

parts of the problem data� to remove extraneous data� or to construct more useful

combinations of the data� An example of this process is well described in �Tackett ����

where GP is used to classify feature vectors extracted from infrared images containing

images of tanks �or not� as the case may be��

Though the terminal set is often easily decided upon� the function set is often not as

simple to construct� It is the glue which binds the terminals into useful expressions�

and needs to be su	ciently powerful to allow GP to construct good solutions� This

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

step is still a
black art�� Despite many di�erent researchers using GP� there is no

straightforward formulae which can be applied to decide upon suitable function sets�

It is clear that Automatically De�ned Functions� described and used in �Koza ���

Koza ���� can and probably should be added to the GP representation when a problem

contains inherent hierarchy of small solutions forming part of larger solutions� or when

there is a great deal of similarity between di�erent parts of the problem� Both of these

characteristics are apparent in the Even�N Parity problem� described in Chapter ��

However Koza has demonstrated that ADF can be an impediment if such characteristics

are not present� Other more powerful features such as indexed memory� �Teller ���� only

seem useful in certain specially constructed problem areas� Successful GP applications

have involved incorporating as much problem knowledge as possible into the function

and terminal sets� If there are known links between terminals� then those links� e�g�

square root� or log��� should be included in the function set� It is not necessarily the

case that reducing the volume of input data is the best approach to take� since key

relationships within the data may be lost�

Along with the basic tree�based representation� GP comes with some standard oper�

ators� i�e� ways of changing or recombining existing trees to produce new and di�erent

and possibly better trees� Crossover is often considered the main GP operator� where

subtrees are exchanged between two parent trees to produce one or two child trees

containing a mixture of nodes from each parent� Along with Crossover is usually some

form of mutation� where nodes or subtrees are replaced by randomly generated nodes or

subtrees� Usually the sites in the parent trees where these operators work are chosen at

random� without any regard to which parts of the parent trees are in some way import�

ant or essential to the functioning of the tree or causing the tree to produce incorrect

answers� This blind action of the operators results in high percentage of child trees

performing worse than their parent trees� Using a speci�c classi�cation�tree repres�

entation� �Vere ���� the bene�ts of more targeted operator actions are obvious� where

leaf decision analysis can make use of the fact that the �tness �error� contribution

of each subtree is localised and independent of other disjoint subtrees!� O�Reilly and

Oppacher� using various mutation operators and Simulated Annealing� have shown

that Crossover is not necessary for the successful use of the GP tree representation

in solving problems� �O�Reilly � Oppacher �
�� Lang has shown how mutations and

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

simple hill climbing can perform better than GP� calling into question the e�ective�

ness of Crossover� �Lang ���� All in all� it is never usually obvious what are the best

operators or combination thereof for particular problems�

Associated with the set of operators is the set of operator selection probabilities� which

establish how frequently each operator is used to generate individuals for the next

generation� With very low operator success rates� i�e� the children are usually worse

than the parents� it is not obvious how to balance the operator selection� Research

in GAs� �Tuson � Ross �
b� Tuson � Ross �
a�� has shown that dynamically alter�

ing the selection probabilities can be di	cult to do well as it is both problem� and

representation�dependent� and in fact can hinder the GA� Section ��� provides some

food for thought when constructing operators and choosing selection probabilities�

Given a particular GP representation� the �tness function needs to be speci�ed in

such a way that it can identify the relative merit of solutions expressed using this

representation� In combination with the GP operators� the �tness function de�nes

a search space for GP to traverse in search of good solutions� The �tness function

encodes a great deal of the knowledge the user has about the problem� Ideally the

�tness function should facilitate an easy path from bad solutions via a series of easy

steps �i�e� operator actions� to optimal solutions� where each solution along the path has

a better �tness than the ones before� Unfortunately� most problems do not have such

well�behaved search spaces� A great deal of e�ort has gone into looking at the behaviour

of search spaces in GA� also known as �tness landscapes� �Jones ���� but rather fewer

studies have been published on GP search spaces� Needless to say� GP search spaces

are hideously complicated� Especially in supervised learning problems� the �tness

evaluation of the population is the main bottleneck in the GP algorithm� Chapters �

to � look at ways of alleviating this bottleneck and extracting more information from

the supervised training set�

Tuning GP i�e� selecting initial or new settings for its assorted parameters� is a
black

hole� into which a great deal of time and e�ort disappears� The number of aspects of

a GP program which can be tweaked in a desperate attempt to improve its perform�

ance is nothing short of phenomenal� Perhaps the single most important parameter

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

is population size� Too large and GP takes forever to complete each generation� Too

small and� well� a thought�provoking part of this thesis shows that GP can� in certain

situations� perform better with a very small population than a very large population�

i�e� it �nds better solutions in a much shorter time �see Chapter ��� Taking population

size to the extremes� in�nite � means that GP should be able to randomly generate an

optimal tree in generation �" one � means you have a form of Hill Climbing or� with a

few extra features� Simulated Annealing� which have both been shown to perform well�

Although not conclusive� the impression gained from work done during this thesis is

that the e�ective population size is dependent on the type of problem being tackled in

the following way� If the search space contains a wide range of �tness values �ignoring

the addition of parsimony�� where it is possible to produce a succession of trees with

small increments in their �tness values� such as the TicTacToe and Thyroid problems�

small populations over many generations perform better� If the problem is di	cult�

and the search space contains only a small number of distinct �tness values� such as

the Even�N parity problem� described in Chapter �� a larger population is necessary

to allow GP the chance to construct better solutions� Experience has shown that it

is worthwhile trying GP �rst with a small population running over many generations�

If there are still signs of improvement in �tness after many generations� then a larger

population is probably unnecessary� and would perhaps hinder rather than help� It

appears that a large population might be more prone to converging prematurely to sub�

optimal solutions �perhaps it �nds and �xates upon local optima too rapidly� whereas

a smaller population might not even �nd most of these local optima and wouldn�t move

towards local optima as quickly��

One debate which occurs in the GP community but not the GA community concerns

restrictions on tree size� Given GP�s propensity to
bloat�� �Blickle � Thiele ���� where

the size of individuals in the population increases as they accumulate garbage� running

into practical limits on the availability of computer memory� it has become common

practise to impose some limits on tree size� or to use parsimony� a bias in the �tness

function against larger trees� Not all reports have been in favour of such restrictions�

Rosca has indicated that GP trees tend to grow to a certain �large� average size and

then oscillate around this size� �Rosca �
�� A more general study of the principle

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

of Occam�s Razor� the idea that
smaller is better� which is used in much Machine

Learning literature� indicates that such a bias leads to solutions which are less able

to generalise successfully on unseen data� �Webb �
�� Section ��� takes a look at an

adverse interaction between the Crossover operator and restricted tree size� There is

no consensus as yet on what is the best approach to take� except perhaps that GP

tends to use up too much memory� especially with large populations� and parsimony

seems to hold down tree size quite e�ectively without appreciably hindering GP�

Since� for many problems� the optimum solutions are not known �and also� often� their

�tness values�� a decision must usually be made about when to end GP runs� Too few

generations and GP might not have had su	cient chance to evolve good solutions� Too

many generations and much time might be wasted as GP shows no sign of improvement�

with its population having converged to become copies or damaged copies of the best

individual� unable to produce any better solutions� If left for long enough� the mutation

operators can in theory generate all possible trees� but this isn�t perhaps the most

e	cient way to use GP� The stopping criteria in this thesis are usually when a known

optimum is found� or after a certain number of �tness evaluation or generations have

passed� or the computer has crashed� In most cases� trial runs are needed to establish

a baseline performance for GP�

As new features are added to GP� the programmer experiences what can only be

described as a parameter explosion� Each new parameter can a�ect all the original

parameter settings� There is usually no way of knowing what is the best setting for

a particular parameter� Guesswork� some testing� and reading the literature� are the

only options available�

Once a particular GP design has been decided upon� the decision of what to record as

output is relatively simple� Usually the �tness of the best individual in each genera�

tion is su	cient� along with� perhaps� the average population �tness� Deciding upon

a particular GP design is usually quite challenging� During the design� much experi�

mentation is needed to �nd the best parameter settings� and much data needs to be

examined� processed and stored� A balance has to be struck between recording all in�

formation about the GP run that might be useful� and not �lling up gigabytes of disk

computer space with millions of numbers� If the runs are made repeatable� it should

CHAPTER �� RAMIFICATIONS OF A LARGE AND MESSY PROBLEM ��

be possible to recover any data if it is later deemed necessary�

GP Runs� The phrase A watched kettle never boils! must have been thought

of with GP in mind� GP can be very slow� Although Nordin et al� �Nordin ���

Nordin � Banzhaf ���� seem to have hit upon an impressively fast GP implementa�

tion� where the individuals consist of directly evaluated raw machine code� most im�

plementations� such as �Andre � Koza �
� Tackett � Carmi ��� Implementations ����

are compiled from a high level language such as C� or C��� or are even interpreted� e�g�

Lisp� Large populations� many generations� di	cult problems� all conspire to produce

long run times�

The single most important bottleneck in GP is the �tness evaluation stage� In partic�

ular with Supervised Training� tree evaluation gets carried out many millions of times�

Larger training sets mean more evaluations� Chapter � looks at ways of alleviating this

bottleneck� In particular� Dynamic Subset Selection �DSS�� has proved to be a very

e�ective and robust method for speeding up run times and enabling GP to solve the

di	cult Thyroid problem to a high degree of accuracy�

��� Summary

There is a morass of parameters and possible variations of the GP algorithm� Without

much useful theory as a guide� all that remains is re�use of suggested parameters

settings by other practitioners� or seat�of�the�pants twiddling by trial and error�

There is as yet no satisfactory way of getting GP to produce trees which can successfully

classify cases from more than two classes� though there is always the option of splitting

the problem into a series of binary decisions�

GP is approaching its current practical limits with the Thyroid problem� Concentrating

on the �tness evaluation bottleneck has produced several approaches for speeding up

GP evaluations� reducing run times� and producing better solutions than GP using the

standard Supervised Learning method�

Part II

A Closer Look

At Genetic Programming

��

Chapter �

GP Tree Representation

This chapter looks at GP�s tree�based representation� with an eye towards boosting the

performance of GP� Following a short reprise of the standard GP tree representation�

Section ��� investigates the size of the GP search space� which is really very large indeed�

Section ��� looks at variations of the standard GP tree representation� concentrating

especially on the approach of Automatically De�ned Functions �ADF�� where GP can

develop its own functions� potentially more powerful and useful than those in the

original function set� The summary in Section ��� highlights the speed of the machine

code GP implementation� and the power of ADFs� but indicates that tackling the

�tness evaluation bottleneck� as in Chapters � and �� provides more immediate and

widely applicable improvements in GP for supervised learning problems�

��� The standard GP tree

The standard GP tree is a simple structure� consisting of a mixture of terminal �or

leaf� nodes� and non�terminal �or function� nodes with branches� The terminal and

non�terminal nodes are drawn from a set of permitted nodes� Each node� when it

is evaluated� returns a value� For a terminal node� this value could be the current

instantiation of a variable represented by that node� or a constant number� or it could

represent an action �also known as a side�e�ect� such as rotate the left wheel forward

by �� degrees!� If a node does have such a side�e�ect� its value could be simply a

constant� or it could be a value which indicates the success �or not� of the action�

A function node�s evaluated value usually depends on the evaluations of its subtrees

��

CHAPTER �� GP TREE REPRESENTATION ��

�also known as arguments�� Such a function node could represent the simple operation

of addition� in which case its evaluated value would be the sum of the values of its

two subtrees� or the function node could represent a sequence of actions� in which

case each of its subtrees would be evaluated in turn� and the function node�s value

might be the value of its last subtree� One of the commonly used function nodes is

IFLTE �If Less Than Or Equal to�� with four subtrees� i�e� an arity of four� shown in

Figure ����

Structure of IFLTE subtree

IFLTE

1st 2nd 3rd 4th

Maximum of A and D

IFLTE

D A A D

Figure ���� Structure of IFLTE subtree � �If Less Than Or Equal to�� arity��

The tree on the left shows the structure an IFLTE subtree� and the tree on the right

gives an example of IFLTE subtree in practice where it returns the maximum value

of the variables A and D� If the value of the �rst subtree is less than or equal to the

value of the second subtree� the function node�s value is taken to be the value of its

third subtree� otherwise it is taken to be the value of its fourth subtree� If the �rst

subtree always has a value which is less than the second subtree� the fourth subtree of

the function node IFLTE will never be evaluated�

Any and all combinations of function and terminals are permitted� To ensure that

all combinations of nodes produce sensible values� i�e� closure� the function nodes are

protected� to be able to cope with any possible value� This is easily demonstrated by

the divide function� In normal arithmetic� division by zero is not de�ned� and would

lead to a fatal error in the GP program if a division by zero was attemped� In GP� this

special case is covered by de�ning the value of division by zero to be one� or perhaps

zero� Thus� if the second argument of a division node returns a value of zero� the

division function still evaluates to a sensible value� This generality is very �exible and

robust� allowing any subtree to be replaced by any other subtree� whilst the overall

CHAPTER �� GP TREE REPRESENTATION �

tree can still be evaluated successfully� Very often� GP trees will not
make sense��

and consist in e�ect of mathematical junk� However� it is often possible to construct

very powerful expressions using GP trees� Function nodes can be nested to any depth�

though there is usually some restriction on overall tree size�

The question of choosing what function and terminal nodes GP is allowed to use is not

straightforward� If function and terminal sets are not su	ciently powerful� GP will

not be able to construct trees which can perform well on the particular problem� If

the sets are too large� the search space is very large� and GP can be made even less

e	cient than usual� Choosing function and terminal sets for each problem is an art

form� often requiring some experimentation� good knowledge of the problem� and luck�

and this thesis makes no attempt to take this aspect of GP any further�

��� Counting Trees

The number of GP trees which can be constructed from given function and terminal

sets and even with a size restriction can be very very large �obviously the number of

trees is in�nite without such a size restriction�� This section looks at just how large

that is�

It is not a simple task to count the number of trees possible with given function and

terminal sets� and� of course� a restriction on tree size� Without such a restriction� the

question of how many trees are possible becomes rather easy to answer� There are two

main type of tree size restriction�

maximum number of nodes �

unlimited depth� but an overall limit on the number of nodes�

maximum depth �

a limited number of levels below the root node� though all subtrees are allowed to

�ll out to this depth� It is a much coarser control on tree size than a restriction

on the number of nodes�

A literature search produced no easy method for calculating the number of trees pos�

sible for a given set of nodes� however it is quite straightforward to design a recursive

CHAPTER �� GP TREE REPRESENTATION ��

search algorithm to do the calculation quickly� Such an algorithm for calculating the

number of trees possible with a restriction on the number of nodes is as follows�

CHAPTER �� GP TREE REPRESENTATION ��

� Algorithm for calculating the number of trees possible

� with a restriction on the number of nodes�

�

�

� Given a maximum number of nodes� N

� Given a list of function node arities� L

� Given a number of terminals� T

�

� Store the results for the number of possible trees in a ��D array�

� indexed by the number of subtrees and the maximum number of nodes�

� Tree�Count�subtrees� nodes�

�

� Define the recursive COUNT�TREES�WITH�MAX�NODES algorithm� to

� calculate the number of trees with exactly N nodes� with these

� arguments�

�

� Remaining�subtrees�

� the number of subtrees to be filled out with at least one node

� Remaining�nodes�

� the number of nodes still to be included in the tree

define

COUNT�TREES�WITH�MAX�NODES	 Remaining�subtrees�

Remaining�nodes
 ��

if	 Tree�Count�Remaining�subtrees�Remaining�nodes� is defined

then

�

return	 Tree�Count�Remaining�subtrees�Remaining�nodes�

�

� otherwise calculate it as follows

if	 Remaining�subtrees �� Remaining�nodes

� i
e
� can only use terminal nodes

then

�

Tree�Count�Remaining�subtrees�Remaining�nodes�

� T �� Remaining�subtrees

return	 Tree�Count�Remaining�subtrees�Remaining�nodes�

�

if	 Remaining�subtrees �� �

� have to use a function node at this point

then

�

Subtotal � �

foreach function arity F in the list L� where F � Remaining�nodes

CHAPTER �� GP TREE REPRESENTATION ��

�

Subtotal

� Subtotal

� COUNT�TREES�WITH�MAX�NODES	F�Remaining�nodes��

�

Tree�Count�Remaining�subtrees�Remaining�nodes� � Subtotal

return	 Tree�Count�Remaining�subtrees�Remaining�nodes�

�

�

otherwise divide nodes amongst subtrees

� The algorithm divides the remaining nodes between the first subtree

� and the rest of the subtrees� with the rest of the subtrees getting

� at least Remaining�subtrees�� nodes� and the first subtree getting

� at least one node
 R is the number of nodes allocated to the rest of

� the subtrees
 For any particular allocation of nodes� the number of

� possibilities is the product of First�subtree�count and

� Rest�subtree�count
 The total of all possible allocations gives the

� number of ways of distributing Remaining�nodes amongst

� Remaining�subtrees

Subtotal � �

for	 R � Remaining�subtrees ���

R � Remaining�nodes�

R � R � �

�

First�subtree�count

� COUNT�TREES�WITH�MAX�NODES	��Remaining�nodes�R

Rest�subtree�count

� COUNT�TREES�WITH�MAX�NODES	Remaining�subtrees���R

Subtotal

� Subtotal � 	First�subtree�count � Rest�subtree�count

�

Tree�Count�Remaining�subtrees�Remaining�nodes� � Subtotal

return	 Tree�Count�Remaining�subtrees�Remaining�nodes�

�� End of definition of COUNT�TREES�WITH�MAX�NODES

CHAPTER �� GP TREE REPRESENTATION ��

The number of trees with exactly N nodes is the result returned by

COUNT TREES WITH MAX NODES���N�� The algorithm works by recursively cal�

culating the number of possible trees with less than N nodes before using that in�

formation to calculate the �nal value for N� It will return � for a particular N if it is

impossible to construct a tree with exactly N nodes� e�g� with binary arity functions

and even N� A similar algorithm can be constructed to calculate the number of possible

trees of a particular maximum depth �i�e� where no nodes exceed the maximum depth�

by using the ideas of Remaining depth instead of Remaining nodes�

The number of possible trees for a variety of maximum numbers of nodes N� and a

variety of function and terminal sets� are given in Table ��� below� As can be seen� the

number of possible trees with a maximum number of nodes N increases exponentially

with N� The search space for the Thyroid problem increases in size by a factor ���

approximately� for each increment of N� The search space for the TicTacToe problem

increases more slowly� by a factor ��� approximately� This is due to there being more

variety of function and terminal nodes in the Thyroid problem�

If the trees are restricted by depth� then the largest function arity becomes the most

important factor to consider� For each increment in allowed depth� the number of

possible trees increases enormously quickly� much faster than with the restriction on

numbers of nodes� If TreesD is the number of possible trees �lled out to depth D�

and Ai is the arity of function i� then

TreesD�� �
X

i

�TreesD�
Ai

Trees� � NumberofTerminals

It can be seen by inspection that the most important contribution to the increase

of trees with depth comes from the largest function arity� Alargest� For the Thyroid

problem� this means for each increment in depth� the number of possible full trees

increases by at least a power of �� and the number of nodes in these trees
only�

increases by a factor of ��

It has to be said that the GP search space is rather large� rapidly reaching ten to the

power of several hundred even for quite simple problems � far too large to even consider

CHAPTER �� GP TREE REPRESENTATION ��

The number of possible GP trees with N nodes

Thyroid Problem� TicTacToe Problem�
in Section
 in Section ���

arities�f�������������������g arities�f�����������g
N �� terminals �� terminals

� ���e��� ���e���
� ���e��� ���e���
� ���e��� ���e���
� ���e��� ���e���
� ���e��
 ���e���

 ���e��� ��
e���
� ���e��� ���e��

� ���e��� ��
e���
���
�� ���e��� ���e��

�� ���e��� ���e���
�� ���e��� ��
e���
�� ���e��� ���e���
�� ���e��� ���e�
�
��
��e��� ���e�
�
�
 ���e��� ���e�
�
�� ���e��� ���e�
�
�� ���e��� ���e�
�
���

��� ���e���� ���e����
��� ���e���� ���e����
��� ���e���
 ���e����
��� ���e���� ��
e����
��� ���e���� ���e����
��� ���e���� ���e����
��
 ���e���� ��
e����
��� ���e���� ���e����
��� ���e���� ���e����

Table ���� The number of possible GP trees with N nodes

CHAPTER �� GP TREE REPRESENTATION ��

an exhaustive search� The brief calculations above merely hint at its complexity� On

the face of it� GP is presented with a daunting task when it is required to search the

space for useful trees� In this context� e�orts to reduce the size of the search space

through the use of parsimony �a penalty against large trees� and more powerful and

compact functions �described below� seem well worthwhile�

��� Extending the Function and Terminal Sets

Data�Typing One consequence of the �exibility of the standard GP representation

is that a function node can take any function or terminal nodes as arguments� i�e�

function arguments� function node values� and terminal node values� all have the same

data�type� This allows GP operators to combine subtrees indiscriminately and still

produce legal �though not necessarily e�ective� trees� �Montana ��� looks at strongly�

typed GP �STGP�� eliminating the closure constraint� Instead of just one data type�

the functions and terminals have a variety of data types� and the GP operators are

restricted in what combinations of nodes are allowed� restricting the search space�

Montana introduces generic functions� generic data types� and local variables� This

results in GP producing a higher percentage of
sensible� trees� though with a larger

overhead for the operators� Montana looks with some success at a variety of mod�

erately complex problems involving multiple data types!� but highlights the di	culty

of de�ning good evaluation functions� and shows that STGP �as with most versions

of GP� has di	culty scaling up to much larger problems� �Haynes et al� �
� extends

STGP by allowing more data types�

Linear Representation �Perkis ��� looks at the use of a stack� and a linear program

representation instead of the usual tree based representation� Terminals are a class of

function which push preset variables onto a stack� Functions pop their arguments o�

the numerical stack and return their result by pushing it onto the stack� Function

calls that occur with too few items on the stack simply do nothing� Perkis reports

that stack�based GP can be implemented very e	ciently� and works well with simple

problems� but again has di	culty scaling up to larger problems�

�Nordin � Banzhaf ��� describes a compiling GP system that directly manipulates

CHAPTER �� GP TREE REPRESENTATION ��

SPARC machine code� As with Perkis�s Stack�Based approach� Nordin and Bahnzaf

use a linear program representation� Although this machine code approach has some

limitations in that the functions are not allowed any side�e�ects� the GP algorithm

can run two orders of magnitude faster than the usual approaches of manipulating

tree representations� and with much smaller memory requirements� This increase in

speed allows Nordin and Bahnzaf�s GP to be successfully applied to much larger and

more complex problems than before� Francone et al indicate that rather than being

a hindrance� when compared with the less restricted standard GP tree structure� the

compiling GP�s linear representation performs very well on a variety of sparse data

problems� �Francone et al� �
�� Extending their representation� Nordin and Bahnzaf

have demonstrated that their compiling GP system can successfully use a close ana�

logue of Koza�s Automatically De�ned Functions�

Automatically De�ned Functions �Koza ��� Koza ��� introduces the idea of

Automatically De�ned Functions �ADF�� ADF imposes a high�level structure on each

tree in the GP population� Each tree thus has a result�producing branch� which is

evaluated to determine the tree�s �tness� and the one or more other branches provide

the de�nitions of the one or more functions which can be referred to in the result�

producing branch� all of which evolve together� Each main branch has its own function

and terminal sets� and a structure�preserving crossover can only occur between the

result�producing subtree of the same main branch in each parent� An example ADF

tree is given below in Figure ����

PROGN

DEFUN

ADF0 ARGUMENT LIST

ARG0 ARG1

RESULT BODY

DEFUN

ADF1 ARGUMENT LIST

ARG0 ARG1

RESULT BODY

MAIN RESULT BODY

Figure ���� Example of an ADF tree

Only the subtrees labelled
RESULT BODY� can be changed during the evolutionary

CHAPTER �� GP TREE REPRESENTATION ��

process� In the case of this example� the tree consists of two ADF branches and a main

results�producing branch� The main results�producing branch has an extra function

ADF� in its function set� The ADF� branch has an extra function ADF� in its function

set� and two extra� local� terminals ARG� and ARG� which refer to the arguments of

any occurrence of ADF� �which is de�ned here to takew two arguments� in the main

results�producing branch� The ADF� branch has two extra� local� terminals ARG� and

ARG� which refer to the arguments of any occurrence of ADF� �which is also de�ned

here to take two arguments� in the ADF� RESULT BODY subtree� This structure

enforces a hierarchical arrangement of ADFs� Care is taken to avoid recursion by not

allowing an ADF branch to refer to itself i�e� not including an ADF in its own function

list� Any tree�combining operations such as crossover are only permitted between

equivalent branches in di�erent trees� e�g� the ADF� result body branch of one tree

can only be crossed with the ADF� result body branch of another� In e�ect� for the

example above� there are three separate breeding populations of branches� the main

result body� the ADF� result body� and the ADF� result body�

Koza demonstrates that the ADF approach is e�ective on problems which contain

a hierarchical structure� in particular where solutions to the main problem can be

constructed through a combination of solutions to easier subproblems� This is demon�

strated on the Even�N Parity problem� �also covered in Section ��� where solutions for

large N can comprise combinations of solutions for smaller N� The whole hierarchy can

be represented by a single GP tree� though the number of ADFs must be speci�ed in

advance� For problems where there isn�t a hierarchical structure for ADF to exploit�

it is less clear how much ADF is of bene�t to GP� The extra overheads necessary for

ADF mean that it can cause GP to run more slowly and less e	ciently�

Anarchically Automatically De�ned Functions Early experiments in this thesis

with a more �exible form of ADF� Anarchically Automatically De�ned Functions

�AADF�� indicate that part of the success of ADF is the structure it imposes on the

form of the solution� With AADF� automatic function de�nitions can occur anywhere

and more than once within the GP tree� unlike in ADF where the tree structure places

strict limits on possible function de�nitions� An example AADF tree is shown in Fig�

ure ��� below� where the
div� function node is being rede�ned� Any of the functions in

CHAPTER �� GP TREE REPRESENTATION ��

the function set or terminals in the terminal set could be rede�ned in this way includ�

ing� strangely enough� the key REDEFUN function node by which the rede�nitions

take place�

The REDEFUN function takes three arguments�

� Left branch� the name of the function being rede�ned� taken to be the root node

of that subtree �
div�� in this example�� If this subtree consists solely of a terminal

node� then that terminal is being rede�ned�

� Middle branch� the new de�nition of this function �or terminal�

� Right branch� a result�producing branch in which the new de�nition of the func�

tion �or terminal� takes e�ect

Each function has a default de�nition that can be overridden by REDEFUN� In this

example� the default de�nition of
div� is protected division� i�e� its value is the result of

dividing its �rst argument by its second argument� with checks to ensure that division

by zero does not occur� The
div� function has an arity of �� i�e� it takes two arguments�

Thus the rede�ned version must also have two arguments� �All the functions in this

example have an arity of two or one�� In the example� where
div� occurs in the right�

most� result�producing branch of REDEFUN� it has two arguments
B� and
X�� The

values of these two arguments are passed to the new de�nition of
div� by temporarily

changing the values of
X� �to be the �rst argument� i�e� the value of
B�� and
Y� �to

be the second argument� i�e� the value of
X�� within the middle� rede�nition branch of

REDEFUN� In the example�
X� is being used within the rede�nition� but
Y� is not�

so the value of the second argument of the
div� node in the result�producing branch

has e�ectively been ignored within the rede�nition branch�

X� and
Y� have been added to the terminal set specially to allow REDEFUN to de�ne

functions up to an arity of two� Rede�nitions of any of the arity two functions will

involve the use of
X� and
Y� in this way� Rede�nitions of any arity � functions� e�g�

SQRT�� will only make use of
X�� In other function sets� with higher arity functions�

more terminals would need to be used to pass the values of the functions� arguments

into the rede�nition� The
X� and
Y� �and however many other argument�related�

CHAPTER �� GP TREE REPRESENTATION �

nodes would normally be initialised with some simple default values� e�g� ��

As can be seen in the example tree in Figure ���� the new behaviour of
div� is to

multiply its �rst argument by the value of
A�� ignoring the value of its second argument�

Thus� in the result branch of the REDEFUN node in the example� the value of the

div� subtree is B multiplied by A� rather than B divided by X�

The same approach can be used to rede�ne terminal nodes� In this case� the left�most

REDEFUN subtree would consist simply of one terminal node� the middle subtree

would be its new de�nition� possibly making use of the original value of the terminal�

Unlike in the rede�nition of function nodes� as described above� the two terminals X

and Y would not be rede�ned� since the terminal node takes no arguments� The right�

most subtree would be the result�producing branch in which the new de�nition of the

terminal takes e�ect�

redefinition
takes effect
in this
branch

node being
redefined

+

-

C A

REDEFUN

div

B C

*

X A

*

SQRT

div

B X

+

A Y

...takes
three
arguments

new
definition
of ‘div’

new
definition
is used
here

nodes
(unused)

garbage

(and of ‘X’ and ‘Y’
within this branch)

AADF in action!

Figure ���� example AADF tree

This AADF representation is extremely �exible and almost totally useless� Like the

basic GP representation� it has closure� so that any function node can take any function

or terminal nodes as arguments� It can allow recursion� iteration� rede�nition of any

function or terminal� and hierarchical de�nitions� all at any location within the tree�

and as often as any restrictions on tree size permit� Recursion can be avoided or

CHAPTER �� GP TREE REPRESENTATION ��

controlled by providing a default behaviour if a new de�nition refers to itself� e�g� the

de�nition branch of the REDEFUN node can only make use of an earlier de�nition of

the node being rede�ned� It makes sense to put a block on the REDEFUN node being

rede�ned�

Extremely powerful and �exible trees can be constructed using AADF� By adding a

REDEFUN at the top of a tree� all instances of the rede�ned node have their beha�

viour changed simultaneously� It is possible to create function hierarchies of arbitrary

depth� whereas in ADF the hierarchy is de�ned at the start of the run� However� such

AADF trees are also very unlikely to occur during the evolution of a population� since

several parts of a tree have to be right simultaneously for an instance of a REDEFUN

node to be e�ective� This is extremely unlikely to say the least� Early� discouraging�

experiments with several variations of AADF indicate that GP is totally unable to

take advantage of such �exibility� The REDEFUN nodes and their associated extra

subtrees behave much like spurious junk nodes� with no impact on the trees� �tnesses�

except perhaps bringing about a larger parsimony penalty� Much care and much more

thought is needed to enable GP to take advantage of AADF� One possibility is to

cause certain links between nodes to be made inviolate� i�e� the reproduction operators

prevented from splitting the trees at those points� Another possibility is to include

rewards in the �tness function for making use of the extra features� This might enable

GP to retain the extra complications long enough to make use of them�

Adaptive Representation �AR� �Rosca � Ballard ��� looks at the discovery of

useful subtrees �building blocks� in a population� generalising them� and adding them

to the function set� in e�ect
adapting the problem representation on�the��y�� The next

generation of trees can then make use of these new and hopefully more powerful func�

tions� allowing GP to construct a hierarchy of new function de�nitions in the function

set for the entire population to exploit� Although this approach requires lots of extra

processing of the population� Rosca and Ballard state that all new building blocks

can be discovered in O�population size� time!� Each time a new function is added�

the population goes through
considerable� changes as it evolves to take advantage of

it� Rosca and Ballard use this adaptive representation to tackle the Even�N�Parity

problem �also covered in Chapter �� up to N � ��� showing that AR compares well

CHAPTER �� GP TREE REPRESENTATION ��

with ADF in terms of computational e�ort� scaling up well to the larger N� As with

ADF� AR is an e�ective hierarchical approach to problem solving with GP�

Both ADF and AR enable GP to explore a search space of smaller trees� by allowing

GP to use smaller� more powerful trees� rather than larger unwieldy trees with less

powerful components that are more prone to being split up during reproduction�

��� Summary

This chapter has taken a brief look at GP�s tree�based representation� with an eye

towards boosting the performance of GP� The number of possible GP trees is huge�

and is most dependent on the largest arity of the functions in the function set� The

basic speed of the GP algorithm can be boosted by two orders of magnitude by directly

manipulating machine code segments� though with several restrictions such as using a

linear representation with a limited number of possible instructions� and the functions

and terminals not having any side�e�ects� However� it still performs very well and

is� of course� exceedingly fast� so that it seems worthwhile persevering despite the

limitations it might have� Koza�s Automatically De�ned Functions and Rosca and

Ballard�s Adaptive Representation can both take advantage of hierarchical structure

inherent in several di	cult problems� allowing GP to solve problems of far greater

complexity than it could manage with the standard representation� However� it is not

clear how well ADF and AR would perform on similarly di	cult problems without

such an exploitable hierarchical structure�

Although obviously powerful additions to the GP toolkit� the compiling GP system�

ADF� and AR� all would require a fairly substantial modi�cation or rewrite of an exist�

ing implementation of GP� This thesis concentrates on some modi�cations to standard

GP which are easier to implement� such as the more complex �tness function of Dy�

namic Subset Selection� in Chapter �� which should work well with all of the extensions

to GP mentioned above�

Chapter �

GP Tree Recombination and

Selection

There have been many studies of the performance and e�ects of operators in

GAs� and rather fewer for GP� �Koza ��� looks at the standard operators� insisting

that Crossover is essential to GP performance� O�Reilly and Oppacher in several

studies� �O�Reilly � Oppacher �
� O�Reilly � Oppacher ��� O�Reilly � Oppacher ��b�

O�Reilly � Oppacher ��a�� concentrate on designing powerful Mutation operators

which function with a variety of Hill�Climbing techniques� �i�e� they do not re�

quire either a population or Crossover�� or looks at other hybrids involving Cross�

over� �O�Reilly � Oppacher ��b� looks at a GP version of the GA Schema Theorem�

�Holland ���� the main backbone of GA theory� and �nds that it does not transfer well

to GP� concluding amongst other things that it constitutes a narrow and imprecise

account of GP search behaviour�!

The most common GP operators are simple� and ine	cient� i�e� they have a low like�

lihood of producing children which are as �t or �tter than their parents� This thesis

does not look any further at ways of improving GP operators� which would be highly

problem speci�c �but see �Vere ��� for work on e	cient operators working on decision

trees� and �Montana ��� Haynes et al� �
� for work on Strongly�Typed GP� where op�

erators are restricted in how they can alter trees�� The use of a restriction on tree size

is also common to many GP implementations� and this can be seen in Section ��� to

interact adversely with the main GP operator� Crossover�

Tournament Selection is a widely used method for picking individuals from the pop�

��

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

ulation as parents for the operators to work on� and is the selection method used

throughout this thesis� Section ��� takes a look at some of the consequences of using

Tournament Selection and some reasons why it was used in this thesis�

��� Crossover and the MAX problem

The Crossover operator is common to most implementations of GP� providing a simple

but powerful method for recombining genetic material in a population� Crossover seems

to be in widespread use in its simplest form� described in Section ������ mixing two

parent trees through the exchange of randomly selected subtrees to produce one or two

child trees� Mutation operators are often used in combination with Crossover� Also

common to most GP is some form of upper limit on tree size� necessary to prevent the

population expanding to exceed available computer resources�

This section introduces the MAX problem for GP� a convenient mechanism for looking

at the machinations of Crossover� The task is to produce the largest possible value

for a given function and terminal set and maximum tree depth or maximum number

of nodes� Ostensibly an easy problem for GP to solve� results for several variations of

the MAX problem� given in Section ������ con�rm some inadequacies of the crossover

operator in normal use� These are highlighted in an analysis in Section ����
� Even

with the mitigating e�ects of some mutation operators� described in Section ������ a loss

of diversity in the upper levels of trees in the population due to Crossover� discussed

in Sections ����� and ������ leads to premature convergence to sub�optimal solutions�

This is made irreversible through the interaction of Crossover and the restriction on

tree depth�

The tendency of Crossover to ignore the upper tree levels should be well known� but

the extent of its negative impact on population diversity and premature convergence

are made more apparent here through the use of the MAX problem�

This section is an extension of the paper �Gathercole � Ross �
�� in which the MAX

problem was �rst published� which looked solely at a restriction on tree depth� With a

restriction on the number of nodes� the MAX problem is more complex for GP� exper�

iencing more subtle interactions between the action of the operators and the tree size

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

restriction� Langdon and Poli take the MAX problem further in �Langdon � Poli ����

concentrating on the restriction on tree depth� but considering bigger trees� di�erent

selection pressures� di�erent initialisations of the population� measuring population

variety� and the number of steps required to solve the MAX problem�

�	�	� Why Restrict Tree Size

GP e�ortlessly takes computers beyond their limits both in terms of memory and

CPU use� Ways of reducing CPU use are investigated in Chapters � to �� Two of

the easiest ways for reducing GP�s memory requirements are restricting the population

size� also investigated in Chapter �� and restricting individual tree sizes within the

population� Both of these methods limit GP�s use of memory� This section looks at

some consequences of imposing restrictions on tree size�

Trees in a GP population have a tendency to
bloat�� This phenomenon� noted in

�Blickle � Thiele ���� might be explained by the fact that larger trees �i�e� ones which

contain more garbage or redundancy in the form of super�uous subtrees� are more

likely to survive the actions of Crossover undamaged� Smaller trees are likely to result

in damaged� un�t trees after Crossover� Whilst nice from a perspective of wishing the

trees well� the bloat phenomenon can be a hindrance to the GP user� Another factor

could be
hitch�hiking�� where super�uous subtrees bene�t from their proximity in �t

trees to �t subtrees� Crossover and selection are quite likely to copy and spread the

associated non�contributory subtrees along with the �t subtrees� The trees in the GP

population expand with each generation� requiring a larger memory allocation� and

can result in a reduction in CPU e	ciency�

The open�ended nature of bloating is questioned in �Rosca �
�� Rosca suggests the

existence of size attractors!� where trees in a population will expand to a certain

size range and then �uctuate within this range without continuing to expand indef�

initely� Rosca also questions the bias commonly introduced into GP runs in favour

of small trees� suggesting that the generalisation capabilities of such small trees are

less than those of larger trees� To avoid these di	culties� Rosca proposes an Adaptive

Representation� explicitly evolving and selecting code modules instead of entire trees

�described in Section �����

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

In theory� for a classi�cation problem� it is usually possible to construct a huge GP

tree which can perform ���$ successfully on the training set by explicitly dealing with

every case in the training set� In e�ect� the tree memorises the entire training set �

an extreme form of over�tting� Such a tree is unlikely to perform well on a di�erent

test set� where the individual cases are not the same as those in the training set� This

is the dilemma of generalisation versus memorisation �over�tting�� Ideally� GP should

produce small trees which contain the essence of what is needed to solve all possible

cases� having generalised from the training set to all possible cases� One of the simplest

methods of biasing GP towards generalising rather than memorising is to prefer smaller

trees to larger trees in the selection process� and is sometimes known as the principle

of Occam�s Razor� A standard approach used in Machine Learning is to train using

just the training set� and regularly test the best individual using the test set� stopping

when the performance on the test set begins to worsen� It has been hypothesised in

discussions within the GP community that GP is quite resistant to over�tting� Such

over�tting was not apparent during the runs of GP in this thesis� Best�of�generation

trees� performances on test sets were always still improving towards the end of runs if

the training performance was improving� Perhaps the runs never ran long enough to

reach a situation where the test performances would begin to worsen�

Looking further at the generalisation capabilities of smaller versus larger decision trees

�i�e� not speci�cally GP trees�� �Webb �
� questions the utility of Occam�s Razor! as

a guiding principle in Machine Learning� Starting with small� simple decision trees�

Webb adds complexity to them without a�ecting their performance on the training

sets� using only the training sets as a guide� then compares their performance on the

associated test sets� The larger trees generalise better� Whilst not demonstrating that

larger GP trees generalise better than smaller GP trees� Webb�s study does suggest

that the bias towards smaller trees should be considered carefully�

Nevertheless� despite possible good reasons for allowing GP trees to grow unbounded�

it is often impractical to let them do so� Some form of tree size restriction is necessary�

There are four main types of size restriction reported in the literature� two of which set

explicit size limits� one which edits trees to remove super�uous nodes� and one which

biases GP against selecting larger trees as parents�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

� A limit on the number of nodes in a tree

� each time a new tree is generated in the breeding stage� it is scanned� and the

number of nodes counted�

� A limit on the depth of a tree

� each time a new tree is generated in the breeding stage� it is scanned� and the

depth calculated� i�e� the longest path from the root node to any leaf node�

If the child tree size exceeds the limit� some form of default is applied� e�g� the child

tree is made into a simple copy of its parent� or the breeding step is repeated until it

generates a
legal� tree� or the too�large tree is pruned in some way down to size� Each

of these methods for dealing with the size limit has consequences for the direction of

the evolution of the GP population�

� Tree editing

� there are several ways of explicitly reducing the size of trees� �Soule et al� �
�

looks at the removal of known and obviously super�uous subtrees� Such subtrees

can be calculated in advance using the properties of the function set� However�

Soule et al then noted the spreading of super�super�uous subtrees� i�e� super�uous

subtrees which avoided the culling process�

Another� more subtle and directed form of editing is described in

�Blickle � Thiele ��� Blickle �
�� The edges of each GP tree traversed during

evaluation are marked� Unmarked edges are those which did not contribute to

the �tness of the tree� and those subtrees are replaced by randomly chosen ter�

minals�

� Parsimony

� a penalty is added to the �tness value of a tree proportional to its size� i�e�

trees with more nodes have a larger penalty included in their �tness values� This

method can function without any explicit upper limit on tree size� Instead� it

biases the selection of parents towards smaller trees� In e�ect it turns a GP

problem into a multi�objective optimisation problem� where the �tness of a tree

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r o

f n
od

es
 in

 B
es

t-o
f-g

en
er

at
io

n
tre

e

Generations

Spike and Decay with Parsimony: Plot of tree size of Best-of-generation tree

Number of nodes in tree

Figure ���� Spike and Decay with Parsimony � shows a typical pro�le of the tree size
of the best of generation individual� as parsimony provides a bias towards the selection
of smaller but equally �t variants of the best of generation individual �showing a decay
in tree size�� without hindering the discovery of new� �tter� but much larger trees�
�showing a spike in tree size��

depends both on its performance on a problem and on its size� The bias against

large trees can be made very weak when the size of the penalty is always less than

the smallest unit of �tness� In classi�cation problems this is easy to implement�

since the smallest unit would be �� corresponding to a misclassi�cation of a single

case� With a penalty factor of ����� �NumberOfNodesInTree� the parsimony

factor would only have an e�ect on two equally �t but di�erent sized trees� as

long as the trees never exceeded ��� nodes in size� For other problems with a

more �ne grained �tness function� a decision has to be made on the impact of

the parsimony on the �tness value�

�Zhang � Muehlenbein ��� looks at an adaptive balancing of accuracy and parsi�

mony!� a method for automatically varying the size of the parsimony penalty

according to the quality of the current best solution� The parsimony penalty

starts low� and is increased as the quality of the best solution increases�

In use� parsimony has the desired e�ect of restricting tree growth� During a

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

typical run� the trees expand quickly to a certain� problem �and parameter��

related size range� New� �tter trees which are the result of Crossover are often

much larger than the population average� These �tter trees will continue to be

selected� but any child trees which have the same �tness but fewer nodes� perhaps

through the action of a mutation operator snipping out a super�uous subtree�

will be preferentially selected�

Looking at Figure ���� a typical run taken from Chapter � on the TicTacToe

problem� showing the size of the best of generation tree as the generations pro�

gress� a spike�decay curve is evident several times during the course of this typical

run� The
spike� corresponds to the discovery of a �tter but very large individual�

The
decay� corresponds to the discovery of equally �t but smaller variations of

the tree� The �nal spike which occurs just before generation ����� coincides with

the discovery of an optimum tree which scores ���$ on the training set� As the

run continues� selection pressure favours smaller but equally �t variants of this

tree� resulting in a classic decay curve�

In practise� if the di	culty of the problem is not known� and it is likely that

the population will expand to exceed the memory allocation even with the bias

towards selecting smaller trees� parsimony is used in combination with one of the

explicit limits on tree size mentioned above�

In this thesis� every e�ort was made to allow the GP trees to expand without any

explicit limits� but with a weak parsimony factor biasing selection towards smaller

trees� With large populations� e�g� ����� in Section
� this was not possible� and an

explicit size restriction was needed� With smaller populations� e�g� ���� and ��� in

Sections � and �� there was su	cient memory to allow the trees to grow unbounded to

their
natural� size�

The MAX problem� described below� looks at the consequences of a strict upper limit

on tree size interfering with the actions of the Crossover operator when the trees in

the population have expanded close to the limit�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION

�	�	� The MAX Problem

The MAX problem was constructed speci�cally to investigate what happens when the

trees in a GP population expand to reach an explicit restriction on tree size� The

task is to �nd a tree which returns the largest possible value for a given terminal and

function set� with a depth limit� D� or a limit on the number of nodes� N� No trees are

allowed to exceed the size restriction� GP is given a maximum number of generations

�the cuto�� in which to �nd an optimal tree� after which it is considered to have failed�

The cuto� is made su	ciently large so as to give GP a good chance of �nding the

optimal tree before reaching the generation limit� In every successful run of the MAX

problem the number of generations needed to �nd the optimal tree was much less than

the cuto��

The MAX problem for GP is analogous to the Ones�Max problem for GAs�

�J�D�Scha�er et al� ���� where an individual consists of a �xed length binary string

�since GP uses a non�linear representation� this analogy can only be a very loose one��

and its �tness is simply the sum of its bit values� The optimal solution has all of its

bits set to on� Although a simple problem� in practice a GA�s population often con�

verges to a state where every individual has some bits set to o� in the same positions

as every other individual� if the chromosome is su	ciently long� Thus GA Crossover�

the usual method for recombining individuals where substrings are taken from two or

more parents to create a child� will result in new individuals with the same bits set

to o�� GA Mutation is then the only operator which can change the o� bits to on�

resulting in only a slow progression of the population towards discovering the optimal

solution� The process by which o��bits turn up at the same positions in each individual

in the population is known as hitch�hiking� and is a consequence of using the crossover

operator and selection� When substrings are recombined by Crossover to produce �t

individuals� the �t individuals get favoured by the selection process and any o��bits

get carried along for the ride� Soon all individuals in the population are the same as

or close copies of the �ttest individuals� all sharing the same o��bits�

For GP and the MAX problem� since the optimal trees will� by necessity� need to

extend to the maximum depth �or number of nodes�� the size restriction in the MAX

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

problem is obviously a more important factor than in most other GP problems� It

becomes apparent below that the interactions between the function and terminals sets�

size restriction� Crossover� and selection pressure� can combine to make it very di	cult

for GP to �nd an optimal tree� In fact� the problem can be considered deceptive for

GP� where the �tness contributions of subtrees discovered early on in the search lead

GP astray� away from discovering the necessary subtrees later on�

There are several advantages of the MAX problem for looking at GP as stated� results

are known quickly" the solution space is easy to visualise" the optimal trees are known

in advance" the problem can be varied and made more di	cult in small steps�

The MAX problem can be expressed as

� MAX�depth�D�fFunction SetgfTerminal Setg

� MAX�nodes�N�fFunction SetgfTerminal Setg

representing the two di�erent size restrictions� The di�erent versions of the MAX

problem covered in this thesis are as follows�

MAX�depth�D�fFunction SetgfTerminal Setg

The simplest form of the MAX problem is MAX�depth�D�f�gf�g� where the only

optimal solution �shown in Figure ���� for D � �� is a full tree of
��s and
��s� For a

given depth D� where the root node is counted as depth �� the maximum possible tree

value is �D� The depths tested are from � to ��

InMAX�depth�D�f�
�gfng� the
�� �times� function is of no use in terms of return�

ing large values unless both its arguments are greater than �� This requires the use

of the
�� function to add the small terminals together� creating values greater than

�� So the
�� function is most e�ective near the leaves of the tree� The
�� function

is most e�ective at the top of the tree� if su	ciently large values are returned by the

subtrees�

For MAX�depth�D�f�
�gf�g� the optimal tree� shown in Figure ��� for D � ��

consists of
��s in the bottom layer�
��s in the penultimate layer�
��s or
��s in the

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

+
1 1

+
+

1 1

+
1 1

+
+

+

1 1

+
1 1

+
+

1 1

+
1 1

+
+

+
+

1 1

Figure ���� Optimal Tree for MAX�depth���f�gf�g

+
1 1

++

*

+
1 1

+

* *

+
1 1

+ +
1 1

+
*+or *+or *+or *+or

1 1 1 11 1 1 1

Figure ���� Optimal Tree for MAX�depth���f���gf�g

++

*

++ ++ + + +

*+or *+or

+ + + +

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Figure ���� Optimal Tree for MAX�depth���f���gf�	
g

++ ++ ++ + + +

+ + + +

*+or

+ +

.25.25.25 .25.25 .25.25 .25.25 .25 .25.25 .25 .25 .25 .25

++ ++ ++ + + +

+ + + +

*+or

+ +

.25.25.25 .25.25 .25.25 .25.25 .25 .25.25 .25 .25 .25 .25

*

Figure ���� Optimal Tree for MAX�depth�
�f���gf�	�
g

CHAPTER �� GP TREE RECOMBINATION AND SELECTION
�

next�to�penultimate layer� and
��s in any layers above that� For a given depth D� the

maximum possible tree value is ��
D��

� where D �� �� and there are �D�� distinct

optimal trees� The depths tested are from � to
�

The MAX problem can be made progressively more di	cult for GP by decreasing the

size of the constant terminal �the reasons for this are described below in Section �������

To keep the arithmetic simple� the constants have been kept to inverse powers of ��

With MAX�depth�D�f�
�gf���g� the constant has been reduced from � to ����

and now an optimal tree consists of one more layer of
��s and one less layer of
��s�

The generic optimal tree is shown in Figure ��� for D � �� For a given depth D�

the maximum possible tree value is ��
D��

� where D �� �� and there are �D�� distinct

optimal trees� The depths tested are from � to ��

With MAX�depth�D�f�
�gf����g� the constant has been reduced again to �����

with an extra layer of
��s in the optimal tree as a consequence� shown in Figure ���

for D � ��

*
*

* * * * * *
**

*

/

/
/

/

.9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9

Figure ��
� Optimal Tree for MAX�depth���f���gf�	
g

The variationMAX�depth�D�f�
�gf��	g involves the
�� �divide� function instead of

the
�� function� The two functions�
�� and
��� must be combined together asymmet�

rically to create an optimal tree� The
�� function�s role becomes that of providing as

small a value as possible which� as the second argument of the
�� function� is turned into

a large value� The optimal tree for MAX�depth�D�f���gf���g� shown in Figure ��
 for

D � �� has a di�erent structure from the optimal tree for the MAX�depth�D�f���gfng

problems� Most of the tree layers consist of an unbalanced mix of the two functions�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

MAX�nodes�N�fFunction SetgfTerminal Setg

A subset of the variations described above are attempted with a restriction on the

number of nodes instead of depth� The optimal trees for the MAX�nodes�N variations

are more complex than for MAX�depth�D� For this reason� MAX�nodes�N�f���gf���g

is not investigated further here� since it isn�t immediately obvious what an optimal

tree would look like� For the other variations� MAX�nodes�N�f���gfng� the optimal

trees have been established� Unlike with the MAX�Depth�D versions� there are many

optimal trees for each problem� and the search spaces are much much larger�

*

*

+

+

+

.25 +

.25 +

.25 +

+

.25 +

.25 .25

.25

.25

+

+

.25 .25

.25

+

+

+

.25 .25

+

+

.25 +

.25 .25

.25

+

.25 +

+

.25 .25

.25

*

+

+

.25 +

+

.25 .25

.25

+

+

.25 .25

+

+

.25 +

.25 .25

.25

+

+

.25 +

+

.25 +

.25 .25

.25

+

.25 +

.25 +

+

.25 .25

.25

Figure ���� An optimal tree for MAX�nodes����f���gf�	�
g

One of the many optimal trees for MAX�nodes����f���gf����g is shown in Figure ����

As with the optimal trees for MAX�depth�D� the tree has
�� nodes near the root

joining subtrees consisting entirely of
��s and the constant ����� in this case� There

are �� terminal nodes� ��
��s� and �
��s� Three of the four f������g subtrees have

ten constants and nine
��s each� with a return value of ���� The other subtree has

eleven constants and ten
��s� with a return value of ����� The four subtrees are joined

by three
��s to give an optimal return value of ���� � ��� � ��� � ��� � ����
����

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

No set formula is given here for the tree structure or return value of an optimal tree

for each MAX�nodes�N problem� The proof of such a formula is not straightforward�

though it is made easier by sticking with the binary arity functions
�� and
��� The

problem of constructing provably optimal trees by hand is an interesting topic in its own

right� Instead� a quick enumeration algorithm was constructed to generate the struc�

ture and hence return value of an optimal tree for a given N� The following guidelines

can be used to speed up the algorithm to �nd an optimal tree�

A MAX�nodes�N�f���gfng tree can be viewed as

�n� n� n� ���� � �n� n� ��� � �n� n� n� n���� � ���

made up of some subtrees consisting only of
��s and
n�� combined together by some

��s� This can be written as

TreeV alue �
tY

i��

Si

where t is the number of subtrees� Si� containing only
��s and
n�s� and

Si �
CiX

�

n � n � Ci

where
n� is the value of the constant node� and Ci is the number of constant nodes in

subtree Si� with the following constraint on the total number of nodes to satisfy the

size restriction

t� � �
tX

i��

�Ci � Ci � �� � N

where N is the maximum allowed number of nodes� i�e� the number of
�� nodes joining

the t subtrees �i�e� t��� plus the sum of the number of
�� and
n� nodes in each subtree

must be no greater than N� An optimal tree would use all N nodes� assuming N is

odd� otherwise it could only use N�� nodes� being unable to incorporate the remaining

node into the binary tree �a binary tree can only have an odd number of nodes�� More

speci�cally� when N is odd�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

tX

i��

Ci �
N � �

�

since the number of terminal nodes is one greater than the number of function nodes

�with the proviso that the function nodes are binary�� All the remaining N��
� nodes

are function nodes� It is simple to show that if Ci � Cj � �� for some i and j� �i�e� one

subtree has at least two more constant nodes that another subtree�� the overall tree

value can be increased by decrementing the larger Ci and incrementing the smaller

Cj� Thus all the f��ng subtrees in an optimal tree have the same number of nodes�

or di�er only by one
�� and one
n�� For su	ciently small N� there is a cuto� point

where the optimal tree need contain no
�� nodes� For the values of the constant n

used here� i�e� �� ���� and ����� this cuto� point can be calculated from

n �
N � �

�
� �

i�e� when there are insu	cient nodes to construct a f��ng subtree with a return value

greater than �� If a f��ng subtree has a return value greater than �� it can be split

into two smaller f��ng subtrees� and combined using
�� to produce a greater return

value than before� For larger values of the constant n� an extra constraint would be

needed�

Using all the above criteria� a quick enumeration of the few remaining possibilities

for a given N results in a list of the number of terminal nodes in each f��ng subtree�

From here it is straightforward to calculate the optimal tree value� and the various

permutations of these subtrees to give all the optimal tree structures�

A MAX�nodes�N�f���gfng tree can be represented by a list of numbers� where each

element in the list is the number of constants in a f��ng subtree� The length of the

list gives the number of such subtrees� These subtrees are then combined by
�� nodes

to produce the �nal tree� For example� the list ������������� represents all the optimal

trees for MAX�nodes����f���gf����g� one of which is displayed in full in Figure ����

The total number of trees for a given list� such as �������������� can be calculated as

follows �making use of the algorithm for calculating the number of possible tree with a

given number of nodes� and for given function and terminal sets� shown in Section �����

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

Given the list of numbers of constants in subtrees� ��������������

subtree�� � �
��
� the number of subtrees with ��
n� nodes �and ��
�� nodes�

subtree�� � ��
�� the number of subtrees with ��
n� nodes �and �
�� nodes�

The number of ways of combining � subtrees and �
�� nodes� where � subtrees are the

same size� is the number of permutations of � objects �with � being identical� times

the number of ways of combining � subtrees �where each subtree can be considered as

a terminal node� and �
�� nodes� subtree��

SubtreePermutations � � � subtree� � � � � � ��

Thus the total possible number of trees from f�����������g is

NumberOfTrees � SubtreePermutations � subtree�� � �subtree���
� 	 � � ����

In Table ���� the optimal tree value� the number of possible optimal trees� the

number of trees possible up to and including the size limit� the list of sub�

tree sizes� and the list of subtree values� are given for a range of values of N

for the problem MAX�nodes�N�f���gf����g� A periodic variation is apparent in

the list of subtree sizes whose period increases as N increases� Table ���� for

MAX�nodes�N�f���gf���g� and Table ���� for MAX�nodes�N�f���gf�g� show similar

features to that for MAX�nodes�N�f���gf����g� The period of the cycle is shorter for

n � ���� and shorter still for n � �� due to the fact that the f��ng subtrees with larger

constants need fewer nodes to produce a su	ciently large return value for the
�� nodes

to be e�ective�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

Details of the optimal trees for MAX�nodes�N�f���gf����g� where �� � N � ��

N MAX Value Optimal Possible Constants Subtree
trees trees per subtree values

�� ��� ����e��� ����e��� �� ���
�� ���� ��
�e��
 ����e��� �� ����
�� �� ��
�e��
 ��
�e��� �
 �
�� ��� ����e��
 ��
�e��� � � ���� �
�� ���
�� ����e��
 ����e��� � � ���� ����
�� ��
�� ����e��� ����e��� �� � ��� ����
��
��� ���
e��� ����e��� �� �� ��� ���
��
���� ��
�e��� ����e��� �� �� ���� ���
�� ���
�� ����e��� ����e��
 �� �� ���� ����
�� ���� ����e��� ����e��� �� �� � ����
�� �� ���
e��� ����e��� �� �� � �
�� ���� ����e��� ����e��� �� �� ���� �
�� ����
�� ����e��� ����e��� �� �� ���� ����
�� ������
�� ����e��� ����e��� � � � ���� ���� ����
�� ���
�
�� ����e��� ����e��� �� � � ��� ���� ����
�� ����
�� ����e��� ���
e��� �� �� � ��� ��� ����
�� ���
�� ����e���
���e��� �� �� �� ��� ��� ���

� ������� ����e��� ����e��� �� �� �� ���� ��� ���

� �����
�� ����e��� ��
�e��� �� �� �� ���� ���� ���

� �����
��� ����e��� ����e��
 �� �� �� ���� ���� ����

� ���
��� ����e��� ����e��� �� �� �� � ���� ����

� ����� ����e��� ��
�e��� �� �� �� � � ����
�� ��� ����e��� ����e��� �� �� �� � � �
�� ����� ���
e��� ����e��� �� �� �� ���� � �
�� ���
��� ��
�e��� ���
e��� �� �� �� ���� ���� �
�� �����
��
���e��� ����e��� �� �� �� � ��� ��� ��� ����
�� ����
�� ����e��� ����e��� �� �� �� �� ��� ��� ��� ���
�� ����
��� ����e��� ����e��� �� �� �� �� ���� ��� ��� ���
�� ����
�
�� ����e��
 ���
e��� �� �� �� �� ���� ���� ��� ���
�� ���������� ����e��
 ����e��� �� �� �� �� ���� ���� ���� ���
�� ��������
�� ���
e��
 ����e��
 �� �� �� �� ���� ���� ���� ����
��
�����
�� ����e��� ����e��� �� �� �� �� � ���� ���� ����
��
���
�� ����e��� ����e��� �� �� �� �� � � ���� ����
�� ����� ���
e��� ���
e��� �� �� �� �� � � � ����
�� ��� ����e��� ����e��� �� �� �� �� � � � �
�� ������
�� ����e��� ����e��� �� �� �� �� � ��� ��� ��� ��� ����

Table ���� Details of the optimal trees for MAX�nodes�N�f���gf����g

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

Details of the optimal trees for MAX�nodes�N�f���gf���g� where �� � N � ��

N MAX Value Optimal Possible Constants Subtree
trees trees per subtree values

�� ���� �	
�e��� �	��e��
 �
�
� �	�
�	�
�

�� ������ �	��e��� �	�
e��� �
�
� �	�
�	�
�	�

�� ����� �	��e��� �	�
e��� �
�
� �
�	�
�	�

�� ���� �	��e��� �	�
e��� �
�
� �
�
�	�

�� ��� �	��e��� �	
�e��� �
�
� �
�
�

�� ���� �	

e��� �	��e��� �
�
� �	�
�
�

�� �
����� �	��e��� �	��e��� �
�
�
� �	�
�	�
�	�
�	�

�� ������ �	��e��� �	
�e��� �
�
�
� �
�	�
�	�
�	�

�� ����� �	��e��� �	
�e��� �
�
�
� �
�
�	�
�	�

�� ���� �	��e��� �	��e��� �
�
�
� �
�
�
�	�

�� ��� �	��e��� �	��e��� �
�
�
� �
�
�
�

��
������� �	��e��� �	��e��
 �
�
�
�
� �	�
�	�
�	�
�	�
�	�

�� �������� �	��e��� �	��e��� �
�
�
�
� �
�	�
�	�
�	�
�	�

�� ������� �	��e��� �	��e��� �
�
�
�
� �
�
�	�
�	�
�	�

�� ������ �	��e��� �	��e��� �
�
�
�
� �
�
�
�	�
�	�

�� ����� �	��e��� �	��e��� �
�
�
�
� �
�
�
�
�	�

�� ���������� �	��e��� �	��e��� �
�
�
�
�
� �	�
�	�
�	�
�	�
�	�
�	�

� �
��
���� �	��e��� �	��e��� �
�
�
�
�
� �
�	�
�	�
�	�
�	�
�	�

� �������� �	��e��
 �	��e��� �
�
�
�
�
� �
�
�	�
�	�
�	�
�	�

� ������� �	��e��
 �	��e��� �
�
�
�
�
� �
�
�
�	�
�	�
�	�

� ������
	��e��
 �	��e��� �
�
�
�
�
� �
�
�
�
�	�
�	�

� ����������� �	��e��� �	��e��� �
�
�
�
�
�
� �	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ���������� �	��e��
 �	��e��
 �
�
�
�
�
�
� �
�	�
�	�
�	�
�	�
�	�
�	�

�� ����
���� �	

e���
	��e��
 �
�
�
�
�
�
� �
�
�	�
�	�
�	�
�	�
�	�

�� ���������
	
�e��� �	��e��� �
�
�
�
�
�
� �
�
�
�	�
�	�
�	�
�	�

�� �������� �	

e��� �	��e��� �
�
�
�
�
�
� �
�
�
�
�	�
�	�
�	�

�� ��������
���� �	��e��
 �	��e��� �
�
�
�
�
�
�
� �	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ������������ �	��e��� �	��e��� �
�
�
�
�
�
�
� �
�	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ��
�������� �	��e��� �	��e��� �
�
�
�
�
�
�
� �
�
�	�
�	�
�	�
�	�
�	�
�	�

�� ���������� �	��e��� �	
�e��� �
�
�
�
�
�
�
� �
�
�
�	�
�	�
�	�
�	�
�	�

�� ��������� �	��e��� �	��e��� �
�
�
�
�
�
�
� �
�
�
�
�	�
�	�
�	�
�	�

�� ������
������� �	��e��� �	��e��� �
�
�
�
�
�
�
�
� �	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ������������� �	��e���
	��e��� �
�
�
�
�
�
�
�
� �
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ��
��������� �	�
e��� �	��e��� �
�
�
�
�
�
�
�
� �
�
�	�
�	�
�	�
�	�
�	�
�	�
�	�

�� ��
���
���� �	�
e��� �	��e��
 �
�
�
�
�
�
�
�
� �
�
�
�	�
�	�
�	�
�	�
�	�
�	�

�� �
�������� �	��e��� �	��e��� �
�
�
�
�
�
�
�
� �
�
�
�
�	�
�	�
�	�
�	�
�	�

��
�������������� �	�
e��� �	�
e��� �
�
�
�
�
�
�
�
�
� �	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�

Table ���� Details of the optimal trees for MAX�nodes�N�f���gf���g

CHAPTER �� GP TREE RECOMBINATION AND SELECTION �

Details of the optimal trees for MAX�nodes�N�f���gf�g� where �� � N �
�

N MAX Optimal Possible Constants Subtree
Value trees trees per subtree values

�� �� ����e���
���e��� ����� �����
�� �� ����e��� ����e��� ����� �����
�� �

���e��� ����e��
 ����� �����
�� �� ����e��� ����e��� ������� �������
�� �� ��
�e��� ����e��� ������� �������
�� ��� ��
�e��� ����e��� ������� �������
�� �
� ����e��� ����e��� ��������� ���������
�� ��� ����e��� ����e��� ��������� ���������
�� ��� ����e��� ��
�e��� ��������� ���������
�� ��
 ����e��� ��
�e��� ����������� �����������
�� ���
���e��� ����e��� ����������� �����������
�� ��� ��
�e��� ����e��� ����������� �����������
�� ���� ����e��� ����e��� ������������� �������������
�� ���� ����e��� ����e��� ������������� �������������
�� ���
 ����e��� ����e��
 ������������� �������������
�� ���� ����e��� ����e��� ��������������� ���������������
��
�
� ���
e��� ����e��� ��������������� ���������������
�� ���� ����e��� ����e��� ��������������� ���������������
�� ����� ����e��� ����e��� ����������������� �����������������
�� ��
�� ����e��� ����e��� ����������������� �����������������
�� �
��� ����e��� ����e��� ����������������� �����������������
�� ���

 ����e��� ���
e��� ������������������� �������������������
�� ����� ����e���
���e��� ������������������� �������������������

� ����� ���
e��� ����e��� ������������������� �������������������

� ������ ����e��� ��
�e��� ��������������������� ���������������������

Table ���� Details of the optimal trees for MAX�nodes�N�f���gf�g

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

�	�	� Crossover in GP

Crossover is part of the standard GP
package�� It is the most obvious and
natural�

method for recombining two trees to produce child trees� It is considered by some to be

the main power underlying the GP algorithm� and by others to be at best just another

form of Mutation and at worst an actual hindrance to GP� �Angeline ���� Whatever

its e�ectiveness� Crossover appears in virtually every description of GP� and every

implementation of GP� It is the operator with which most newcomers to GP begin�

The standard crossover operator in GP� as described in Section ���� given two parent

trees� can in theory bring a subtree from anywhere in one parent tree and swap it with

a subtree anywhere in the other parent tree to produce two new child trees containing

a mixture of genetic information from both parent trees� There are no restrictions

on the selection of subtrees� Any node in either tree can be chosen as a crossover

point� though occasionally there are biases in favour of non�terminal nodes� There

is no direct equivalent of a static location as with genes in a chromosome in a GA�

Thus� if a particular node� e�g� a
���node� appears anywhere within any tree in the GP

population� then it is possible for GP Crossover �assuming such a tree is ever selected to

be a parent� to spread that particular node to anywhere in a tree in the next generation�

Only when that particular node disappears from all trees in the population� will GP

Crossover be unable to spread it into the next generation�

In a typical GP setup� operators such as Crossover work with some idea of a maximum

allowed depth or maximum number of nodes allowed for each tree in the population�

as described above in Section ������ A consequence of this restriction on tree size is

that the crossover operator may no longer be able to swap all possible pairs of subtrees

between two parents and still produce
legal� trees� This e�ect is minimal when the

population consists only of trees much smaller than the size limit� but becomes more

marked as GP trees usually tend to increase in size in later generations�

There are many simple ways of dealing with Crossover�s propensity for producing illegal

trees� as mentioned above in Section ������ The simplest is to select just one of the

two child trees� at least one of which is guaranteed to be legal� and is the method used

here� Other methods include reselecting the crossover points in some way until both

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

children are legal� pruning over�large trees� or default to making the children identical

copies of their parents� Thus� in practice� Crossover in GP is not free to move just any

subtree to any part of another tree� The tree size restrictions limit the e�ectiveness

of Crossover and� as discussed below� can hinder GP�s discovery of better trees via

Crossover�

In normal use� Crossover is used along with other operators� usually some forms of

Mutation� creating one o�spring from one parent �ascertained after many discussions

and examining the literature�� One oft used type of Mutation operator randomly

generates a new subtree in a parent tree to produce a child� This method is useful since

it can introduce small e�ective subtrees to a population but is not likely to introduce

large e�ective subtrees� Another form of mutation operator replaces an individual

node in a parent tree with another node of the same arity to produce a child� This

method is useful for reintroducing nodes back into a population� But� unless the

population can make immediate use of them� Selection will probably wipe them out

in the next generation� In the case of MAX�depth�D�f���gf���g� �see Figure ���� this

would speedily bring about the discovery of the optimal tree since replacing a high�level

���node with a
���node creates a �tter tree� Looking at MAX�depth�D�f���gf���g�

�see Figure ��
�� the left�hand side of the trees often requires the introduction of large

e�ective subtrees which are unlikely to be created by mutating a subtree and would

not be created by mutating an individual node� Thus incorporating either or both of

the mutation operators as described above would not help GP �nd the optimal tree�

�	�	� Experiment Details

The MAX�depth�D variations discussed in this section are f�gf�g� f���gf�g�

f���gf���g� f���gf����g� and f���gf���g� The depths are between � and �� where

the upper depth limit depends on the size of the optimal tree value over�owing the

�oating�point representation� or complete failure by GP at smaller depths� Fifty runs

were made for each variation� with the only operator being Crossover� These runs were

then divided according to whether or not they were successful� as detailed below in Sec�

tion ������ For comparison� MAX�depth�D�f���gf���g and f���gf���g were repeated

with the addition of the mutation operators mentioned above in Section ������ Their

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

selection frequencies were�
�$ Crossover" ��$ Mutate Node" ��$ Mutate Subtree�

An e�ort was made to keep the GP used here simple since the aim was to demonstrate

some qualitative aspects of the crossover operator� and not to strive for optimal GP

performance� The implementation used generational replacement with elitism on a

population size of ���� A tournament of size
 was used with the MAX�depth�D runs�

With hindsight this tournament size is probably too large with a population size of only

��� for GP to perform as well as it could� but many of the runs were successful despite

this� A tree�s �tness is the maximum possible return value minus the tree�s return

value� Thus a �tness score of zero is optimal� with worse �tnesses being large and

positive� Standard crossover was used� with two parents producing one child� where all

trees were limited to a maximum depth D� A crossover point was chosen by randomly

selecting one node from all of the nodes in a tree� Crossover could have been made

more likely to produce a child di�erent from its parents by requiring that at least one

of the crossover points in the two parents was a function �i�e� non�leaf� node� since all

terminal nodes were identical� Runs were stopped after ��� generations as failures� or

earlier as successes if the optimal tree was produced�

For the MAX�nodes�N variations� f���gf�g� f���gf���g� f���gf����g� the population

size was kept at ���� but the tournament size was reduced to �� after early results

indicated that GP was often failing to �nd the optimal trees� Reducing the selection

pressure in this way did improve GP performance by a small amount� Just the results

involving tournament size � are described in detail below� Since the MAX�nodes�N

problems are apparently substantially harder for GP than the MAX�depth�D problems�

GP was set a later cuto� at ���� generations� Most of the successful runs �nished well

before the cuto� generation� Those that discovered an optimal tree close to the cuto�

had shown no signs of improvement for many hundreds of generations before that�

making it fairly safe to conclude that the discovery of the optimal tree was a chance

event due to an extremely unlikely but successful mutation of all or most of a tree� As

with the MAX�depth�D variations� the size restriction was raised as high as possible so

that the optimal tree values did not exceed the machine�speci�c limits of the �oating�

point representation used� For su	ciently small N� the MAX�nodes�N problem is

trivial� with GP usually discovering an optimal tree in generation �� i�e� when trees are

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

initially generated at random� Also� as with the MAX�depth�D variations� the runs

were repeated with the addition of the Mutation operators� leading to over ������ runs

being carried out�

�	�	
 Results

Performance of GP on MAX�depth�D

The average number of generations for the successful runs for each of the variations

of the MAX�depth�D problem� in Figure ���� shows the MAX problems increasing in

di	culty for GP with increasing depth� unsurprisingly�

The percentage of runs which ended in failure� shown in Figure ����� increases rapidly

with depth for all but MAX�depth�D�f���gf�g and f�gf�g� The populations in these

failed runs reached a state where it was impossible or extremely unlikely to produce

the optimal tree� The populations in successful runs were� in e�ect�
lucky� to discover

the optimal trees before the disappearance of crucial subtrees from the populations�

Adding the mutation operators� shown in Figure ���� has helped

MAX�depth�D�f���gf���g to achieve ���$ success at all the depths tested �and

similarly for MAX�depth�D�f���gf����g� though it is not shown on the graph�� The

MAX�depth�D�f���gf���g runs� on the other hand� still have di	culty in �nding the

optimal trees� Looking at the runs which failed� the entire population had usually

converged to be a duplicate �or very close copy� of the
best of run� tree�

Typical sub�optimal trees found for MAX�depth�D

The following trees exemplify the sub�optimal trees discovered by GP in the variations

of the MAX problem �where depth � refers to the root node��

For MAX�depth���f�
�gf���g� the
best of run� tree shown in Figure ���� is not

very di�erent �in terms of node changes� from the optimal tree� Each node at depth �

is a
�� instead of a
��� However all the �t trees in the population also had no
���

nodes in this layer� and were all the same size and shape �i�e� full to depth ��� The

only
���nodes in the population were at depth �� Given this situation� Crossover is no

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

0

50

100

150

200

3 4 5 6 7 8A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

G
e
n
e
r
a
t
i
o
n
s

Depth

Average Number of Generations needed for Successful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}

MAX-depth-D-{+,*}-{.5}
MAX-depth-D-{+,*}-{.25}
MAX-depth-D-{/,*}-{.9}

Figure ���� Average number of generations needed by the successful MAX�depth�D
runs using Crossover� showing di	culty increasing with depth

0

20

40

60

80

100

3 4 5 6 7 8

S
ta

nd
ar

d
D

ev
ia

tio
n

Depth

Standard Deviation of Number of Generations needed for Successful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}

MAX-depth-D-{+,*}-{.5}
MAX-depth-D-{+,*}-{.25}

MAX-depth-D-{/,*}-{.9}

Figure ���� Standard Deviation of number of generations needed by the successful
MAX�depth�D runs using Crossover� showing di	culty increasing with depth

longer able to improve on
best of run� tree� An operator which mutated individual

nodes could easily construct a �tter tree from this one�

For MAX�depth���f�
�gf��	g� the
best of run� tree shown in Figure ���� needs

two more
���nodes down the left�most side to become the optimal tree� Given that all

the �t trees in the population came to be duplicates of this tree� Crossover could not

improve upon it� Any subtree not containing a
���node would have a smaller value

than the
����node at depth �� and thus would result in the whole tree having a smaller

�tness� The only
���nodes are to be found at depths �� �� and �� and Crossover cannot

bring those subtrees down to start at depth � since that would create an illegal tree�

An operator which mutated subtrees might be able to construct a �tter tree from this

one�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8

P
e
r
c
e
n
t
a
g
e

F
a
i
l
u
r
e

Depth

Percentage of Unsuccessful MAX runs

MAX-depth-D-{+}-{1}
MAX-depth-D-{+,*}-{1}

MAX-depth-D-{+,*}-{.5}
MAX-depth-D-{+,*}-{.25}
MAX-depth-D-{/,*}-{.9}

Figure ����� Percentage of MAX�depth�D runs failing� using Crossover

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8

P
e
r
c
e
n
t
a
g
e

F
a
i
l
u
r
e

Depth

Percentage of Unsuccessful MAX runs involving Mutation

MAX-depth-D-{+,*}-{.5}
(Mutation)-MAX-depth-D-{+,*}-{.5}

MAX-depth-D-{/,*}-{.9}
(Mutation)-MAX-depth-D-{/,*}-{.9}

Figure ����� Percentage of MAX�depth�D runs failing �dashed lines�� using Crossover
only ��� and Mutations ���� and Percentage of MAX�depth�D runs failing �solid lines��
using Crossover only ��� and Mutations �x�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

*

++ ++ ++ + + +

+ + + +
+ +

+

++ ++ ++ + + +

+ + + +
+ +

+

.5 .5

Figure ����� Sub�Optimal tree for MAX�depth���f���gf���g

*
* *

/
/

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

* * * *
**

*

.9 .9 .9 .9 .9 .9 .9 .9

*
/

.9 .9 .9 .9

.9

Figure ����� Sub�Optimal tree for MAX�depth���f���gf���g

Performance of GP on MAX�nodes�N

As with the results for MAX�depth�D above� the results for the variations of the

MAX�nodes�N are in two main sets of �gures� The average number of generations

needed by the successful runs are shown in Figures ���� to ����� Although there were

�� runs for each N and sets of operators with and without Mutation� the averages

shown for MAX�nodes�N�f���gf����g and MAX�nodes�N�f���gf���g become very er�

ratic and e�ectively meaningless for larger values of N� since so few runs were successful�

If there were no successful runs for a particular N� then that point doesn�t appear in the

graphs� Many of the points for large N which do appear� correspond to very few suc�

cessful runs� often only one successful run� The averages for MAX�nodes�N�f���gf�g

show both that few generations were needed� and that the addition of the Mutation

operators actually hinders GP for this particular variation� sometimes doubling the

number of generations needed� The averages for MAX�nodes�N�f���gf���g without

Mutation show a rapid increase in the number of generations needed up to N�����

whereas for MAX�nodes�N�f���gf���g with Mutation the generations needed by suc�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

*

*

+

+

+

+

+

.25 +

.25 .25

+

+

+

.25 .25

+

+

.25 .25

+

.25 .25

.25

.25

.25

+

.25 .25

+

+

.25 +

.25 .25

+

.25 +

+

.25 +

.25 +

+

+

.25 .25

.25

.25

+

+

.25 .25

.25

+

+

.25 .25

+

.25 +

.25 +

+

+

+

.25 .25

.25

+

.25 .25

+

+

+

+

.25 .25

.25

.25

.25

Figure ����� A Sub�Optimal tree for MAX�nodes����f���gf����g� with error ����
���

cessful runs rises much more slowly� The averages for the MAX�nodes�N�f���gf����g

runs both with and without Mutation also rise slowly�

Figures ���� to ���
 show the percentage of runs which ended in failure� These graphs

are statistically more reliable than the ones mentioned above for average genera�

tions to success� Each point is a value averaged over �� runs� The two graphs for

MAX�nodes�N�f���gf�g in Figures ���� and ���
 show that this version of the MAX

problem is very easy for GP both with and without the Mutation operators� The

graphs for the average generations to success� in Figures ���� and ����� show that GP

needs few generations to successfully �nd an optimal tree� The optimal trees for this

problem consist of many small f��ng subtrees joined by many
�� nodes� GP quickly

discovers these small subtrees� and the subproblem of putting them together optimally

is quite simple�

The sets of graphs for MAX�nodes�N�f���gf����g and MAX�nodes�N�f���gf���g� on

the other hand� show some distinctive features� Both the graphs showing failures and

the graphs showing average generations to success show a periodic variation in di	culty

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

as N changes� Looking at both the graph in Figure ����� showing the percentage

failures of the MAX�nodes�N�f���gf����g runs� and Table ���� indicating the structures

of the optimal trees� it is apparent where the periodic variation comes from� As N

increases� each sudden jump in the percentage failure corresponds to an increment in

the number of f��ng subtrees in the optimal solution� Reading from the table� for

N���� the �rst optimal subtree structure with three f��ng subtrees is �������� and the

next time the number of f��ng subtrees increases �to four� is for N���� These two

values of N correspond to the �rst two spikes in the graph� Similarly� each spike after

that corresponds to the next increase in the number of f��ng subtrees in the optimal

solution� The relative di	culty of the MAX problem is related to the distribution of

sizes of f��ng subtrees in the optimal tree and the sizes of f��ng subtrees which GP

is likely to construct�

Regarding the impact of the Mutation operators on GP�s performance� for small N �up

to around ���� the addition of the Mutation operators corresponds to a much lower fail�

ure rate for both MAX�nodes�N�f���gf����g and MAX�nodes�N�f���gf���g� For lar�

ger N� GP can be seen to have bene�ted greatly from the addition of Mutation operators

in MAX�nodes�N�f���gf����g� The periodic variation in di	culty is more obvious� but

there are many more successes as N increases all the way to ���� Somewhat confus�

ingly� the same improvement for large N is not apparent in MAX�nodes�N�f���gf���g�

Instead� it appears that the addition of Mutation operators has actually hindered GP

for larger N� with GP performing worse than without Mutation�

Typical sub�optimal trees found for MAX�nodes�N

The sub�optimal trees discovered for MAX�nodes�N�f���gf����g and

MAX�nodes�N�f���gf���g follow a common theme� A typical sub�optimal tree

is shown in Figure ���� for MAX�nodes����f���gf����g� Whereas the optimal tree

should be of the form �������������� shown in Figure ��� and discussed in ������

i�e� with four subtrees containing ��� ��� ��� and ��
����� nodes� the sub�optimal

tree shown in ���� is of the form ����������� It contains fewer but larger subtrees�

producing a slightly smaller return value than the optimal tree� In fact� all of the

sub�optimal trees discovered by GP were of this form� containing one fewer subtree

CHAPTER �� GP TREE RECOMBINATION AND SELECTION �

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover

Figure ����� Average number of generations needed by the successful
MAX�nodes�N�f���gf����g with Crossover

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover

Figure ���
� Average number of generations needed by the successful
MAX�nodes�N�f���gf���g with Crossover

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover

Figure ����� Average number of generations needed by the successful
MAX�nodes�N�f���gf�g runs with Crossover

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover and Mutations

Figure ����� Average number of generations needed by the successful
MAX�nodes�N�f���gf����g runs with Crossover � Mutations

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover and Mutations

Figure ����� Average number of generations needed by the successful
MAX�nodes�N�f���gf�	
g runs with Crossover � Mutations

0

500

1000

1500

2000

2500

0 50 100 150 200 250A
ve

ra
g
e
 G

e
n
e
ra

tio
n
s

to
 O

p
tim

a
l T

re
e

Nodes N

Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations

Figure ����� Average number of generations needed by the successful
MAX�nodes�N�f���gf�g runs with Crossover � Mutations

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover

Figure ����� Success of MAX�nodes�N�f���gf�	�
g runs with Crossover

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover

Figure ����� Success of MAX�nodes�N�f���gf�	
g runs with Crossover

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{1} runs with Crossover

Figure ����� Success of MAX�nodes�N�f���gf�g runs with Crossover

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover and Mutations

Figure ����� Success of MAX�nodes�N�f���gf�	�
g runs with Crossover � Mutations

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover and Mutations

Figure ����� Success of MAX�nodes�N�f���gf�	
g runs with Crossover � Mutations

0

20

40

60

80

100

0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 F

a
ilu

re
 (

o
f
5
0
 r

u
n
s)

Nodes N

Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations

Figure ���
� Success of MAX�nodes�N�f���gf�g runs with Crossover � Mutations

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

than the optimal tree� It is not possible for Crossover to produce a �tter child tree

from two trees of this form� It is not possible for mutating a single node to produce

a �tter child� It is possible but extremely unlikely that mutating an entire new tree

could produce an optimal tree� but that applies in all situations where such a mutation

is being used� To construct a �tter tree� using the sub�optimal tree as a basis� each of

the large f��ng subtrees would have to be modi�ed �i�e� pruned� and a new subtree

added �using the pruned nodes�� joined to the main tree via a
�� node�

�	�	� Analysis of Crossover

This section presents a simple analysis of the crossover operator in GP� showing its

likely impact on GP trees where there is a restriction on tree depth� and the population

consists of
full� trees� i�e� trees which have �lled out to the maximum allowed depth�

This situation is frequently reached whilst tackling the MAX�DEPTH problems� The

following calculations apply to GPs with function sets involving functions of arity of

two� e�g� like the MAX problems� If the largest function arity is greater than �� the

problem is exacerbated�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

D � the maximum tree depth

l � tree layer� from � �the root node� to D

Ll � the number of nodes in layer l

� �l� where � � l � D

Nl � the number of nodes in all layers from � to layer l inclusive

�
Pl

j�� Lj �
Pl

j�� �
j � �l�� � �

ND � the total number of nodes in a tree of depth D

� �D�� � �

C�any�
l
� the likelihood of any node�s� in a tree� in layer l� experiencing some crossover

activity� i�e� when a crossover point occurs in any layer from � to l

�
Nl
ND

� �l����
�D��

��
	 �l��

�D�� � �

�D�l

C�layer�
l
� the likelihood of crossover occurring within a layer l� i�e� when the two

crossover points are in the same layer

�
L�
l

N�
D

� ��l
��D��

����
	 ��l

��D�� � �

���D�l���

C�� legal o�spring� � the likelihood of crossover� based on a random choice of cross�

over points� producing two legal o�spring

� legal
total

�

PD

j��
L�j

N�
D

�

PD

j��
��j��

��D��
����

	

PD

j��
��j

���D���

	 ��D

���D��� �
�
� � for large D

Looking at C�any�l shows that the upper layers receive relatively little attention from

the crossover operator� especially as the trees grow large� In the MAX problem as used

here� the tree sizes in question are fairly small �e�g� D�
�� even so the upper tree layers

are mostly una�ected by Crossover�

Looking at C�layer�l shows how an exchange of subtrees within the upper layers is

much less likely again� This implies that there is little or no spread of subtrees within

the upper layers in later generations�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

Looking at C�� legal o�spring� shows that Crossover will frequently produce illegal

o�spring once the trees in the population �ll out� For each pair of o�spring produced

by Crossover in this way� there will always be at least one legal o�spring� but there is

a high probability that the other will be illegal� Either this illegal o�spring has to be

modi�ed in some way or simply take just one o�spring from each crossover operation�

Given two full trees� selecting just one o�spring produced by Crossover will mean either

that subtrees were swapped between the same layer in each tree� or that a subtree from

a lower level has been raised to a higher level� It is impossible for a subtree from a

higher level to be brought down to a lower level and still produce a legal tree� since it

would exceed the depth limit� Thus Crossover� producing a single o�spring from each

pair of parent trees� operating on a population of full trees� will produce o�spring in

the next generation in the following manner�

� mostly through the exchange of low level subtrees

� some through the raising of a low level subtree to a higher level

� very few through the exchange of high level subtrees

� none through the lowering of a high level subtree to a lower level

If subtree discovery takes place in the lower levels� Crossover would be very e�ective

at spreading these new subtrees through the population� If� on the other hand� im�

provements in subtrees solely or largely take place in the higher levels� Crossover will

be very slow to spread these new subtrees through the population�

�	�	� Discussion of MAX problem

The analysis in Section ����
 highlights one of the main biases that Crossover brings

to GP� even without considering populations of full trees� Subtree discovery and the

spread of subtrees takes place at lower levels� mostly involving the leaf nodes� The

e�ectiveness of this is highly dependent on the problem in hand� Immediately bene�cial

subtrees are quickly spread within the trees and through the population� at the expense

of other subtrees of less immediate bene�t� For MAX�depth�D�f�gf�g� this results in

a speedy discovery of the optimal tree�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

The situation mentioned above for Crossover in general is made worse when a tree

depth restriction is incorporated� Whilst the GP population consists of trees which are

shallower than the depth restriction� it is still possible� though unlikely for Crossover

to move subtrees around freely� When the trees have expanded to reach the depth

restriction� the situation changes� The only movement of subtrees possible via Cross�

over is from lower levels to higher levels or within the same level� In the case of the

other MAX problems� such as MAX�depth�D�f���gf���g� this can result in a purging

of
���nodes from the population� perhaps only leaving a few of these function nodes in

the higher levels of some of the trees� where they will remain relatively untouched� The

bene�t of these nodes only emerges after the trees reach an appreciable size� by which

time it is unlikely or impossible that they can be spread by Crossover� Once the trees

have reached the depth limit� the only way the higher levels are a�ected is through

the promotion of lower level subtrees� which contain no
���nodes� and the movement

of subtrees within the same level� If there are no
���nodes in any tree at a particular

high level� it is now impossible for Crossover to introduce a
���node to this level" the

population has e�ectively converged to being duplicates of a sub�optimal tree� and no

further improvement is possible� Langdon and Poli�s study of the MAX�DEPTH prob�

lem ��� show�s� that this can happen even when the population retains a high level of

variety and show that in many cases evolution from the sub�optimal solutions to the

solution is possible if enough time is allowed!� �Langdon � Poli ����

Results from the MAX�nodes�N runs show some characteristics similar to the

MAX�depth�D results� Early loss of
�� nodes from the lower levels hinders the search

for the optimal tree later on� Until the trees reach an appreciable size� the �tter subtrees

are those which contain more
���nodes� Only after gaining large
���subtrees does it

become worthwhile to have high level
���nodes� After gaining high level
���nodes� it

then becomes worthwhile to have more but smaller
���subtrees which would involve

altering all of the large
���subtrees simultaneously� Making just one
���subtree a

little smaller would simply lower the �tness of the tree� Thus the trees are trapped in

a sub�optimal form�

A scan of published papers has indicated that this restriction on the number of nodes is

used more often than a maximum tree depth� since it lends itself well to various memory

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

and CPU�e	cient GP implementations� The trees in a GP population still expand

with the generations� quickly reaching their size limit� At this stage� Crossover a�ects

mainly the peripheral �i�e� leaf� nodes� and becomes unable to modify upper levels of

the trees e�ectively� although perhaps not as often as with the depth restriction�

Further runs� tracking the number� distribution� and location of
�� nodes throughout

the population should make the pattern of loss of
�� nodes more explicit�

Modi�cations to Crossover Several other investigations have focussed in some

way on Crossover in GP� �Rosca ��� looks at causality in GP� relating the changes

in the structure of GP trees caused by Crossover with changes in the properties of

the trees� �D�haeseleer ��� looks at context preserving Crossover in GP� attempting

to ensure that swapped subtrees will still be e�ective� This moves away from the

more �uid approach proposed by Koza� Instead of allowing any and all combinations

of functions and terminals� D�haeseleer removes the closure constraint� allowing sev�

eral di�erent data�types� only allowing nodes of the same data�type to be brought

together� With less �exibility� GP has fewer opportunities to construct inappropri�

ate trees� �O�Reilly � Oppacher ��a� looks at hybrids of operators such as Crossover

and Hill Climbing� maintaining that these mutation�based operators can match or

outperform basic Crossover� �Lang ��� shows how mutations and simple hill climbing

can perform better than GP with Crossover� calling into question the e�ectiveness of

Crossover and the population�based approach of GP�

There is no doubt that it should be possible to modify Crossover or its use so that it

is more likely to result in the discovery of optimal �or at least better� solutions in the

MAX problem� even if this is at the expense of speed on those problems where it does

well already� In practice� where the focus of a paper is not on the operators themselves�

standard� Crossover still seems to be used as one of the main GP operators� usually in

combination with other operators such as Mutation� More attention should be paid to

ensure that the other operators are capable of overcoming Crossover�s shortcomings�

Simple mutation operators have been shown here to be insu	cient� Using very large

population sizes to boost Mutation�s chance of constructing large useful subtrees only

obscures the problem�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

The method of selecting crossover points could be modi�ed to ensure that the tree layers

get a more even spread of crossover activity� �Koza ��� uses Crossover where internal

nodes have a ��$ chance of being selected as a crossover point compared with ��$ for

leaf nodes� However� the higher tree levels will still experience much lower crossover

activity than the lower levels� It might be better to scale the selection probability

according to depth or the number of nodes in each level� perhaps targeting sections

of tree which have a low node variance across the population� but this requires extra

processing� and the identi�cation of important tree sections would likely be somewhat

problematic�

For the purposes of enabling GP to solve the MAX�depth�D problem more easily�

there is one operator action in particular which will obviously be highly e�ective� It

could be considered as a form of Mutation� or incorporated into a form of Crossover�

Either way� the operator would select a point near the root of a parent tree� copy the

subtree below this point� and insert it at a point further away from the root� replacing

the subtree there� Excess nodes would be pruned o�� so that the resulting child tree

satis�ed the size constraints� The consequences of this operator would be to counter

the main weakness of standard Crossover in the MAX problem� i�e� its inability to bring

subtrees down to the lower levels� and would enable the downward spreading of the

�� nodes� This would certainly result in a very much higher success rate �if not ���$

success� in the MAX�depth�D problems� and would probably help in MAX�node�N�

This operator� whilst undoubtedly e�ective with the MAX�depth�D problems� is also

likely to be useful for other GP problems where nodes near the root are crucial at lower

levels� as well counteracting Crossover�s main weakness mentioned above�

However� with MAX�node�N� there is another di	culty to overcome� where the sub�

optimal trees have several large f��ng subtrees� but the optimal trees have one or more

f��ng subtrees all of which are smaller� To move from such a sub�optimal tree to an

optimal tree� all of the large subtrees have to be modi�ed and a new subtree added� all

in a single operator step� otherwise the resulting child tree� though
nearer� to being an

optimal tree� will have a lower �tness� and is thus unlikely to be chosen as a parent� An

operator which explicitly corrected for this occurrence is unlikely to be useful for other

GP problems� unless they are known to have similarly deceptive sub�optimal trees�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION �

The simplest approach for avoiding the e�ects of Crossover is not to use it� instead

relying on an assortment of Mutation operators� It would be a worthwhile extension of

the MAX runs so far to see what happens without Crossover� A hypothesis is that the

MAX�depth�D problems would be solved more slowly� but with a much higher success

rate� and that the success rate on the MAX�nodes�N would also increase� though there

might still be the di	culty with discovering the sub�optimal trees with fewer and larger

subtrees than the optimal trees�

For problems where tree size is part of the solution� allowing unlimited tree sizes

is obviously not applicable� For others� where the optimal tree sizes are unknown�

parsimony �penalising large trees� appears to work well� especially when it is used

only to discriminate between trees which would otherwise have the same �tness �this

impression has been gleaned from many experiments and communications with other

GP practitioners�� Thus trees can grow as large as is needed to do better on a problem�

and Crossover can operate in an unrestricted fashion� but there is continual selection

pressure for smaller trees which do just as well�

�	�	� Summary

The MAX problems for GP show how the crossover operator and selection can be

directly responsible for loss of diversity of nodes within the upper tree levels within a

population� leading to premature convergence to a sub�optimal solution or very very

slow improvement in solutions� When used in combination with a restriction on tree

depth� the premature convergence becomes irreversible� Subtree discovery and move�

ment takes place mostly near the leaf nodes� with nodes near the root left mostly

untouched� Diversity drops quickly to zero near the root node in the tree population�

resulting in GP being unable to create
�tter� trees via the crossover operator� The ad�

dition of simple mutation operators is not su	cient to overcome these problems� Care

should be taken to ensure that the spread of subtrees throughout the GP population

is not sti�ed by Crossover�

When used in combination with a restriction on the number of nodes in a tree�

the population converges on trees with a sub�optimal structure� It is this struc�

ture rather than the loss of
�� nodes which renders GP from getting any closer to

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

discovering an optimal tree� The sub�optimal structure involves fewer and larger

f��ng subtrees� which are rapidly spread through the population� at the expense of

the smaller f��ng subtrees which are needed for constructing an optimal tree� For

MAX�nodes�N�f���gf���� or ���g� the failure of GP is not necessarily due to Cross�

over and selection� This MAX problem is quite deceptive� with larger f��ng subtrees

returning larger values�

This should not be taken as an attack on the crossover operator and GP� or a claim that

the MAX problem epitomises all GP problems� Instead it gives a better understanding

of how Crossover works in practice� often in combination with tree size restrictions�

and enables the user to be aware of its potential failings�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

��� Tournament Selection

This section looks at Tournament Selection� the method used in this thesis for picking

individuals from the GP population to be used as parents in creating the next genera�

tion of individuals� The aim is to �nd ways of speeding up GP for supervised learning

tasks� perhaps by reducing the population size� memory requirements� or number of

�tness evaluations� A brief survey of a variety of selection methods in Section ����� is

followed by an explanation of why Tournament Selection was chosen here� Section �����

looks at some consequences of using Tournament Selection� A much more substantial

but somewhat opaque study of a variety of selection methods� including Tournament

Selection� can be found in �Blickle � Thiele ���� Blickle and Thiele take an in�depth

look at the behavioural characteristics of the various selection methods� proving nu�

merous theorems along the way� An earlier study of several common selection schemes

can be found in �Goldberg � Deb ���� The study below is much simpler and more

straightforward�

�	�	� Various Selection Methods

Reasons for Selection

There are two stages in the GP algorithm where individuals are selected from the

current population� selecting parents� and selecting individuals to be replaced�

Selecting for Replacement

There are two main methods of replacing individuals in GP�

Steady�State� and Generational�

In Steady�State Replacement� once a new child has been created and evaluated� a

decision is made on whether to insert the child into the population� displacing an

existing individual� or to discard the child� Several alternatives have been used in the

literature�

� replace worst � discard the worst existing individual

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

� replace at random if child is better � choose an individual at random and discard

it if it is worse than the child� otherwise discard the child

� replace parent if no worse � discard the parent if the child is no worse

� etc ��� There are numerous other variations

In Generational Replacement �the method used in this thesis�� on the other hand� the

entire population is replaced by a completely new generation of individuals� avoiding

all the replacement decisions mentioned above� but usually requires the addition of

Elitism� Elitism is simply the explicit copying of the best individual in the current

generation into the next generation� ensuring that the population does not lose its

previous best individual� Steady�State Replacement is implicitly elitist since the best

individual would never be discarded� For GP� �Koza ��� recommends the use of Over�

Selection� a more extreme version of Elitism� This is considered necessary since GP

tends to produce a large proportion of very un�t individuals� The top ��$� say� of

individuals in the current population are explicitly copied into the next generation�

and only they are used as parents to create the rest of the population� discarding the

worst ��$ before the breeding stage� This approach is similar to that used in some

Evolution Strategies� �B#ack et al� ����

Selecting Parents

There are numerous approaches documented in the literature for selecting parents

from a population in GA�type algorithms� Typically there is a bias towards selecting

�t individuals more frequently than un�t individuals� Three of the main types are as

follows�

Roulette�Wheel Selection was one of the earliest methods� described in

�Holland ���� where an individual�s chance of being selected is related to its �tness

�a form of Fitness�Proportionate Selection�� This method has fallen out of favour

due to the fact that it is easily swayed by
super���t individuals in a population�

If an individual has a substantially higher �tness than the rest of the population

it will dominate the breeding process� Likewise� if the population has a high

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

average �tness� there will be little di�erence between individuals over likelihood

of selection� so there will be no e�ective bias in favour of �tter individuals� In

order to avoid these problems� extra processing is needed to re�scale the �tness

values�

Rank�based Selection involves sorting the entire population in terms of �tness� Now

an individual�s chance of being selected is proportional to its rank in the popu�

lation� i�e� a higher ranked individual is more likely to be selected than a low

ranked individual� Rank�based Selection does not su�er from the two inad�

equacies of Roulette�Wheel Selection mentioned above� Both Roulette�Wheel

and Rank�based Selection involve processing or sorting the �tnesses of the entire

population� Each selection can then involve scanning the entire population again�

Tournament Selection is much simpler and less computationally intensive� A �tness

tournament is held to select a parent� where the best individual picked from a

small set chosen at random from the population is taken to be the parent� Varying

the tournament set size varies the selection pressure� i�e� the likelihood that the

best individuals in a population will be selected as parents� No pre�processing

of the population�s �tnesses is needed� Tournament Selection is amenable to

parallel implementations and spatially�biased selection� where parents are chosen

within a certain neighbourhood of a speci�ed location in a spatially distributed

population�

For the Crossover operator� two or more parents are needed to produce o�spring�

Usually� both parents are selected as described above� However� sometimes� as in

�Ratford �
�� the choice of the second parent is a�ected by the choice of the �rst parent�

This could be to ensure that the two parents are substantially di�erent �or similar��

Another alternative is for the second parent to be selected completely at random�

There have been some studies of selection methods� mentioned above� looking partic�

ularly at GAs� It is not certain that these studies can or should be applied to GP�

but the assumption is usually made that they can� In general� it seems the previously

popularised approach of Roulette�Wheel Selection quickly fell from favour� and has

been replaced with a form of Rank�based or Tournament Selection� with low selection

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

pressure� i�e� without a strong bias in favour of the �ttest individuals�

Tournament Selection in this Thesis

For the purposes of this thesis� Tournament Selection was used� without over�selection�

Early experiments indicated that Tournament Selection was marginally less likely to

result in the GP population converging prematurely to variations of the best but sub�

optimal individuals� These results could have been spurious� but since Tournament

Selection has appeared to perform adequately� and there didn�t seem to be any other

apparent advantages to using over�selection or other selection methods� it seemed easier

to stick with simple Tournament Selection� Varying other parameters and modi�ca�

tions to GP had a much bigger impact on GP performance�

In Summary� Tournament Selection is a very simple method to implement� It works

quickly� since it does not require an initial scan of all population �tnesses �though one

is needed to �nd the best individual for elitism�� sorting of the population by �tness�

or repeated scans of the entire population for each selection� It is easy to modify the

selection pressure in small steps using the tournament size�

What follows is a brief investigation into Tournament Selection� looking at the e�ects

of varying the tournament size� and the distribution of parent selections amongst a

population�

�	�	� Some E�ects of Tournament Selection

The following graphs reproduce the e�ects of Tournament Selection on a generation

of a population� Generational Replacement is used� i�e� an entirely new population is

generated to replace the old one� Although just one population size� ��� is shown here�

the shape of the graphs would be the same for other population sizes� though the scales

on the axes would change�

For simplicity� the sample population used is ranked in order of �tness� starting with

member � having the best �tness� Each selection of a parent involves randomly picking

a tournament set of individuals� and then selecting the �ttest of these as the parent�

The e�ect of di�erent tournament sizes is shown in the graphs� A tournament size

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

of � corresponds to a randomly selected parent with no bias towards greater �tness�

As the tournament size increases� through �� �� and
� the bias towards greater �tness

increases�

The number of parents which would be selected to create the next generation is taken

here to be ��� � PopulationSize� i�e� ��� This corresponds to the operators and oper�

ator selection probabilities used in most of the runs in this thesis� Crossover with ��$

probability� requiring two parents� and various Mutation operators with a total prob�

ability of
�$� requiring one parent� Thus the number of parents which are selected

on average from each generation to produce one child is ��� � � � ��
 � ����

The selection of parents is simulated for one generation� This is repeated ���� times

and the results averaged to produce these graphs� The graphs show the frequency of

selection� in Graph ����� the distribution of repeated selections� in Graph ����� the

likelihood of not being selected� in Graph ����� and the likelihood of not being checked

�i�e� the individual is never part of a tournament�� in Graph �����

Parent Selection Frequency Graph ���� shows how� unsurprisingly� the �tter in�

dividuals get selected more often� with the plot for tournament size�� showing the

distribution of selections if they are completely random and not based on �tness at

all� Only with tournament size�� are the least �t individuals in with any substantial

chance of being selected when �tness is used as the selection criteria� Increasing the

tournament size increases the bias abruptly in favour of the �ttest individuals� With

tournament size�
� the plot indicates that something very similar to ��$ over�selection

is occurring� as mentioned in Section ������

The �ttest individuals are repeatedly selected� as can also be seen in Graph ����� This

suggests that there would be much repetition of subtrees within the population� A

method for storing the entire GP population as a single directed acyclic graph �DAG��

instead of as individual trees is discussed in �Handley ��� Keijzer �
� Ehrenburg �
��

As long as the components of the trees have no side�e�ects� earlier subtree evaluations

can be cached and do not have to be re�evaluated when they appear in other trees�

Handley reports a ��� to ���fold reduction in node storage requirements� and ��� to

���fold reduction in the number of nodes evaluated per run� for populations of size

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

P
a
re

n
t
S

e
le

c
ti
o
n
 F

re
q
u
e
n
c
y

Sorted Population Size=50, best(0) -> worst(49)

Showing Frequency of Selection to be a Parent (70 selections, averaged over 1000 runs)

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure ����� Average Parent Selection Frequency

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u
m

b
e
r

o
f
In

d
iv

id
u
a
ls

Selection Frequency

Distribution of Selection Frequencies

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure ����� Average Distribution of Repeated Selections

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

L
ik

e
li
h
o
o
d
 o

f
N

o
n
-S

e
le

c
ti
o
n

Sorted Population Size=50, best(0) -> worst(49)

Showing Likelihood of Non-Selection to be a parent (70 selections, averaged over 1000 runs)

Tournament Size = 1
Tournament Size = 2
Tournament Size = 4
Tournament Size = 6

Figure ����� Average Likelihood of Non�Selection

0

2

4

6

8

10

12

14

1 2 3 4 5 6

N
u
m

b
e
r

o
f
u
n
c
h
e
c
k
e
d
 i
n
d
iv

id
u
a
ls

Tournament Size, Population Size=50, Selections=70, Averaged over 1000 runs

Showing Number of Unchecked Individuals for each Tournament Size

Figure ����� Average Number of Unchecked Parents

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

���� Speedups of this magnitude would obviously be a huge bene�t for supervised

training problems with large training sets� as discussed in Section �� but it is not clear

if it would work quite as well with the Dynamic Subset Selection method� discussed

in Section
� where the evaluations of trees would di�er for each generation� Keijzer

looks at the impact of DAGs on Automatically De�ned Functions �ADFs� discussed in

Section ����� suggesting that in certain situations the memory needed for node storage

can be massively reduced�

Whilst not pursued in this thesis� the use of DAGs for e	ciently representing a GP

population looks very promising�

Distribution of Repeated Selections Graph ���� shows the distribution of selec�

tion frequencies� i�e� the number of individuals selected with each frequency� Looking

at the Selection Frequency �� it is apparent that a sizeable fraction of the population

remains unselected� For tournament size�
� �� out of the �� individuals �i�e�
�$� are

not selected to be parents� Even with the low selection pressure due to tournament

size��� on average ��$ of the population remains unselected in each generation� This

suggests there could be some practical way of evaluating but not retaining a fraction

of the population� Experiments would be needed to ascertain if a current generation�s

�tness pro�le could be used as a guide to deciding whether or not to retain certain

child individuals created for the next generation� A simple bias against un�t individu�

als would leave a smaller population that could be
representative� in some way of the

larger� full population� For small population sizes such as ��� shown here� the memory

savings would be small� however they could be signi�cant with much larger popula�

tions� since the percentage of unselected individuals would be the same regardless of

population size�

Likelihood of Non�Selection Graph ���� shows the likelihood of individuals not

being selected at all in a generation� To all intents and purposes� for larger tournament

sizes� the top �����$ of the population are always selected� and the bottom �����$

are never selected� However� it can be seen in the plot for tournament size�� that

most individuals in the population have a substantial possibility of being selected�

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ��

Number of Unchecked Individuals Graph ���� shows the number of individuals

in a population which take no part in the Tournament Selection process� i�e� they are

never picked to be part of a tournament� As the tournament size increases� although

the number of tournaments remains the same� the number of individuals being picked

to participate in the tournaments increases substantially� Thus the likelihood of an

individual remaining unpicked decreases substantially� This indicates that there isn�t

much scope for e	ciency savings in CPU or memory usage by avoiding the production

and evaluation of these
wasted� individuals� Even with large populations� the number

of unpicked individuals would be small�

Looking at the results above� the main area with scope for improvement �in GP

using Tournament Selection� is the use of a representation such as a directed acyclic

graph� where the entire population is stored compactly� and subtree evaluations can

be cached� The Graphs ���� and ���� indicate that there would be a great deal of

redundancy within the population� with many trees coming from only a few individu�

als� The potential reduction of memory and�or CPU requirements reported for this

representation is impressive� but with the caveats that to save CPU time the evalu�

ations of the nodes must be free of side�e�ects� However� the performance of GP can

no doubt be optimised in several di�erent ways �perhaps with di�erent operators as in

�Ehrenburg �
�� to run better using such a representation�

Other than the use of DAGs� there seem to be no obvious areas where GP can be

improved substantially to take advantage of �or avoid the consequences of� Tournament

Selection�

��� Discussion

There are two main issues raised in this chapter� The �rst and perhaps main issue�

raised in Section ��� as the MAX problem� is that Crossover �and indeed other operat�

ors� can have an adverse interaction with restrictions on tree size� resulting in a loss of

operator e	ciency and� in certain cases� the inability of the operators to improve on a

sub�optimal solution� There are no guaranteed �xes for this problem� which is likely to

arise with varying degrees of severity whenever GP individuals start approaching their

CHAPTER �� GP TREE RECOMBINATION AND SELECTION ���

limits on size� However� being aware of the possibilities� combined with a few simple

precautionary steps� should minimise its impact� The main precaution seems to be

to allow the individuals� if possible� to grow to their preferred size� perhaps applying

a gentle parsimony pressure to bias GP towards selecting smaller individuals� Where

this is not possible� greater care needs to be taken to ensure that the operators can

function well with individuals approaching or at the size limits�

The second issue� raised in Section ���� concerns the great potential of storing the entire

GP population as a directed acyclic graph� with its huge savings in memory require�

ments and reduction in subtree evaluation through the caching of earlier evaluations�

and the caveat that the GP nodes must be free of side�e�ects during evaluation�

Part III

Genetic Programming

and Supervised Learning

���

Chapter �

Making use of the Training Set

in GP

It soon becomes obvious that one of the �rst and biggest hurdles to overcome when

using GP to tackle a large supervised learning classi�cation problem is the sheer num�

ber of �tness evaluations needed by GP� To calculate the �tness of a GP individual� it

is evaluated against each case in the training set" its �tness relates to the total number

of errors made� A large training set means a large number of evaluations� A di	cult

problem may require a large population of individuals� which may take many gener�

ations before �nding a good solution� Many tens of millions of evaluations might be

needed� taking many days of computer time�

This chapter looks at what can be done with the training set� including methods

from other �elds such as Statistics and Machine Learning� with the aim of speeding

up GP� and making it a more practical and reliable tool� There is a great deal of

literature for training arti�cial Neural Networks and constructing Decision Trees for

classi�cation problems� some of which is described in Section ���� Section ��� describes

some methods for selecting training and test sets from raw data in a statistically sound

fashion� Section ��� describes several methods which have been applied to evolutionary

algorithms� followed by Section ��� which describes some methods applied to GP�

including some original work done for this thesis�

���

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

��� Training Sets in Machine Learning

Without doubt the GP and Evolutionary Algorithm communities in general are re�

discovering a lot of work that the wider Machine Learning community has known

about for years�

Neural Networks One example from the area of Neural Networks is provided by

�Zhang ���� Zhang looks for�

 ��� factors which in�uence the learning speed and generalisation ability of

the networks� One of them is the nature and size of the training set� While

there is no guarantee that the generalisation performance is improved by

increasing the training set size� the training time increases as the number

of examples increases� In general� one should choose those examples which

are most likely to help the network solve the problem�!

Neural Networks obviously share some of GP�s di	culties with supervised learning of

large training sets� Back�propagation� perhaps the most common method for train�

ing Neural Networks often requires that the training data is presented repeatedly �in

epochs� before the network succeeds in solving the problem� Each time a case or batch

of cases is presented to the learning network� the error between the network�s output

and the target output is propagated back through the nodes in the network� so that

each node has an error term� The links between nodes �i�e� weights� are adjusted in

an attempt to reduce the error�

In the paper� Zhang proposes a criterion for selecting critical examples� and presents an

e	cient method for selecting examples and scheduling their training order based on this

criterion� Bypassing a great deal of mathematics� the method can be summarised as

follows� choose the cases on which the network makes the largest errors� The network

is then trained on this subset of cases� minimising the errors� And then the process is

repeated�

Zhang reports�

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

 Our experimental results show that the selective incremental learning �nds

and uses only a critical subset of given examples� which leads to a consid�

erable enhancement in training speed and generalisation performance�!

Cohn et al present a di�erent approach to training Neural Networks on a subset of

the whole training set� �Cohn et al� ���� They use the idea of selective sampling!

from regions of uncertainty! to guide the choice of training examples� For a binary

classi�cation problem� a network is trained on an initial random sample of training

examples� The network�s real�valued output �between � and �� is then thresholded into

one of three zones� Class �! ���� or greater��� Class �! ���� or less�� and Uncertain!

�between ��� and ����� The Uncertain! points de�ne a region of uncertainty!� As

yet unclassi�ed points which fall into this region are selected from the training set�

Several limitations of this approach are highlighted� the region of uncertainty! can

come to encompass the entire training set" it is highly dependent on the initial random

sample of examples" and there are di	culties in scaling up to more complex problem

domains� Nevertheless�

 ��� selective sampling demonstrates signi�cant improvement over passive�

random sampling techniques on a number of simple problems�!

Decision Trees One example from the area of Decision Trees is provided by

�Quinlan �
�� A decision tree is a hierarchical arrangement of small classi�cation rules�

where each node represents a
decision� about one of the �elds in the problem� For

example� If Field � is Red then A else if Field � is Blue then B else if Field � is green

then C� or If Field � is TRUE then D else E� The components A�B�C�D�E can represent

a �nal classi�cation� e�g� is�a��sh� or could be a further decision subtree� There is a

large degree of overlap between decision trees and GP trees� e�g� �Vere ����

Quinlan describes an approach for synthesising decision trees called ID��

 The basic structure of ID� is iterative� A subset of the training set called

the window is chosen at random and a decision tree formed from it" this

tree correctly classi�es all objects in the window� All other objects in the

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

training set are then classi�ed using this tree� If the tree gives the correct

answer for all these objects then it is correct for the entire training set and

the process terminates� If not� a selection of the incorrectly classi�ed objects

is added to the window and the process continues� In this way� correct

decision trees have been found after only a few iterations for training sets

of up to thirty thousand objects described in terms of up to �� attributes�

Empirical evidence suggests that a correct decision tree is usually found

more quickly by this iterative method than by forming a tree directly from

the entire training set�

���

While decision trees generated by the above systems are fast to execute

and can be very accurate� they leave much to be desired as representations

of knowledge�!

This last point is one which could also be levelled at much of what is produced by GP�

However� Quinlan has demonstrated several methods for simplifying decision trees�

�Quinlan ����

Salzburg demonstrates the e�ectiveness of feature selection for improving the speed

and accuracy of machine learning programs on large data sets!� �Salzburg ���� Com�

bined Stepwise Selection! �CSS� is used in combination with four di�erent methods of

classi�cation� back�propagation� nearest neighbour� nested hyperrectangles� and mul�

tivariate � oblique!� decision trees which use multivariate tests at each non�leaf node

of the decision tree�

Rather than look at all possible combination of features� which would take a prohib�

itively long time� CSS attempts �rst to reduce the set of features one by one� then

selects subsets of features from the reduced feature set� A classi�er is evaluated �i�e�

trained from scratch� on a set of features� The classi�er is then evaluated on each pos�

sible subset where one feature has been removed from the initial set� If the classi�er

works equally well without the deleted feature� it is assumed to be OK to ignore it�

The feature which causes the smallest decrease in accuracy is removed� This process

is repeated as long as the decrease is below a preset threshold ����$��

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

Using brute�force search� the best pair of features is chosen from the reduced feature

set� evaluating the classi�er on all possible pairs of features to allow for possible and

quite common pairwise interactions between features� Each of the remaining features

�from the reduced feature set� is then tried in turn� in combination with the best pair�

The feature that gives the best improvement in accuracy is added to the pair� and the

process is repeated with the set of three� and so on� trying each remaining feature in

turn� until the improvement is less than the preset threshold�

Salzburg reports that the classi�er methods were able to produce more accurate results

with the smaller feature sets� The smaller feature sets allowed the discovery of new

knowledge about the underlying scienti�c domain� Whilst the CSS method is not

perhaps ideal for GP �the number of runs needed would probably be prohibitive��

it does indicate again that feedback between the learning method and the way the

problem is presented to the learning method can lead to faster and more accurate

results�

Feature set selection is a topic which is not explored further in this thesis�

��� Selecting Training and Test Sets

The topic of selecting training and test sets from raw classi�cation data has had a

great deal of e�ort and statistics thrown at it� The aim is to choose representative sets

which give the particular learning method every opportunity to produce an e�ective

classi�er� based on the training set� and an accurate estimate of how well the classi�er

will generalise to unseen data� based on the test set� Simply partitioning the data

randomly into two sets runs the risk of selecting non�representative sets� One method

in particular has been established as a popular and e�ective selection method�

Cross�Validation involves splitting the data into k equal or nearly equal sized sets� One

of the k sets is taken as the test set� and the remaining k �� sets are combined to form

the training set� This is repeated� taking each of the k sets in turn as the test set�

The learning algorithm is trained and tested on each of the combinations� Choosing

the value of k can be done by guesswork or experiment� If k is the number of cases

in the whole set� so that the test set is of size one each time� the method is known as

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

Jack�Kni�ng�

The data in the Thyroid problem described in Section
�
 was already divided into

training and test sets for earlier Machine Learning studies� and the TicTacToe data�

described in Section
��� was used as a single training set� so the topic of training and

test set selection was not explored in this thesis�

��� Approaches for Evolutionary Algorithms

The standard use of a training set in an Evolutionary Algorithm �EA� is to evaluate

each individual against each case in the training set in order to establish the individual�s

�tness� This is repeated for each individual in the population and for each generation�

Whilst laudably simple� this approach can obviously lead to a very large number of

evaluations for any but the simplest of problems� It would be an advantage if a much

smaller subset of the training set could be used in place of the whole training set�

A method for selecting a single representative subset to use as a training set is Historical

Subset Selection� described in Section
��� It shows that even a very simple selection

method can work well� The smaller training set leads to much a faster turnaround

time for GP� Variations of this simple approach have been mentioned in several papers

and discussions with other machine learning practitioners� and it is an obvious method

to try when faced with large training sets�

A more �exible method is to pick a variety of subsets during the course of a training

run� There are many ways that di�erent subsets could be selected from the training

set� The goal is to pick the right subsets to allow the learning algorithm to proceed as

fast and as accurately as possible� The simplest method for picking a di�erent set for

each generation is randomly� Random Subset Selection� described in Section
��� can

perform surprisingly well� though not as well as the more directed methods described

below� As with HSS� this method has been mentioned in discussions with other machine

learning practitioners as an obvious method to try when faced with large training sets�

HSS and RSS have been described here to provide a context for the following method�

Dynamic Subset Selection� which was developed during the course of this thesis to

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ���

allow GP to use and bene�t from large training sets�

One criteria that can be used to guide the selection is the performance of the pop�

ulation� If individuals in the population consistently classify a case correctly� then

that case is of limited use in judging the relative performance of the individuals in the

population� On the other hand� a case which is often misclassi�ed does provide more

useful information for the �tness function�

In Chapter
� Dynamic Subset Selection makes use of the di	culty of each training

case� i�e� how often it is misclassi�ed� and its age� i�e� how many generations since it

was last selected� This has worked well on some large classi�cation problems� using

less computer resources to produce better results than standard GP� Siegel describes

a similar algorithm in �Siegel ���� but does not make use of the age aspect�

A di�erent approach to selecting subsets on which to evaluate the entire population is

described in �Hillis ���� Hillis uses two spatially distributed populations� where the �t�

ness of an individual in one population is based on how well it confounds an individual

at the same location in the other population� One population� the
hosts�� is evolving

minimal sorting networks� whilst the other population� the
parasites�� is evolving di	�

cult subsets of training cases� where the success of a training subset represents a failure

of a sorting network and vice versa� The host�parasite relationship prevents large por�

tions of the population from becoming stuck in local optima� Successive waves of

epidemic and immunity keep the population in a constant state of �ux�! Only signi�c�

ant training cases show up in the parasite population� so it is su	cient to apply only

a few tests to an individual each generation� substantially reducing computation time

per generation� These two factors mean the system can be run productively for many

more generations�

Rosin and Belew also co�evolve populations� using a globally calculated �tness and

 �tness sharing! which depends on the di	culty of an individual�s successes� i�e�

the more individuals which share a success� the less important or di	cult that suc�

cess is� �Rosin � Belew ���� This links quite closely with the idea of �tness sharing

and
niches� used by Goldberg and Richardson� where functionally similar individu�

als have their �tnesses reduced� favouring individuals which have unique abilities�

CHAPTER �� MAKING USE OF THE TRAINING SET IN GP ��

�Goldberg � Richardson ���� Greene and Smith make a much more explicit use of

niches� �Greene � Smith ���� Individuals are ranked according to their
discriminab�

ility�� i�e� the ability to di�erentiate examples correctly� Moving sequentially through

this ordering� each training example is allocated to the �rst individual which correctly

di�erentiates it� When all the examples have been consumed!� the remaining indi�

viduals are discarded� i�e� all the available niches are full� Reproduction takes place

randomly within the remaining individuals� Good results and potential are reported�

Angeline and Pollack look at competitive environments where the �tness is related only

to the current ability of the population� �Angeline � Pollack ���� Individuals compete

against one another in �tness tournaments playing TicTacToe� amongst other things�

rather than a pre�de�ned
expert� player� They report that

 a competitive �tness function requires only a minimal understanding of

the search space for a complex task�

��� �U�sing the population as a reservoir for comparison is preferable to

using an exemplar for the task when an objective measure of �tness is

unavailable�!

��� Approaches for GP in this thesis

Chapter
 presents Dynamic Subset Selection �DSS�� and the two simpler methods�

Random Subset Selection� and Historical Subset Selection� Chapter � presents Limited

Error Fitness �LEF�� DSS and LEF are approaches which can reduce the number of

�tness evaluations needed by GP� and can enable GP to �nd more accurate solutions�

Chapter � demonstrates that these two approaches can allow the use of much smaller

population sizes in GP�

Chapter �

Dynamic Subset Selection

When using GP on a di	cult supervised learning problem with a large set of training

cases and a large population size� a very large number of tree evaluations must be

carried out every generation� This chapter describes three approaches� previously

published in �Gathercole � Ross ��a� Gathercole � Ross ��b�� to reduce the number

of such evaluations by selecting a small subset of the training data set on which to

actually carry out the GP algorithm�

Dynamic Subset Selection �DSS� �

using the performance of the current GP population to select a new subset of

di	cult� and�or under�selected cases every generation

Historical Subset Selection �HSS� �

using the performance of previous GP runs to construct a single subset

Random Subset Selection �RSS� �

selecting a new subset at random every generation

GP� GP�DSS� GP�HSS� and GP�RSS� are compared on a large classi�cation problem�

the Thyroid Problem� GP�DSS can produce better results in less than ��$ of the time

taken by GP� and produces better results than an attempt using a variety of Neural

Networks� GP�HSS can nearly match the results of GP� and� perhaps surprisingly�

GP�RSS can occasionally approach the results of GP� GP and GP�DSS are then

compared on a smaller problem� the TicTacToe Problem�

���

CHAPTER �� DYNAMIC SUBSET SELECTION ���

	�� Subset Selection Methods

At present� the potential of Genetic Programming �GP� and Genetic Algorithms �GA�

has been demonstrated in many di�erent problem areas� Generally� these experiments

have involved solving small� relatively neat problems� The future beckons� however�

with large and horribly messy problems� to which the GP method will have to be scaled

up�

With supervised learning� a training set of cases is involved and the aim is to learn

how to classify these known example cases and hopefully generalise to be able to

correctly classify all possible cases� Large problems will require large training sets�

In the standard GP algorithm� the entire population of GP trees is evaluated against

the entire training data set� and so the number of tree evaluations carried out per

generation is directly proportional to both the population size and the size of the

training set� This chapter looks at ways of reducing the e�ective training set size� and

shows that this can also allow a reduction in population size�

The simple method of Dynamic Subset Selection �DSS� is described in Section
���

DSS reduces the number of such evaluations that need to be carried out before a

satisfactory answer evolves and� in fact� can produce a more general answer� Two other

selection methods are described for purposes of comparison� the �even� simpler method

of Random Subset Selection �RSS�� in section
��� and Historical Subset Selection

�HSS�� in Section
��� which uses previous GP runs to select a single training subset�

A classi�cation problem involving the Thyroid data set� described in Section
�
 is

used as a token
large and messy� problem� A smaller problem involving TicTacToe

endgame positions is described in Section
���

Following on from the results obtained by DSS� a Dynamic Fitness Function �DFF��

based on DSS� is proposed for further study�

	�� Historical Subset Selection �HSS
 � the algorithm

For HSS� previous straightforward GP runs are used to establish some measure of how

di	cult each training case is� Over the course of several runs �say� �ve or so�� the

CHAPTER �� DYNAMIC SUBSET SELECTION ���

cases misclassi�ed by the best population member in each generation in each run are

recorded� These cases then make up the subset used in further GP�HSS runs� and the

subset remains static after its initial selection� Due to the rough�and�ready method by

which it is selected� the subset contains a mixture of many di	cult cases and many

which are actually quite easy to classify� Even a best�of�generation population member

makes some simple misclassi�cations early on in its development�

Distribution of Classes in Thyroid Data

Set Class � Class � Class � Total
�$ of set� �$ of set� �$ of set�

Training �� ���$� ��� ���$� ���� ���$� ����
Test �� ���$� ��� ���$� ���� ���$� ����
HSS
� ���$� ��� ���$� ��� ���$� ���

Table
��� Distribution of Classes in Thyroid Data

Some simple checks showed di�erent runs producing very similar subsets selected by

this method� The statistics almost always agreed on which cases were most often

misclassi�ed� and only disagreed on some of the easier cases� The subset size used

in the runs was ���� consisting of every single case misclassi�ed during seven previous

runs of a standard GP� A core of around ��� cases were misclassi�ed more than once or

twice� and so were considered to be at least moderately di	cult cases� The distribution

of classes within the set can be seen in Table
��� Nearly all of the cases from the two

smallest classes are included in the subset� making up nearly ��$ of the subset� as

opposed to just �$ of the whole training set�

	�� Dynamic Subset Selection �DSS
 � the algorithm

Working with the assumption that supervised learning with GP can proceed e�ectively

even whilst only using a subset of the full training set� this simple idea of DSS is based

upon a few premises and a small amount of hindsight� Firstly� it is of bene�t to

CHAPTER �� DYNAMIC SUBSET SELECTION ���

focus the GP�s attention onto the di	cult cases� i�e� the ones which are frequently

misclassi�ed� Secondly� it is also of bene�t to check cases which have not been looked

at for several generations� This leads to the �nal point that all of the cases in the

training set should be looked at� eventually�

The algorithm for DSS involves randomly selecting a target number of cases from the

whole training set every generation� with a bias so that a case is more likely to be

selected if it is
di	cult� or has not been selected for several generations� In each

generation� using a very simple procedure� the subset is selected by the following two

passes through the full training set�

� In one pass of the entire training set� of size T� in a generation� g� each training

case� i� is assigned a weight� W� which is the sum of its current
di	culty�� D�

exponentiated to a certain power� d� and the number of generations since it was

last selected �or age�� A� also exponentiated to a certain power� a�

i � � � i � T� Wi�g� � Di�g�
d �Ai�g�

a

i � � � i � T� Di��� � �� Ai��� � �

�Ai��� is set to one so that each case has a non�zero weight��

The sum of all the cases� weights is also calculated during this �rst pass�

� Then� in a second pass of the entire training set� each case in turn is given a

likelihood �not strictly a probability� more an expected number of such cases�� P�

of being selected to be in the subset� A case�s selection likelihood is given by its

weight divided by the sum of all the cases� weights and multiplied by the target

subset size� S�

i � � � i � T� Pi�g� �
Wi�g� � SPT
j��Wj�g�

A random number is generated between � and �� If the case�s chance P is greater

then the random number� it is selected� If a case� i� is selected to be in the subset�

then its di	culty� Di is set to �� and age� Ai is set to � �so that the weights are

CHAPTER �� DYNAMIC SUBSET SELECTION ���

always greater than zero�� otherwise its di	culty remains unchanged� and its age�

Ai is incremented� While testing each member of the GP population against each

case in the current subset of training cases� the di	culty� Di� �starting from ��

is incremented each time the case is misclassi�ed by one of the GP trees�

Using this process� if a weight is su	ciently large it will be scaled by S to be

greater than � and so that case will de�nitely be selected to be in the subset�

The subset size will �uctuate around the target size S each time a new subset is selected�

Given that some cases will be selected with a probability of � �due to the rough and

ready selection process�� the average subset size will in fact be slightly larger than the

target size� Other selection methods could easily produce subset sizes of exactly S� e�g�

roulette wheel selection as used in Chapter �� but it was felt that a varying subset size

might contribute more to the e	cacy of the GP algorithm� and certainly did not seem

to hinder it� The current generation of the GP�s population is then evaluated against

this subset of cases instead of the entire training set�

The equation for calculating the weights of each case in the training set�

Wi�g� � Di�g�
d �Ai�g�

a� is kept as simple as possible� The aim is to �nd a balance

between age and di	culty� The age exponent means that eventually even the easiest

case is certain to be reselected as the age contribution to the weight rapidly increases

with each passing generation� The exponents allow the relative contribution of age and

di	culty to be easily adjusted for di�erent population sizes and training set sizes� As

it happens� the fact that exponents are combined in this way means that the equation

is quite robust when used� unchanged� with a variety of population and training set

sizes� Other� more complicated� combinations of age and weight are possible� but do

not appear to be necessary for DSS to function well�

The di	culty ratings of cases depend on the size of the population� Larger populations

lead to larger di	culty ratings� This could result in di	cult cases being reselected

more frequently in runs with larger populations than those with smaller populations�

However� since the age weight uses an exponent� it soon �after a few generations more

for larger populations� increases su	ciently to achieve a balance with the di	culty

weights�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

To use this form of DSS� the following three parameters have to be set�

Target Number of cases � subset size

Di�culty exponent � importance given to di	cult cases

Age exponent � importance given to unselected cases

Currently �and� it seems� as always�� choosing useful combinations of parameter set�

tings is somewhat of a black art� For the purposes of the Thyroid data set� a target

size of ��� �out of ����� was quickly chosen as an e�ective value after some experi�

mentation� though other values from ��� upwards also worked well� This corresponds

to slightly more than the number of moderately di	cult cases selected by the HSS

method� leaving room for a few easy cases to be included� With the target size set at

���� it was easier to select sensible values for the two exponents� An average di	culty

rating for a case� with a population size of ������ might be around ���� or so� The

most di	cult cases could have a rating of up to ������ With a target size of ����

it would take at least �� generations to cover all the ���� training cases� Given this

disparity between a very
di	cult� case and an
old� case� an arbitrary decision was

made to keep the di	culty exponent to ��� and to set the age exponent to ���� With

these exponents� the most di	cult cases and cases around �� generations old would

have roughly equivalent weights�

Siegel describes an algorithm similar to DSS in �Siegel ���� but does not make use of

the age aspect� instead using only a bias towards di	culty�

	�� Random Subset Selection �RSS
 � the algorithm

In RSS� for each generation� each case in turn is selected to be in the current subset

of training cases with an equal likelihood� which is scaled to ensure that the subset

selected� on average� is of the target size� As with the DSS method� the subset size

�uctuates around the target size with each generation�

i � � � i � T� Pi�g� �
S

T

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Without any weights biased by di	culty or age� RSS provides an opportunity to distin�

guish between the e�ects of using subsets� and the bias introduced by the performance

of each generation of the evolving population which a�ects the subset selection in DSS�

	�� GP Details

Generational replacement with elitism was used along with tournament selection with a

tournament size of
� and large population sizes of ���� and ������ A small parsimony

factor was used� in combination with a form of restriction on tree depth to no deeper

than ��� The operators were

� ��$ Crossover

� ��$ Duplicate Parent

� ��$ Mutate Subtree

In hindsight� the restriction on tree depth was probably not ideal" a restriction on the

number of tree nodes would be preferable� Also� the Mutation operator was quite a

blunt operator" perhaps an extra Mutate Node operator might have been useful�

	�	 The �Large and Messy� Thyroid Problem

The Thyroid data set �Werner ��� represents a hard classi�cation problem" one

of several stored at �UCI ���� The results reported for Neural Networks

�Schi�mann et al� ��a� Schi�mann et al� ��b� provide an useful comparison with the

performance of GP� however� the main aim for this investigation was to improve the

performance of GP on a hard problem�

The data is based upon measurements of in�patients at a clinic� Each measurement

vector consists of �� binary values ���� or ���� and
 �oating point values �i�e� �� �elds

in all�� and falls into one of three classes� Class � signi�es a
normal� thyroid gland and

is by far the most common class in both training and test data sets� whilst classes � and

� signify that the patient later experienced a thyroid gland problem� To be useful in

CHAPTER �� DYNAMIC SUBSET SELECTION ���

practise in identifying potential thyroid problems� a classi�cation scheme would have to

correctly classify signi�cantly more than ��$ of all cases� since over ��$ of all patients

have a normal �class �� thyroid gland� as can be seen in Table
���

There are ���� cases in the training set and ���� cases in the test set� Examination

of the data in graphical form� e�g� using XGobi �Swayne et al� ���� reveals that the

boundaries between the classes of points are very murky indeed� Points from di�erent

classes seem to mingle freely with each other� as can be seen in Figure ��� in Section ����

In all runs� only the training set is used by the GP to try to evolve its population to

classify the thyroid cases into their correct classes� The test set is only used as a check

on each generation�s best �or �ttest� classi�er �with respect to the training set�� to see

how well it generalises to another set of the same kind of data� A run�s best classi�er

is taken to be the one which performs best when evaluated on the training set� This is

not necessarily the one which performs best on the test set� The setup which generates

the �ttest classi�er with respect to the training set which then performs best on the

test set in this way is taken to be the most successful one�

The function set� chosen after a great deal of guesswork is�

f IFLTE� �� �� �� $� TANH� LOG� MINIMUM OF �� NEGATE� SQRT g

and terminal set used in this problem is�

f B� to B��� F� to F�� �� ��� Random Constant g

where
B� and
F� refer to the binary and �oating point �elds of the Thyroid cases�

�� and
��� refer to constants added to the terminal set as a possible aid to GP in

constructing useful subtrees� There was some experimentation with and without these

extra constants� and with and without Koza�s recommended
ephemeral random con�

stant� �each time a new node of this type is created� i�e� by Mutation� it is given a

random value which it holds for the lifetime of the node�� There was no apparent

bene�t in using the random constant in the Thyroid problem� making the resulting

trees messy and hard to decipher� It was also not clear if the constant nodes
�� and

CHAPTER �� DYNAMIC SUBSET SELECTION ���

��� had any bene�cial e�ect either� Much more experimentation is needed to establish

ideal� terminal and function sets�

Modi�cation to Thyroid Problem

To make things easier for the GP �after a few initial� unsuccessful runs�� the Thyroid

problem was reformulated to classifying cases as class � or not class �� This reformu�

lation allowed the GP tree�s outputs to be treated as boolean�

� output � �� class �

� output � �� not class �

It proved relatively straight forward� in a separate run� for DSS to produce a tree

expression which could distinguish between classes � and � with ���$ accuracy on

both the training and test sets� This subproblem can be seen to be quite simple in

Figure ��� in Section ���� In fact� it is linearly separable� The simple tree shown

in Figure
�� is su	cient to distinguish between class � and class � cases with ���$

accuracy� and was discovered by GP very easily� If this approach were to be used in

practise� two GP expression trees would have to be used in two phases� First �and

most di	cult� distinguish between class � cases and the others� then� if it is not a class

� case� distinguish between class � and class � cases�

+

NEGATE

F6

-

+

B6 *

-

B2 F4

F4

-0.069964

Figure
��� Simple GP tree which distinguishes between class � and class � cases with
���$ accuracy�

CHAPTER �� DYNAMIC SUBSET SELECTION ��

Experiments were carried out with three methods of Subset Selection and compared

against the baseline performance of the standard GP which uses the entire training set

in each generation�

	�� Thyroid Results

This is by far the larger of the two problems attempted in this chapter� Results are

given in Table
�� for a typical DSS run with a population size of ������ and for typical

GP� DSS� HSS� and RSS runs with a population size of ����� and for the best Neural

Network results reported in �Schi�mann et al� ��a�� It was not possible to complete a

run of GP with a population size of ����� in a reasonable time%

Figure
�� shows the DSS run easily outperforming RSS� though RSS is still showing

signs of improvement after ��� generations� This indicates that subset selection can

produce useful results even without any bias used in selecting cases� though the bias

used in DSS can be seen to greatly improve subset selection� Figure
�� shows the

standard GP run outperforming HSS� though only due to a surge around generation

��� These two methods often produce similar scores� but HSS achieves them with

many fewer tree evaluations� For this problem� it is thus possible to extract a useful

subset of cases using a very simple selection process which allows GP to perform nearly

as well �with many fewer evaluations� as with the whole set� Figure
�� shows DSS

matching GP results using many more generations� but only ��$ of the number of tree

evaluations�

The best tree produced by the DSS run �with population size � ������ to distinguish

between class � and not class �� was found on Generation
�� giving only �� errors on

the test set� underlined in Table
��� and is shown in Figure
��� It used only �� out

of the �� variables available in classifying the Thyroid cases�

The dynamics of the DSS components can be seen in Figure
��� taken from a run with

a population size of ����� The curve for
average powered time since used� shows the

average weight corresponding to the age �i�e� how many generations since last being

selected� of each case in the training set� Rising sharply early on� as only a few are

selected and the rest remain unselected� the curve peaks and drops after generation ���

CHAPTER �� DYNAMIC SUBSET SELECTION ���

+

-

+

-

+

-

SQ
R

T

F2

F2

M
IN

3

L
O

G

L
O

G

L
O

G

IF
L

T
E

L
O

G

B
2

L
O

G

IF
L

T
E

*

+

B
15

F4

T
A

N
H

SQ
R

T

F5

L
O

G

B
2

T
A

N
H

F3

F1

SQ
R

T

F2

SQ
R

T

SQ
R

T

T
A

N
H

F4

B
14

B
13

M
IN

3

B
13

+

+

IF
L

T
E

B
12

B
4

M
IN

3

L
O

G

L
O

G

L
O

G

IF
L

T
E

L
O

G

B
2

L
O

G

B
11

SQ
R

T

F2

SQ
R

T

SQ
R

T

T
A

N
H

F4

B
14

L
O

G

L
O

G

L
O

G

B
11B
2

N
E

G
A

T
E

L
O

G

IF
L

T
E

M
IN

3

B
15

F1
B

11

-

B
8

N
E

G
A

T
E

L
O

G

+

IF
L

T
E

-

B
3

B
14

B
7

-0
.8

66
19

6
B

13

B
4

SQ
R

T

IF
L

T
E

F6
B

14
F6

B
2

SQ
R

T

SQ
R

T

T
A

N
H

F4

M
IN

3

-

F5
F6

+

IF
L

T
E

M
IN

3

c0
B

5
B

8B
4

*

B
9

*

F6
B

4

IF
L

T
E

F6
B

14
F6

B
2

N
E

G
A

T
E

IF
L

T
E

L
O

G

L
O

G

SQ
R

T

F5

B
13

F6
B

12

SQ
R

T

SQ
R

T

IF
L

T
E

L
O

G

B
2

-

F3
F2

SQ
R

T

F2

-

B
8

IF
L

T
E

B
1

-

-

SQ
R

T

F2

F2

B
7F2

F4

B
14

+

M
IN

3

-

F6
F2

B
3

F3

M
IN

3

F6
F5

B
14

F2

T
A

N
H

B
7

Figure
��� GP�DSS tree which distinguishes between class � cases and all others with
high accuracy�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Performance of GP with RSS or DSS on the Thyroid Test Set

0

50

100

150

200

0 20 40 60 80 100 120

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Generations

DSS
RSS

Figure
��� The number of errors made on the Thyroid test set by the best�of�generation
trees produced during a run of the DSS and RSS Methods for each generation�

Performance of GP with and without HSS on the Thyroid Test Set

0

50

100

150

200

0 10 20 30 40 50 60

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Generations

Standard GP
HSS

Figure
��� The number of errors made on the Thyroid test set by the best�of�generation
trees produced during a run of the Standard GP and HSS Methods for each generation�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Performance of GP with and without DSS on the Thyroid Training Set
plotted against the number of generations

0

50

100

150

200

250

0 20 40 60 80 100 120

T
r
a
i
n
i
n
g

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
7
7
2
)

Generations

Standard GP
DSS

Performance of GP with and without DSS on the Thyroid Training Set
plotted against the number of tree evaluations

0

50

100

150

200

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

T
r
a
i
n
i
n
g

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
7
7
2
)

Tree Evaluations

Standard GP
DSS

Figure
��� The number of training set errors made on the Thyroid training set by the
best�of�generation trees produced during a run of GP with and without DSS methods�
plotted against the number of generations and tree evaluations�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Performance of GP with and without DSS on the Thyroid Test Set

0

50

100

150

200

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

T
e
s
t

S
e
t

E
r
r
o
r
s

(
o
u
t

o
f

3
4
2
8
)

Tree Evaluations

Standard GP
DSS

Figure
�
� The number of errors made on the Thyroid test set by the best�of�generation
trees produced during a run of the Standard GP and DSS methods against the number
of tree evaluations carried out�

Plots showing how the DSS weights vary with each generation

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100
Generations

average_difficulty
average_powered_time_since_used

number_selected
average_powered_difficulty

Figure
��� Dynamics of DSS� showing the varying di	culty and age weights

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Thyroid Training and Test Results

Pop� Subset Gener� Avg� Evals Total � correct
Algorithm Size Size ations per Gen� Evals Training Test

GP ����� ���� n�a ���e��� n�a n�a n�a

GP�DSS ����� ���
� ���e��
 ���e��� ����� �����

GP ���� ����
� ���e��� ����e��� ����� �����

GP�DSS ���� ��� ��� ���e��
 ���e��� ����� �����

GP�RSS ���� ��� ��� ���e��
 ���e��� ����� �����

GP�HSS ���� ��� �� ���e��
 ��
e��� ����� �����

NN � �Schi�mann et al� ��a� � Cascade Correlation ������ �����

Table
��� Best results by GP on Thyroid Problem� with best NN results for comparison

as the selection process ensures that all of the cases get selected at least once� The

average powered di	culty� curve shows the average di	culty rating for the cases rising

as more and more cases are selected and given a non�zero di	culty rating� This curve

can then be seen to drop very slowly over the later generations as the populations

evolves to correctly classify more of them� The early dip in the
number selected�

curve is due to a mistake made when initialising the parameters in early runs which

a�ected the subset selection process in the �rst few generations� Generally� the number

of cases selected can be seen to oscillate close to the subset size of ���� The average

age weight can be seen to dominate the average di	culty weight� Cases with above

average weights� however� are much more likely to be selected�

GP�DSS seems to perform well with a variety of di�erent DSS parameter settings�

The DSS algorithm seems quite robust given that� eventually� all cases will have been

selected to participate in several di�erent subsets� If the age weight is too large it

can swamp the di	culty weight� and this is perhaps the most likely problem to be

experienced with di�erent parameter settings� If the di	culty weight is too large� it

will eventually be matched by the age weight� due to the case ages being exponentiated�

and the selection process will reach a balance� A variety of di�erent subset sizes all

seem to work well�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

	�� A Smaller Problem� TicTacToe Endgames

The TicTacToe problem is smaller and neater than the Thyroid problem� Nevertheless�

it is used here to show that DSS can transfer well to other problems�

The data� taken from �Aha ���� consists of the complete set of possible� legal �x� board

con�gurations at the end of TicTacToe games �also known as
Noughts and Crosses���

where player
x� is assumed to have played �rst� The target concept is
win for player

x� �i�e� � true when
x� has one of the � possible ways to create a
three�in�a�row���

There are ��� di�erent board positions �taking into account the board�s rotational

symmetries�� each of which is represented by � �elds� each of which can take one of

three values f�� ��� �g corresponding to fplayer
x�� player
o�� blankg� Approximately

�$ of the positions are a win for
x��

The task for GP is to construct a tree which can correctly classify all possible board

positions as to whether or not they are a win for
x�� using the entire set as a training

set� This is a variation on the standard method of splitting the cases into training and

test sets� but the problem is su	ciently di	cult that it still allows a clear comparison

between di�erent GP runs� and there was no wish to study the generalisation perform�

ance of GP here� The problem has a
neat� solution� easily constructed by hand� but

the resulting tree is fairly large and contains a lot of detail�

The allowed function and terminal sets used in this problem are�

f AND �both args � ��� OR �either arg � ��� IFGTZ �IF arg is Greater Than Zero�g

f cornerNW� edgeN� cornerNE� edgeW� centre� edgeE� cornerSW� edgeS� cornerSE g

It can be seen that the function set is not su	ciently powerful to make use of all the

possible values of the terminal nodes� The function set cannot distinguish between the

two of the possible position values� player
o� and blank� In e�ect� the board data has

been reduced to indicating whether of not each board position is held by player
x��

However� even with this reduced level of detail� the problem is still solvable� Other

runs tackling the TicTacToe problem are shown in Section �� looking at the e�ect of

using a much smaller population size� and these runs do have a more extensive function

CHAPTER �� DYNAMIC SUBSET SELECTION ���

set which can make use of all of the detail available in the board data�

	�� TicTacToe Results

The following results in Table
�� are taken from representative runs� The GP popu�

lation sizes used here are ���� and ����� and the DSS subset size is ��� �out of ���

training cases�� The
di	culty� and
age� weights are the same as those used in the

Thyroid problem� Initial runs indicated that these values produced good results� as

did a variety of other values�

It was not possible to get a standard GP run to produce a tree which could classify

all of the training cases since the runs were very slow� and always converged to a

sub�optimal solution within approximately ��� generations� The GP�DSS runs� with

a variety of subset sizes� always achieved close to ���$ �approx ��$� if allowed to

run for enough generations� and always showed signs of improvement even after many

generations�

TicTacToe Training Results

Pop� Subset Gener� Avg� Evals Total Training set
Algorithm Size Size ations per Gen� Evals � correct

GP�DSS ���� ��� ��
 ���e��� ���e��� ������
GP�DSS ���� ��� ��� ���e��� ���e��� ������
GP ���� ��� ��� ��
e��� ���e��� ���
�
GP ���� ��� �� ���e��
 ���e��� �
���

Table
��� Best results by GP on TicTacToe problem

	��� A quick summary of results from other runs

Di�erent DSS subset sizes were tried on the di�erent problems� As the subset size is

reduced� the performance of the GP drops� gradually at �rst but then rapidly� and

seems to mimic that of a much smaller population size� As the subset size is increased

towards that of the full training set� the time taken to produce reasonable solutions

increases� but� the performance with DSS is still at least as good as that of GP on its

own�

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Adding in a parsimony factor �i�e� penalising large�
bushy�� trees� speeds up the running

of the GP program� since it then uses much less run�time memory to store the whole

population of �smaller� trees� and the trees are quicker to evaluate� The standard GP

did not seem to perform as well with this restriction as it did without� However� DSS

seemed� if anything� to perform better than before� In the TicTacToe problem it was

possible to observe the parsimony leading to smaller optimal trees� after the run had

discovered its �rst optimal tree�

Proposed Dynamic Fitness Function �DFF�
 based on DSS

A �tness function� based on the statistics accumulated during a DSS run was tried�

Here� instead of the �tness of a GP tree being the number of training cases it mis�

classi�es� the �tness is instead taken to be the sum of the
di	culty� ratings of each

of the training cases it misclassi�es� Again� the di	culty rating of a case refers to the

number of GP trees which misclassi�ed the case in the last generation� This �tness

function seems to have a somewhat similar e�ect to DSS in that the GP runs seem to

converge more reliably to good solutions� and occasionally produce better solutions� It

will need many more runs to try and quantify this� but early indications are that this

�tness function works well with both GP on its own and GP�DSS� helping to improve

both types of run�

	��� Smaller Populations over More Generations

An interesting result of using DSS �and DFF� on small populations was noticed over

many generations� Large populations �using generational replacement� tend to con�

verge to some best �tness value� and thereafter show no signs of improvement� no

matter how many more generations are carried out� On the other hand� smaller popu�

lations show a slowly improving best �tness value� even after several thousand genera�

tions� The same is not true for smaller populations without DSS� They settle down to

a given �often quite bad� best �tness value very quickly�

Table
�� contains some indicative runs with di�erent sized small populations� Al�

though they do not achieve as good a peak performance as the large populations� they

CHAPTER �� DYNAMIC SUBSET SELECTION ���

Further Thyroid Training and Test Results

Pop� Subset Gener� Avg� Evals Total � correct
Algorithm Size Size ations per Gen� Evals Training Test

GP�DSS ����� ���
� ���e��
 ���e��� ����� �����

GP�DSS ���� ��� ��� ���e��
 ���e��� ����� �����

GP�DSS ��� ��� ���� ���e��� ���e��� ����� �����
GP�DSS�DFF ��� ��� ���
 ���e��� ���e��� ����� �����
GP�DSS�DFF ��� ��� ���� ���e��� ��
e��� ����� �����
GP�DSS�DFF �� ��� ���� ���e��� ���e��� ����� ����

Table
��� Further Thyroid Training and Test Results

get reasonably close� still using fewer tree evaluations� and using much less computer

memory� Using less memory has a knock�on e�ect with the e	ciency of CPU�usage�

and in fact increases the speed of tree evaluation� These runs were still �very� slowly

improving� but were interrupted when user patience ran out� or a re�boot was sched�

uled�

The use of small populations is explored further in Chapter ��

	��� DSS Discussion

GP
 DSS
 HSS
 RSS
 and NNs The GP � DSS method produces results as good

as those of the standard GP and in a much shorter time� on the Thyroid Problem at

least� DSS can actually produce better answers� as can be seen with the TicTacToe

problem� and the population appears to produce a larger variety of solutions in later

generations than with standard GP or HSS� The random nature of DSS appears to

assist the basic GP algorithm�

HSS out�performed the standard GP in terms of processing time� and nearly matched

it in terms of quality of results� HSS was the main contender for improvement�of�

the�week until DSS was implemented� One big bene�t of HSS is the ease with which

previous standard GP runs can be cannibalised for information to use in selecting a

subset of di	cult cases�

RSS performs surprisingly well� and can match the performance of standard GP in

certain situations� in a much shorter time� This perhaps indicates one of the bene�ts

CHAPTER �� DYNAMIC SUBSET SELECTION ��

of DSS that� in e�ect� the �tness function is continually being changed� never allowing

the GP to settle into a rut�

When compared with the Neural Network results in �Schi�mann et al� ��a�� the best of

which is shown in Table
�� above� GP�DSS produced a tree which generalised better

from the training set� To be fair� in splitting up the problem into two phases �class �

or not� then class � or ��� the GP has been presented with an easier problem than was

presented to the Neural Networks� This could be taken in di�erent ways� splitting up

the problem is mildly cheating� or demonstrating the �exibility of the GP approach�

Thyroid Problem For the Thyroid problem� the distribution of errors made by the

best tree was split more or less evenly between problem cases �classes � and �� and

no�problem cases �class ��� This could be altered by biasing the GP algorithm to erring

on the side of problem cases� i�e� more False�Positive errors and fewer False�Negative

errors� which would be more useful in a medical environment�

Looking at the trees produced� it was interesting how the best tree used only �� out

of the �� variables available to classify most of the cases correctly� This could perhaps

lead to some useful savings in data collection costs� or it could help focus attention on

some key measurements� It might be possible to make some further measurements and

split each key measurement into several di�erent� �ner measurements� One advantage

of GP over NNs is that it is very di	cult to obtain such insights from the node weights

in a trained NN�

DSS DSS does not seem too sensitive to the choice of subset size� and
di	culty� and

age� weights� The ones chosen for the Thyroid Problem carried over successfully to

the TicTacToe problem� It is possible to pick bad values� but it seemed just as easy to

pick useful ones� A reasonable guess so far �albeit one which needs to be checked on

many more and di�erent problems� seems to be a subset size around a �fth to a tenth

of the full training set size� with the weights chosen to allow a di	cult case and a case

�ve to �fteen generations old to have a roughly equivalent weighting�

There are obviously many factors a�ecting the optimum choice of these parameters� It

appears that a large training set� containing some degree of redundancy� with a core

CHAPTER �� DYNAMIC SUBSET SELECTION ���

of di	cult cases would bene�t the most from DSS� However GP� in particular in the

TicTacToe problem� seems to su�er from an inability to reach an optimal solution� This

could be due to many things� but� applying DSS enables GP to correctly classify all of

the training set� Di	cult cases are persistently dragged into the subset until the GP

population evolves to be able to deal with them� Standard GP does not di�erentiate

between easy and hard cases� and this lack of pressure becomes noticeable near the

end of a run when the population fails to �nd the optimal solution� DSS appears

to epitomise this idea of a dynamic �tness function increasing the pressure to solve

di	cult cases�

At this early stage of investigation� there are strong hints that the method is more

widely applicable to general problem solving with GP and GA involving large training

sets �for time saving�� and to di	cult problems �for better and more general answers��

What is more� DSS is easily added to the basic GP algorithm� The performance of

DSS on the smaller� less messy� TicTacToe problem bodes well for DSS to be applied

to many other supervised training problems� Possibly one of the more useful aspects

of DSS so far has been its ability to produce results quickly which� for GP� means that

di�erent function sets and parameter settings can be experimented with�

DFF DFF is a logical progression from DSS itself� and in many ways has an equival�

ent e�ect on the �tness function in supervised learning with a training set� DFF and

DSS provide a simple feedback mechanism for focusing a GP population onto its own

de�ciencies�

Smaller Populations It is interesting that the DSS method which allows GP to be

used on large problems in a practical time� also allows GP to be scaled down for use

on smaller machines where CPU memory and its usage is more constraining than CPU

speed�

Further Research There are myriad lines of investigation to follow up� For instance�

how widely applicable is DSS to other problems& How does DSS�s randomness in�uence

the behaviour of GP& Would DSS work as well if it was only based on an individual

CHAPTER �� DYNAMIC SUBSET SELECTION ���

tree�s measure of di	culty� e�g� the performance of the best�of�generation tree� or does

it need the combined measures from the whole population& Could DSS be applied to

other supervised training algorithms� e�g� Neural Networks� where the training cases are

continually re�assessed until correctly classi�ed& Could DSS be applied to constraint

solving problems& How sensitive is DSS to its parameter settings&

Chapter �

Limited Error Fitness

This chapter presents Limited Error Fitness �LEF�� described in Section ���� and �rst

published in �Gathercole � Ross ��b�� LEF is a variation on the standard �tness func�

tion for GP on supervised classi�cation problems� LEF enables a simple GP� described

in Section ���� to solve the previously out of reach Boolean Even N Parity problem for

N � �� described in Section ���� The test results from runs with N�
 and N�� are

given in Section ���� followed by a discussion in Section ����

The Boolean Even N parity problem ��nding the parity of N boolean inputs� is a hard

one for GP to solve" increasing rapidly in di	culty and solution size with increasing

N� Koza has shown that N�� represents� in e�ect� an upper limit for standard GP�

even with a large population size of ����� Runs tend to converge rapidly on sub�

optimal solutions� Only with the use of Automatically De�ned Functions �ADF�� a

more powerful representation� was Koza able to solve for N�
 and higher� with a large

population of ����� �Koza ��� Koza ����

 ��� the parity functions are the hardest Boolean functions to �nd via blind

random search of the space of S�expressions using the function set F and

they are the hardest to learn via genetic programming�!

With LEF� standard GP without ADF can readily solve for N�
 and N�� with a pop�

ulation size of ���� but may require several thousand generations� A smaller population

size allows GP to be run on smaller computers at a reasonable speed� in a reasonable

length of time� It has the potential to solve for even higher N with larger populations�

���

CHAPTER 	� LIMITED ERROR FITNESS ���

LEF is variation on the standard GP �tness function for classi�cation problems� An

individual�s �tness score is based on how many cases remain uncovered in the ordered

training set after the individual exceeds an error limit� The training set order and the

error limit are both altered dynamically in response to the performance of the �ttest

individual in the previous generation�

Evidence indicates that LEF rewards generality� penalises specialists� and maintains

diversity in the GP population� preventing premature convergence� After many thou�

sands of generations� if it has not yet found an optimal solution� LEF keeps the GP

population in �ux� Thus GP is a more e�ective optimiser� continually emphasising the

relative importance of di	cult cases� and de�emphasising easy cases� However� LEF

is very susceptible to the choice of various parameter values� and often causes the GP

population to undergo a catastrophic loss of good individuals� LEF is also used suc�

cessfully on the TicTacToe problem in Chapter �� However LEF still hasn�t yet been

tried on enough problems to identify other potential weaknesses such as over��tting on

the training set�

��� LEF � the algorithm

LEF is a variation on the standard method used to evaluate the �tness of a GP indi�

vidual in supervised learning on classi�cation problems� In e�ect� it presents a di�erent

version of the same problem to each generation of the population� based on how well

the population performed on the previous version� The standard method evaluates

the GP individual on each case in the set of training cases� compares its
answer� �or

classi�cation� with the correct answer� and the GP individual�s �tness score is based

on the total number of errors�

With LEF� a GP individual�s �tness score is related to how many of the ordered set of

training cases it classi�es correctly before it makes a certain number of misclassi�ca�

tions� After exceeding the error limit� any cases not yet covered by the individual are

counted as misclassi�ed� The �tness score is the total number of misclassi�ed cases�

If the GP individual is a poor one� i�e� makes many mistakes� it will not be evaluated

on the entire training set� If the GP individual is a good one� it will be evaluated

CHAPTER 	� LIMITED ERROR FITNESS ���

on the entire training set� making fewer mistakes than the number allowed� Thus� in

general� it is quicker to �nd the �tness value for a poor GP individual than a good GP

individual� saving CPU time�

At the start of a run� the training set is shu'ed into a random order to avoid any

biases that may have been introduced in the original ordering� The error limit is set in

advance of the �rst generation� possibly with the bene�t of information gleaned from

previous runs� The �rst generation could� however� run without an error limit� and the

error limit be set equal to the number of errors made by the best GP individual in the

�rst generation� Later on� the error limit is raised� lowered� or left unchanged� and the

training set is re�ordered� depending on the performance of the best GP individual in

the preceding generation� The timing of these changes depends on two measures from

the best of generation individual �BOGI�� and some parameters set at the start of the

run� The two measures are the number of cases not covered by the BOGI �because it

exceeded the error limit before reaching the end of the training set�� and the number

of generations since the last improvement in the BOGI �ignoring generations when it

got worse�� In this instance� the term
improvement� is taken to mean that the BOGI

made fewer errors� With parsimony included in the �tness function� i�e� a penalty for

large trees� the BOGI often gets smaller� with a corresponding small decrease in its

�tness score� but remains functionally unchanged�

The algorithm for modifying the error limit is as follows�

� BOGI improvement�

IF the BOGI has improved within the last O�PAUSE generations

THEN make no parameter changes

� Over�Coverage�

IF the BOGI makes fewer errors than the error limit

AND the BOGI hasn�t improved for O�PAUSE generations

THEN

� reduce the error limit by O�DECREMENT

� move the O�BUBBLES easiest training cases

to the end of the ordered training set

CHAPTER 	� LIMITED ERROR FITNESS ���

� Exact�Coverage�

IF the BOGI reaches the error limit� but covers all the cases

AND the BOGI hasn�t improved for E�PAUSE generations

THEN

� reduce the error limit by E�DECREMENT

� move the E�BUBBLES easiest training cases

to the end of the ordered training set

� Under�Coverage�

IF the BOGI exceeds the error limit before covering all the cases

AND the BOGI hasn�t improved for U�PAUSE generations

THEN

� increase the error limit by U�INCREMENT

� move the U�BUBBLES easiest training cases

to the end of the ordered training set

These four phases cover all the possibilities for the interaction of the error limit and the

performance of the BOGI� Over�Coverage corresponds to the BOGI making fewer errors

than the error limit� indicating that the problem could be made harder by reducing the

error limit� Under�Coverage corresponds to the BOGI making more errors than the

error limit� so none of the population can cover the entire training set� Raising the error

limit would give the population a better chance of covering the entire set� The Exact�

Coverage phase has been made explicit� even though it could have been incorporated

into the other two phases� This phase is quite crucial in LEF" it is when the BOGI only

just covers the training set� Reducing the error limit at all will immediately reduce

the �tness of the BOGI� possibly by a large amount� allowing other� previously less �t�

individuals to the fore�

There are several parameters set at the start of a run� Some typical values are as

follows�

� initial error limit � set to allow the �rst generation BOGI to nearly cover the

entire training set� This obviously depends on the training set� and di�ers for

CHAPTER 	� LIMITED ERROR FITNESS ���

each problem� Experiments have indicated that it is better to start too large than

too small� though the algorithm allows it to rise if it is set too low� However in

the LEF run for N�
� shown below� the error limit was set quite low at �� �there

are
� training cases� and a random solution is likely to achieve approximately

�� errors�� to demonstrate how the LEF algorithm copes with a BOGI that can�t

cover the entire training set before exceeding the error limit�

� O�PAUSE � set to �

� E�PAUSE� U�PAUSE� � set to ��

These delays can be varied somewhat but experiments have indicated that if

E�PAUSE and U�PAUSE are too small� the population doesn�t have time to

adapt to the new version of the problem� and so doesn�t improve very quickly if

at all� If U�PAUSE is too long� the population converges too much on the new

version of the problem� and loses the diversity needed to solve the earlier versions�

In e�ect� it has to re�learn how later� This loss of diversity is more noticeable

with smaller populations� and is usually catastrophic� setting back the population

by many generations� O�PAUSE seems less important since it only has an e�ect

when the BOGI makes fewer errors than the error limit� and there are likely to

be several other individuals making few errors� Reducing the error limit at this

stage still keeps the current BOGI in place� but speeds up the evaluation of the

majority of the population�

� O�DECREMENT� E�DECREMENT� � set to �

These changes to the error limit are kept small� If they are too large� the change

in di	culty of the problem becomes too extreme� the population fails to over�

come the change� and bad GP individuals can suddenly become the best of the

generation�

� U�INCREMENT � set to �

This parameter can be made larger to help counter the e�ect of the catastrophic

loss of good individuals in the population� by allowing a faster increase in the

error limit�

� O�BUBBLES� E�BUBBLES� U�BUBBLES� � set to �

CHAPTER 	� LIMITED ERROR FITNESS ���

The change in order of the training set is kept small� The problem is made

slightly more di	cult� but previous good GP individuals should still perform

well� If it is too drastic� as with changes in the error limit� it is detrimental

to the development of the population� The
BUBBLES� refer to one pass of a

bubble sort algorithm� Starting with the �rst case in the set� and moving along

the order towards the last case� pairs of cases are swapped if the later one has

been misclassi�ed �or left uncovered� more often� This has the e�ect of moving

the easiest case �i�e� the one that was misclassi�ed least often by the previous

generation� to the end of the ordered set� and moving the harder cases one place

towards the start of the ordered set� There are many other ways of changing the

order of the training set� but this is one of the simplest� and appears to have a

reasonably good e�ect� One
bubble� only reduces the BOGI �tness by at most

one� even though� potentially� a case could be moved from the start of the set

order all the way to the end� Any di	cult cases are only moved towards the

start of the set by one position� Changing the error limit can have a much bigger

impact on the BOGI �tness�

In essence� these parameters control the change in di	culty of the problem in response

to the performance of the population in the previous generation� Many experiments

have indicated that it is better to minimise the impact of the changes to error limit

and set order� especially E�DECREMENT and E�BUBBLES� The population is given

time to adapt to the new version of the problem� If it proves too di	cult� the problem

is made slightly easier� If it proves too easy� the problem is made slightly harder� The

ultimate aim is to reduce the error limit to zero� i�e� for the BOGI to make no errors�

Related Work Closely related to LEF is the idea of co�evolving host and para�

site populations� �Hillis ��� Rosin � Belew ���� niches� �Goldberg � Richardson ���

Greene � Smith ���� competitive �tness functions� �Angeline � Pollack ���� �These are

described more fully in Section ����� and training subset selection� �Chapter
��

CHAPTER 	� LIMITED ERROR FITNESS ���

��� GP Details

The GP setup is kept simple� and Automatically De�ned Functions �ADF� are not

used� Generational replacement with elitism is used� with panmitic tournament selec�

tion of size �� using population sizes from ��� to ���� The operators �and selection

probabilities� are�

� ��$ CROSSOVER AT ANY POINT

� crossover between two parents producing one child

� ��$ MUTATE SUBTREE

� mutate a subtree in a parent to produce a child

� ��$ MUTATE BY SUBTREE PROMOTION

� replace a subtree in a parent by one of its own subtrees to produce a child

� ��$ MUTATE ANY NODE

� replace a random node in a parent with another node of the same arity

The function and terminal sets are described below� in Section ����

An individual�s �tness is based upon the number of classi�cation errors it makes �i�e�

the fewer the better� and� for LEF� the number of training cases left uncovered after

it exceeds the error limit �i�e� also the fewer the better�� Parsimony� a penalty for

large trees� is added to the �tness score as a factor ����� times the number of nodes

in the tree� Since the maximum allowed tree size is ��� nodes� the contribution from

parsimony never reaches ���� and so di�erentiates only between trees which perform

equally well on the training set� A smaller �tness score corresponds to a �tter tree�

with a minimum �of less than ���� equal to the parsimony factor of a tree which makes

no errors on the training set�

The basic GP settings can certainly be improved� In particular� the tournament size

seems to be too large� Some studies �Blickle � Thiele ��� Hancock ��� and several

discussions with GA practitioners seem to indicate that smaller tournament sizes work

better� The choice of operators is also important� They can always be improved�

and care should be taken so that they do not impede GP� �see Section ����� though the

CHAPTER 	� LIMITED ERROR FITNESS ��

ones used here prove reasonably successful� The main aim of this section is to show the

possibly bene�cial impact of LEF on a standard GP� not to optimise GP parameters�

��� The Even N Parity problem

The Even N Parity problem has been used by Koza as a problem which causes di	�

culties for GP in �Koza ����

 The parity family of functions is a very di	cult family of functions to

learn� For example� after trying �� runs of genetic programming without

automatic function de�nition� no solution was found for the even���parity

problem using a population size of ���� and the given function set F �al�

though we did �nd one solution on our eighth run after we increased the

population size to ������ However� if automatic function de�nition is used�

solutions to both the even���parity and the even�
�parity functions can be

readily found with a population size of �����!

The training set consists of all the �N possible combinations of N binary inputs �
� for

N�
� and ��� for N���� The correct classi�cation is the parity of the N inputs� i�e�

TRUE where an even number of inputs are TRUE� and FALSE where an odd number

of the inputs are TRUE� The parity changes with any change in a single input value�

The task for GP is to �nd a tree which correctly classi�es all the cases in the training

set using the following function and terminal sets�

� Terminal Set � f b�� b�� b�� ���� bN�� g�

N boolean variables

� Function Set F � f AND� OR� NAND� NOR g�

standard logical functions� computationally complete�

As N is increased� the problem becomes exponentially harder for a simple GP and� for

N�
 or greater� supposedly impossible �or exceedingly unlikely to be solved� even with

a very large population size of ����� At this point� Koza then demonstrates the power

CHAPTER 	� LIMITED ERROR FITNESS ���

and might of Automatically De�ned Functions �ADF� which he uses to successfully

solve the Even N Parity problem up to N�
� �Koza ���� and up to N���� �Koza ����

but using large population sizes of ����� taking roughly �� generations for N�
� ADF

is a more powerful representation� particularly suited to the structure inherent in the

Boolean Even N Parity problem� allowing GP to construct hierarchical function de�n�

itions� LEF used in combination with a simple GP� without ADF� successfully reaches

the dizzy heights of N��� with small population sizes ranging from ��� to ���� and has

the potential to solve for larger N� Population size has a major impact on the speed

of GP� and especially on the run�time memory requirements� It can easily exceed the

usable memory generally available in present�day workstations� causing them to run

very ine	ciently�

��� Results

A series of runs �of the order of ��� were carried out with an assortment of population

sizes and parameter settings� though no runs used ADF� Since each run took several

hours� especially all the runs without LEF� there are not su	cient runs to provide

sound performance statistics� However� some clear trends do emerge� The results from

runs on the Even N Parity problem are as summarised in Table ����

The results con�rm that simple GP is incapable of solving the Even N Parity problem

for N�
 or N�� �or greater� with an assortment of population sizes ranging from ���

to ���� allowed to run for ���� generations for N�
� and ���� generations for N���

Letting GP run on even longer would almost certainly not result in optimal trees being

discovered since the runs showed no signs of improvement�

Graphs from two sample runs for N�
� with a population size of ���� are shown in Fig�

ures ��� to ���� The graphs are from a typical� successful run of GP with LEF� showing

the changes in BOGI �tness� Figure ���� and tree size �or
bushiness��� Figure ���� the

population �tness standard deviation� Figure ��
� These graphs are shown alongside

the equivalent graphs from an unsuccessful run of GP without LEF �they all failed to

�nd an optimal tree�� The next two graphs show the error limit� Figure ���� and the

number of tree evaluations per generation� Figure ���� for the run with LEF� The runs

CHAPTER 	� LIMITED ERROR FITNESS ���

16

18

20

22

24

26

28

30

32

0 500 1000 1500 2000 2500 3000 3500 4000

Fi
tn
es
s

Generations

Without LEF: Plot of Best of Generation Fitness

Fitness

Figure ���� Best of Generation Fitness during a typical run of GP without LEF on the
Even N Parity Problem� where N�
� and PopulationSize � ���

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

Fi
tn
es
s

Generations

With LEF: Plot of Best of Generation Fitness

Fitness

Figure ���� Best of Generation Fitness during a typical run of GP with LEF on the
Even N Parity Problem� where N�
� and PopulationSize � ���

CHAPTER 	� LIMITED ERROR FITNESS ���

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000

Bu
sh
in
es
s
-
Nu
mb
er
 o
f
Tr
ee
 N
od
es

Generations

Without LEF: Plot of Best of Generation Bushiness

bushiness

Figure ���� Best of Generation Bushiness during a typical run of GP without LEF on
the Even N Parity Problem� where N�
� and PopulationSize � ���

0

50

100

150

200

250

300

350

400

450

500

550

0 500 1000 1500 2000 2500

Bu
sh
in
es
s
-
Nu
mb
er
 o
f
Tr
ee
 N
od
es

Generations

With LEF: Plot of Best of Generation Bushiness

bushiness

Figure ���� Best of Generation Bushiness during a typical run of GP with LEF on the
Even N Parity Problem� where N�
� and PopulationSize � ���

CHAPTER 	� LIMITED ERROR FITNESS ���

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000

St
an
da
rd
 D
ev
ia
ti
on
 o
f
Fi
tn
es
se
s
in
 P
op
ul
at
io
n

Generations

Without LEF: Plot of Standard Deviation of Fitnesses in Population

Stddev of Fitness

Figure ���� Standard Deviation of Fitness during a typical run of GP without LEF on
the Even N Parity Problem� where N�
� and PopulationSize � ���

0

5

10

15

20

25

0 500 1000 1500 2000 2500

St
an
da
rd
 D
ev
ia
ti
on
 o
f
Fi
tn
es
se
s
in
 P
op
ul
at
io
n

Generations

With LEF: Plot of Standard Deviation of Fitnesses in Population

Stddev of Fitness

Figure ��
� Standard Deviation of Fitness during a typical run of GP with LEF on the
Even N Parity Problem� where N�
� and PopulationSize � ���

CHAPTER 	� LIMITED ERROR FITNESS ���

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

Er
ro
r
Li
mi
t

Generations

With LEF: Plot of Error Limit

Error Limit

Figure ���� Error Limit during a typical run of GP with LEF on the Even N Parity
Problem� where N�
� and PopulationSize � ���

