An Investigation of Supervised Learning

in Genetic Programming

Chris Gathercole

Ph.D.
University of Edinburgh
1998

Abstract

This thesis is an investigation into Supervised Learning (SL) in Genetic Program-
ming (GP). With its flexible tree-structured representation, GP is a type of Genetic
Algorithm, using the Darwinian idea of natural selection and genetic recombination,
evolving populations of solutions over many generations to solve problems. SL is a
common approach in Machine Learning where the problem is presented as a set of
examples. A good or fit solution is one which can successfully deal with all of the
examples.

In common with most Machine Learning approaches, GP has been used to solve many
trivial problems. When applied to larger and more complex problems, however, several
difficulties become apparent. When focusing on the basic features of GP, this thesis
highlights the immense size of the GP search space, and describes an approach to
measure this space. A stupendously flexible but frustratingly useless representation,
Anarchically Automatically Defined Functions, is described. Some difficulties associ-
ated with the normal use of the GP operator Crossover (perhaps the most common
method of combining GP trees to produce new trees) are demonstrated in the simple
MAX problem. Crossover can lead to irreversible sub-optimal GP performance when
used in combination with a restriction on tree size. There is a brief study of tournament
selection which is a common method of selecting fit individuals from a GP population
to act as parents in the construction of the next generation.

The main contributions of this thesis however are two approaches for avoiding the
fitness evaluation bottleneck resulting from the use of SL in GP. To establish the
capability of a GP individual using SL, it must be tested or evaluated against each
example in the set of training examples. Given that there can be a large set of train-
ing examples, a large population of individuals, and a large number of generations,
before good solutions emerge, a very large number of evaluations must be carried out,
often many tens of millions. This is by far the most time-consuming stage of the GP
algorithm. Limited Error Fitness (LEF) and Dynamic Subset Selection (DSS) both
reduce the number of evaluations needed by GP to successfully produce good solutions,
adaptively using the capabilities of the current generation of individuals to guide the
evaluation of the next generation. LEF curtails the fitness evaluation of an individual
after it exceeds an error limit, whereas DSS picks out a subset of examples from the
training set for each generation.

Whilst LEF allows GP to solve the comparatively small but difficult Boolean Even N
parity problem for large N without the use of a more powerful representation such as
Automatically Defined Functions, DSS in particular has been successful in improving
the performance of GP across two large classification problems, allowing the use of
smaller population sizes, many fewer and faster evaluations, and has more reliably
produced as good or better solutions than GP on its own.

The thesis ends with an assertion that smaller populations evolving over many gener-
ations can perform more consistently and produce better results than the ‘established’
approach of using large populations over few generations.

ii

Acknowledgements

I’d like to take this opportunity to thank the many people who have assisted, coerced,
guided, bullied, ridiculed, encouraged, or otherwise contributed to my completing this
thesis. Many thanks to my supervisor, Dr. Peter Ross, for knowing the answers to many
questions. Many thanks to Dave Corne for lending an ear, and likewise to his better-
groomed replacement, Emma Hart. Many thanks to the attendees and organisers of the
GP96 and GP97 conferences for many inspiring conversations and talks, and especially
to Bill Langdon for his many helpful comments. Many thanks to the denizens of E17
and E19 for the endlessly diverting chats. Many thanks to many other people. And
last but not least, many thanks to SERC, who became EPSRC, for funding nearly the
whole of my PhD with grant number 93314680.

iii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

C. S. Gathercole
Edinburgh
March 22, 1998

v

Contents

Abstract

Acknowledgements

Declaration

List of Figures

List of Tables

I Overview of Genetic Programming

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Why Look At GP
Why Read this Thesis,
What isin this thesis. o oL
Search Algorithms
GP: The What and the How

Basics of Supervised Learning 0.

2 Ramifications of a Large and Messy Problem

21
2.2
2.3
2.4
2.5

Why Choose the Thyroid Problem
Starting Point L L
First Impressions
Early Snags and Decisions

Longer Term Snags, Workarounds, and Hindsight

ii

iii

iv

xi

xii

11
18

2.6 Applying GP toaproblem. oo

2.7 Summary e

II A Closer Look At Genetic Programming

3 GP Tree Representation
3.1 Thestandard GP tree
3.2 Counting Trees o
3.3 Extending the Function and Terminal Sets

3.4 Summary ...l e

4 GP Tree Recombination and Selection
4.1 Crossover and the MAX problem
4.1.1 Why Restrict Tree Size
4.1.2 The MAX Problem
413 Crossoverin GP o oo
4.1.4 Experiment Details oL
4.1.5 Results
4.1.6 Analysis of Crossover
4.1.7 Discussion of MAX problem
4.1.8 Summary e e
4.2 Tournament Selection oo
4.2.1 Various Selection Methods,
4.2.2 Some Effects of Tournament Selection

4.3 DISCussion i e e e e e e e e e e e e

ITT Genetic Programming and Supervised Learning

5 Making use of the Training Set in GP
5.1 Training Sets in Machine Learning

5.2 Selecting Training and Test Sets

vi

43

44
44
46
92
o8

59
60
61
66
77
78
80
90
92
96
98
98
101
106

108

5.3 Approaches for Evolutionary Algorithms 114

5.4 Approaches for GP in this thesis 116
Dynamic Subset Selection 117
6.1 Subset Selection Methods oL 118
6.2 Historical Subset Selection (HSS) - the algorithm 118
6.3 Dynamic Subset Selection (DSS) - the algorithm 119
6.4 Random Subset Selection (RSS) - the algorithm 122
6.5 GP Details 123
6.6 The ‘Large and Messy’ Thyroid Problem 123
6.7 Thyroid Results 126
6.8 A Smaller Problem: TicTacToe Endgames 132
6.9 TicTacToe Results, 133
6.10 A quick summary of results from other runs 133
6.11 Smaller Populations over More Generations 134
6.12 DSS Discussion 135
Limited Error Fitness 139
7.1 LEF - the algorithm 140
7.2 GP Details 145
7.3 The Even N Parity problem, 146
74 Results. 147
7.5 LEF Discussion e 155
Small Populations, Many Generations 160
8.1 Solving the TicTacToe problem with a small population 161

8.1.1 GP parameters 161

8.1.2 LEF parameters 163

8.1.3 DSS parameters 165

8.1.4 Comparison of GP, GP+LEF, and GP+DSS, on TicTacToe . . . 165
8.2 Solving the Thyroid problem with a small population. 167
8.3 Discussion Lo 169

vil

IV Summary and Conclusion
9 Further Work

10 Summary

11 Conclusion

Glossary

Bibliography

viii

172

173

176

179

182

184

List of Figures

1.1
1.2
1.3

21
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Linear String ~> tree 15
LISP-like Program ~» tree 15
Algebraic Expression ~» GP tree 15
A ‘Large and Messy’ Problem 24
Easy Thyroid subproblem 29
Structure of IFLTE subtree — (If Less Than Or Equal to), arity=4 . . . 45
Example of an ADF tree o oL 53
example AADF tree 56
Spike and Decay with Parsimony 64
Optimal Tree for MAX-depth-4-{+}{1} 68
Optimal Tree for MAX-depth-4-{*,+}{1} 68
Optimal Tree for MAX-depth-4-{*,+}{0.5} 68
Optimal Tree for MAX-depth-5-{*,+}{0.25} 68
Optimal Tree for MAX-depth-4-{*,/}{0.9} 69
An optimal tree for MAX-nodes-81-{*,+}{0.25} 70
Avg gens needed by MAX-depth-D runs using Crossover 81
StdDev of gens needed by MAX-depth-D runs using Crossover 81
Failure of MAX-depth-D runs using Crossover 82
Failure of MAX-depth-D runs using Crossover & Mutations 82
Sub-Optimal tree for MAX-depth-5-{*,+}{0.5} 83
Sub-Optimal tree for MAX-depth-5-{*,/}{0.9} 83
Sub-Optimal tree for MAX-nodes-81-{*,+}{0.25} 84

X

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
74
7.5
7.6

Gens needed for MAX-nodes-N-{*,+}{0.25} with Crossover
Gens needed for MAX-nodes-N-{*,4+}{0.5} with Crossover
Gens needed for MAX-nodes-N-{*,+}{1} with Crossover
Gens needed for MAX-nodes-N-{*,+}{0.25} with Crossover & Mutations .
Gens needed for MAX-nodes-N-{* +}{0.5} with Crossover & Mutations
Gens needed for MAX-nodes-N-{*,+}{1} with Crossover & Mutations
Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover
Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover
Success of MAX-nodes-N-{*,+}{1} runs with Crossover
Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover & Mutations
Success of MAX-nodes-N-{*,+1}{0.5} runs with Crossover & Mutations . .
Success of MAX-nodes-N-{*,+}{1} runs with Crossover & Mutations . . .
Average Parent Selection Frequency
Average Distribution of Repeated Selections
Average Likelihood of Non-Selection

Average Number of Unchecked Parents

Simple GP tree for class 1 and class 2 cases
GP treeforclass 3 cases oo
Errors made on Thyroid test set by DSS& RSS.
Errors made on Thyroid test set by GP & GP+HSS
Errors made on Thyroid training set by GP & GP+DSS
Errors made on Thyroid training set by GP & GP+DSS

Dynamics of DSS: showing the varying difficulty and age weights

Best-of-gen Fitness of GP on Even N Parity, N=6, Pop=400.
Best-of-gen Fitness of GP+LEF on Even N Parity, N=6, Pop=400 . . .
Best-of-gen Bushiness of GP on Even N Parity, N=6, Pop=400
Best-of-gen Bushiness of GP+LEF on Even N Parity, N=6, Pop=400 . .
Fitness Std Dev of standard GP on Even N Parity, N=6, Pop=400 . . .
Fitness Std Dev of GP+LEF on Even N Parity, N=6, Pop=400

148
148
149
149
150

7.7 Error Limit of GP+LEF on Even N Parity, N=6, Pop=400 .
7.8 Evals per Gen of GP+LEF on Even N Parity, N=6, Pop=400

x1

List of Tables

3.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4

7.1

8.1
8.2
8.3
8.4
8.5

The number of possible GP trees with Nnodes

Details of the optimal trees for MAX-nodes-N-{*,+}{0.25}
Details of the optimal trees for MAX-nodes-N-{*,+}{0.5}
Details of the optimal trees for MAX-nodes-N-{* +}{1}

Distribution of Classes in Thyroid Data
Best results by GP (and NN) on Thyroid Problem
Best results by GP on TicTacToe problem
Further Thyroid Training and Test Results

Summary of results from runs on the Even N Parity problem

Looking for a good Population Size for the TicTacToe problem
Looking for a good Tournament Size for the TicTacToe problem
Looking for good LEF Pause Parameters on TicTacToe problem
Comparison of GP, GP+DSS, GP+LEF on TicTacToe Problem
Results for GP and GP+DSS on Thyroid Problem

xii

Part 1

Overview
of Genetic Programming

Chapter 1

Introduction

1.1 Why Look At GP

Genetic Programming is an evolutionary-based search technique which can be ap-
plied to many different types of problems, and it has had some notable successes.
Gruau has developed a method for encoding ‘growth’ instructions for Neural Net-
works, evolving both the structure and weights of networks, [Gruau et al. 96]. Howley
has used GP to “discover near optimal control laws for the minimum time reorientation
for a spacecraft”, [Howley 96]. Garces-Perez et al have used GP to produce “superior”
results in the facility layout problem, [Garces-Perez et al. 96]. Walsh and Ryan have
used GP to develop a technique for the “Autoparallelisation of Sequential Programs”,

[Walsh & Ryan 96].

As can be seen in these examples, GP is a flexible, widely applicable algorithm. It is
simple, easy to explain and understand, with a huge potential for solving large and
complex problems beyond the ken of the programmer. The fact that GP does not often

achieve this potential gives rise to an intriguing area of study.

A large part of GP’s appeal stems from its simplicity. Using its basic but flexible tree-
structured representation, GP is capable of solving some difficult problems with little
input or external knowledge. However, it soon becomes clear that GP can be made
faster, more efficient, and more effective, by relaxing the simplicity requirement and
instead looking at how to allow GP to take more advantage of the problem structure,

or properties of its own evolving population of solutions. In particular, in Supervised

CHAPTER 1. INTRODUCTION 3

Learning problems, the speed and capability of GP is highly dependent on the size and
make up of the training data, i.e. the way the problems are presented to GP as a set

of examples.

1.2 Why Read this Thesis

This thesis is not aimed at convincing the ignorant that GP is best in certain situations.
Instead it dodges that issue in favour of looking at ways of improving standard GP and
the use of GP in the particular area of Supervised Learning classification problems.
GP has many obvious but circumventable weaknesses, most notable among these are
its rapacious demands for computer memory and CPU time. There is lots of scope for
improvement. This thesis highlights some weaknesses of GP with Supervised Learning,
and describes some procedures which can improve GP’s performance. In effect, this
thesis adds some utilities to a tool-box which can be used to repair GP when it doesn’t

work well, or needs a boost.

1.3 What is in this thesis

This chapter introduces GP and the entire thesis. It looks at GP from two view-
points: how it fits in with other search algorithms, in Section 1.4, and the mechanics
of how GP works, in Section 1.5. Section 1.6 looks at the idea of Supervised Learning.
Chapter 2 takes a look at some of the lessons learned whilst using GP, highlighting
several difficulties that could have been avoided, and some of which are dealt with in

this thesis.

Chapter 3 looks at some aspects of the tree-based representation in GP, including the
huge size of the search space, and Automatically Defined Functions (ADF) where GP
can evolve its own representation. Chapter 4 looks at some aspects of GP operators,
including restrictions on tree size, the adverse interaction of Crossover (a standard GP
operator) and restricted tree size, and the use of Tournament Selection for choosing

parents from the population.

Chapters 5 to 8 contain most of the research done for this thesis, looking at a variety of

CHAPTER 1. INTRODUCTION 4

methods for dealing with the training set in supervised learning, taking advantage of
the current abilities of the GP population to reduce the computational effort necessary
to find good solutions. The two main methods are Dynamic Subset Selection (DSS),
where a different subset of the training set is selected for each generation of GP, and
Limited Error Fitness (LEF), where each individual in the population is only allowed
to make a limited number of errors before its fitness evaluation is curtailed. Chapter 8
concentrates on the beneficial use of much smaller population sizes to tackle the same
problems as those in earlier chapters, needing many more generations but requiring

less computational effort.

Chapter 9 describes what could or should be done to follow up the work in this thesis.
There is a summary in Chapter 10, and a conclusion in Chapter 11. Following the
concluding chapter there is a Glossary of many of the terms and acronyms used in this
thesis, including a page reference to where each is first mentioned or defined in the

thesis.

But first, looking at GP in the context of other computer-based search algorithms...

1.4 Search Algorithms

For a given problem, a computer-based search algorithm may be needed to find good
or optimal solutions. Problem solving is equivalent to searching for solutions. The
problem may be beyond the capabilities of current knowledge of direct, calculus-based

solutions, or perhaps the problem owner is simply lazy.

Choosing or designing a representation, along with a method for moving from one
solution to another or a description of the interrelationships between solutions, defines
a Search Space, which is simply the collection of all possible ‘reachable’ solutions to the
given problem. To be sure, the vast majority of possible solutions are likely to be very
bad ones. But, for a problem to be solvable, the representation has to be sufficiently
powerful that the search space contains at least one good or acceptable solution, and

it must be possible to ‘reach’ such solutions.

A measure of the merit of each particular solution has also to be codified in some

CHAPTER 1. INTRODUCTION)

way. The computer-based search algorithm has to be given a method for identifying
acceptable solutions when they are discovered by the search process, i.e. a measure
of how good or ‘fit’ a particular solution is relative to other solutions, or perhaps an
absolute measure of the fitness of a solution. By the same token, there should be some

way of identifying unacceptable solutions.

A search algorithm can make use of earlier results to guide its search through the
space. The simplest two, Enumeration and Random search, shown below, use no
feedback from earlier search results. Alpha-Beta pruning allows Enumeration to use
earlier results to shorten the search. Hill Climbing and Simulated Annealing keep
a record of the current best individual and use it as guide to further search. More
complex approaches, such as TABU search, and Evolutionary Algorithms such as GP,

maintain a record of several individuals to help guide their later searches.

Without Feedback

The most straightforward approach for finding an optimal solution is to enumerate all
possible solutions to a problem, i.e. check every possible solution in the search space,
and pick the best one. If the problem is to find the largest of a small set of numbers,
the Enumeration approach is perfectly satisfactory but, alas, it should be obvious that
this isn’t going to be the approach of choice for most other problems. If the search
space is finite, the Enumeration approach will be able to find the optimal solution,
but it will only know which it is when it has completed the enumeration. All but the
simplest of problems have infinite, or finite but extremely large search spaces. It will
be either impractical (i.e. it will take too long) or impossible (i.e. it will take forever) to
search them in their entirety. With GP, the search space is often finite but enormous,

increasing massively in size with every increase in permitted tree size (see Section 3.2).

Random search is perhaps the simplest option for searching large search spaces. Ran-
dom solutions are generated and tested until a sufficiently good one is found or a
sufficiently large sample of the search space has been made. There is no guarantee
that this approach will find an optimal solution unless it is allowed to run for an infin-
ite time. It is highly susceptible to the content of the search space. If there are very

few non-bad solutions, Random search is unlikely to find any useful solutions. However

CHAPTER 1. INTRODUCTION 6

it can be used to form an impression of the distribution of solutions throughout the

space, giving an idea of the possible effectiveness of searching via other methods.

With Feedback

One common use of the Enumeration approach is in game-playing programs. The
computer looks ahead in the game tree at all possible moves and their consequences
and picks the best move, i.e. the one least likely to lead to a loss, or most likely to
lead to a win. The addition of Alpha-Beta pruning is required to allow this approach
to work on any but the most trivial of games. In this specialised problem area, Alpha-
Beta pruning can reduce the size of the search space by allowing certain regions to be
ignored on the basis that they can’t possibly contain acceptable solutions, using the
information gained in an earlier part of the search. Even with Alpha-Beta pruning, it
is not possible to exhaustively search the entire game tree for chess. The addition of
some human expert chess knowledge encoded in the program allows the search to be

curtailed still further with some educated guesswork.

The Enumeration approach with Alpha-Beta pruning and some expert chess knowledge,
running on a very fast computer with dedicated chess circuitry, known as Deep Blue,
[Tan 95, Hsu et al. 95], has successfully taken on, drawn with, and beaten the human
world chess champion, Gary Kasparov (considered to be the best ever player in the
history of chess) over several competitive games, though it lost the tournament overall.
The chess world awaited with interest the next incarnation of Deep Blue (Deeper Blue)
with essentially the same algorithm but even faster hardware, which it was generally
acknowledged would overcome even Kasparov to become world chess champion (unless
the powers-that-be in the World Chess Organisations got their act together in time to
change the rules to prevent non-humans from winning the title). Sure enough, Deeper
Blue was better and did cause Kasparov all sorts of problems, even going on to win the
competition on points, winning several games along the way. Interestingly, the main
difficulty Kasparov had was not that Deeper Blue was playing especially wonderful
chess (it wasn’t bad, though), but that Deeper Blue was deciding on its moves so
quickly that Kasparov wasn’t able to much thinking during his opponent’s clock time,

and consequently was put under a great deal of pressure leading to numerous major

CHAPTER 1. INTRODUCTION 7

un-Kasparov-like mistakes.

Hill Climbing, a form of neighbourhood search, is perhaps the simplest modification to
random search which makes use of previous search results to guide its current search.
An initial random solution is generated and tested. Instead of then generating a
completely new solution, as would be the case with purely random search, one or more
close variants of the current solution are generated and tested. The best variant (or
perhaps an equally good variant, if none are actually better) then becomes the focus
of the search, and one or more variants are generated from this new solution, and
tested, and so on. If after several iterations no improvement is found, the search is
considered to have ended, and the current solution is the best one found during the
entire search. This method can be very fast at finding the optimal solution in certain
search spaces. Some modifications to Hill Climbing, described below, have produced
benchmark solutions (i.e. the best solutions found so far by any method) to some quite
difficult problems, [Ross & Corne 95]. However, in its simple form described here, Hill
Climbing can quickly become trapped on sub-optimal hills, i.e. it reaches a region in
the search space where all variants of the current focus solution are worse, but the
focus solution is not the optimal solution. Another way of looking at this situation is
that there is no way, using the idea of close variants, to move from the current solution

to the optimal solution, where each variant is no worse than the last.

Simulated Annealing (SA), [Press et al. 92], is an approach which attempts to over-
come the difficulty just mentioned for Hill Climbing. As with Hill Climbing, a random
solution is generated and tested. Rather than only choosing as-good or better variants
to be the next focus, SA can accept worse variants with some probability. The probab-
ility and (in some versions of SA) the randomness of the variations change with time,
so that SA becomes less likely to accept worse variants after the algorithm has been
running for a while. Eventually the size of the variations reaches zero, and the search is
considered to have ended at the current focus solution. This more complex approach is
much less likely to ‘get stuck’ on sub-optimal hills than simple Hill Climbing, and has
been used by O’Reilly, [O’Reilly & Oppacher 94a], to match GP on several problems,

using the same tree-based GP representation, described below in Section 1.5.

Hill Climbing (HC) can be made more flexible by removing the requirement that the

CHAPTER 1. INTRODUCTION 8

best variant becomes the new focus solution. With Stochastic Hill Climbing (SHC),
a better variant becomes the new focus with a certain probability, and it is even
possible that a worse variant might become the focus solution with a certain (smaller)
probability, as with SA. This allows the algorithm to ‘travel’ across the search space

without necessarily getting ‘trapped’ on small sub-optimal hills.

A comparison of GP, Stochastic Iterated Hill Climbing (STHC, described below), and
SA, in [O’Reilly & Oppacher 96], shows that the simple hill climbing algorithms work
well with the tree-based GP representation and powerful mutation operators. Hybrids
of GP and SIHC and SA can improve upon standard GP. A comparison of Genetic
Algorithms (GA, described below), SA, and SHC on several real timetabling problems,

using equivalent operators, [Ross & Corne 95], shows that SA and SHC can outperform

GA.

With Feedback and Memory

TABU search is a metaheuristic which can be added to algorithms such as Hill Climb-
ing. One weakness of Stochastic Hill Climbing is that the search might traverse the
same part of the search space repeatedly, wastefully re-visiting and re-testing solu-
tions. This is especially true when reaching the top of a ‘hill’ in the search space; the
search has nowhere to go except back upon its earlier route. With TABU, a list is kept
of forbidden moves. When the underlying search algorithm makes an allowed move,
that move or something abstracted from it is added to the TABU list. The TABU
list is normally of fixed length and so loses a move from its end which then becomes
as acceptable move again. The list of forbidden moves helps stop the Hill Climbing
search from getting stuck on sub-optimal hills, enabling it to explore other regions of

the search space.

Although not really a modification of the Hill Climbing algorithm, Iterated Hill Climb-
ing is nonetheless a powerful approach. As its name suggests, it consists of repeated
runs of the Hill Climbing algorithm, starting from a different random solution each
time, likewise Stochastic Iterated Hill Climbing (STHC). This is another way of avoid-
ing getting stuck on sub-optimal hills. The best solution can then be taken from several

independent searches. As already mentioned, Hill Climbing is very quick. Tterated Hill

CHAPTER 1. INTRODUCTION 9

Climbing can carry out a reasonable search of the search space in much less time than

that required by the Evolutionary Algorithms described below.

Take the simple Stochastic Iterated Hill Climbing algorithm, and expand its one focus
solution into a collection of several focus solutions, called a population. Test all the
individuals in the population, using a fitness function, which assigns a score to each
individual based on how well it solves the problem in hand. Then construct some
variants of the better solutions in the population, test them, and insert them into the
population by replacing some of the existing worse solutions. What you now have is
a simple model of evolution through Natural Selection (or unnatural selection, if you
prefer). Better solutions are likely to ‘survive’ (i.e. remain in the population) long
enough to reproduce (i.e. have variants made), and worse solutions are likely to be
‘killed off’ (i.e. replaced by new solutions). This approach is known generally as an

Evolutionary Algorithm (EA).

The ‘child’ solutions, i.e. variants of the existing ‘parent’ solutions, can be produced
in several ways. A simple random variation of the parent can be made, known as
Mutation, i.e. a copy of the parent with small random changes. Copies of two or more
parent solutions can be combined in a simple way known generally as Crossover to
produce one or more child solutions which contain a mixture of features copied from
the parent solutions, though this term covers many different types of combination.
The solutions in the population can be regarded as a very simplistic form of genetic

material, analogous to chromosomes.

EAs come in many different flavours. Evolutionary Programming (EP),
[Fogel 92, Fogel 93, Fogel 95, Fogel & Fogel 96] typically use Mutation on repres-
entations of Finite State Machines. Evolution Strategie (ES), [Béack et al. 91,
Hoffmeister & Back 91], originally only used Mutation, but now also incorporate Cross-
over. ES can perhaps be characterised by the use of real-value encodings and ‘strategy
vectors’ which guide the way Mutation is carried out on each individual. Evolution-
ary Algorithms which make some use of Crossover are commonly known as Genetic
Algorithms (GA), [Holland 75, Goldberg 89a]. GA and ES were developed more or
less simultaneously, though the proponents of ES would insist that GA and ES are

distinctly different.

CHAPTER 1. INTRODUCTION 10

A GA is essentially a simple model of the theory of Darwinian evolution by Natural
Selection and Genetic Recombination. The theory was proposed by Charles Darwin
[Darwin 59] and Alfred Russell Wallace (whose surprise letter to Darwin detailing his
own thoughts on evolution, arrived at independently, kick-started Darwin’s publication
of ‘Origin of the Species’ and the ensuing shake-up of the Creationist orthodoxy of the
time) during the last century. There is little sensible argument against its descriptive
and explanatory power of what occurs in the natural world. In its much simplified (and
much more recent) form as a GA, for computer-based search, the model of evolution
performs very well. Crossover, sometimes considered the principle distinguishing fea-
ture between a GA and other search strategies, seems to be a help in some situations

and a hindrance in others.

The typical representation used in a GA is linear. This stems from Holland’s early
attempts to duplicate natural genetic evolution by mimicking the linear chromosomes
found in natural DNA. Linear solutions are simple to work with, and can be applied to
many different problems. They are easy to code if the solutions are all of a fixed length,
with simple ways of modifying or recombining solutions together. However, not all
problems are amenable to this fixed-size representation, where the size is set before the
search begins. In many cases the size of an acceptable solution is not known in advance.
A more flexible approach known as Messy GAs, [Goldberg 89b, Goldberg et al. 93],
allows variable length linear solutions, though requires different methods of mutating
and recombining solutions. The increased expressive power of the Messy GA adds to

the algorithm’s complexity.

An alternative approach is to drop the linear format, instead adopting a tree-structured
representation. This is a natural variation of the standard GA. There are many obvious
and straightforward ways of mutating and recombining solutions of this form, described
below, such as the exchange of subtrees. Genetic Programming (GP) is a GA using

this particular tree-based representation.

The term ‘Genetic Programming’ is a little misleading, implying that the algorithm’s
sole use is to generate programs, although that may have been the original aim during

its development. There are many approaches to the evolution of computer programs in-

CHAPTER 1. INTRODUCTION 11

cluding tree-based GA (aka GP), [Kinnear Jr. 93, Langdon 95, Crosbie & Spafford 96,
Brave 96], machine-code GA, [Nordin & Banzhaf 95], and Artificial Life methods,
[Ray 91, Thearling & Ray 94|, etc. Unfortunately the term ‘Genetic Programming’
is used to refer to both tree-based GAs and the evolutionary generation of programs.

This thesis concentrates on the aspect of GP which is a tree-based GA.

1.5 GP: The What and the How

Perhaps the best introduction to GP can be found in “Genetic Programming: on
the Programming of Computers by means of Natural Selection”, [Koza 92]. Whilst
not the first or only proponent of the automatic generation of programs by com-
puters, (Cramer, amongst others, did some earlier work, [Cramer 85]), Koza’s book
helped popularise the field. A large and weighty, but easy to read, tome, it de-
scribes and delves into many aspects of GP. His next GP book, [Koza 94|, similarly
weighty, takes GP a bit further, expanding on some of the themes in the previous
book, notably Automatically Defined Functions (described in this thesis in Section
3.3). The collection “Advances in Genetic Programming”, [Kinnear 94|, provides a
very good snapshot of the wide range of GP-related research, as does the more re-
cent “Advances in Genetic Programming 2”7, [Angeline & Kinnear, Jr. 96], which also
includes Langdon’s extensive GP bibliography, [Langdon & Koza 95, Langdon 96]. An-
other good collection of GP research can be found in the GP-96 conference proceedings,
[Koza et al. 96], and GP-97 proceedings, [Koza et al. 97]. Since GP is just a simple,
natural variation of a GA, there are any number of relevant GA-related books and pa-
pers available. The classic, seminal GA book is “Adaptation in Natural and Artificial
Systems” by Holland, [Holland 75]. There are proceedings of numerous annual and bi-
annual conferences which have focussed on aspects of Evolutionary Computation such
as “International Conference on Genetic Algorithms”, ICGA, “Parallel Problem Solv-
ing from Nature”, PPSN, “IEEE Conference on Evolutionary Computation”, “Genetic

Algorithms in Engineering Systems: Innovations and Applications”, Galesia.

GP can be considered to have two main components:

CHAPTER 1. INTRODUCTION 12

e an evolutionary search algorithm

e a tree-structured representation

The two components are quite separate. The evolutionary algorithm which searches

for solutions is independent of the way the solutions are represented.

Evolutionary Search

The underlying search algorithm, known as a Genetic Algorithm (GA), uses a simple
model of Darwinian evolution to search for good solutions. The success (or not) of
natural selection and genetic recombination relies on the potential for offspring to
occasionally be ‘better’ than or improve upon their parents. A GA starts with an
initial group or population of individuals, generated at random. These individuals can
be thought of as chromosomes, if the biological analogy is taken far enough. Each
individual is tested to see how good it is at solving the problem in hand, using a fitness
function. The problem in hand could be to design a bridge that is both light and
strong, or construct a timetable that satisfies as many constraints as possible, or to
design a Neural Network to classify phonemes, or to predict the next major fluctuation
in share prices given the previous five days worth of trading figures. In short, almost

anything goes.

Each individual in the population is a possible solution to the problem. Whilst all
of these initial individuals will almost certainly be very poor or unfit solutions, some
of them will be slightly less unfit than others. These fitter solutions are selected to
act as parents for the next generation of solutions. Individual parent solutions are
copied or mutated, or pairs of parent solutions are mixed together (in a process known
as Crossover), to produce new or child solutions. The child solutions can be placed
back into the population, replacing the most unfit individuals, (in a process known
as steady-state replacement), updating the population, or can be collected together
to create a completely new generation of individuals which then replaces the previous
generation. The latter option (generational replacement) is the one described more

fully here, and used throughout this thesis.

CHAPTER 1. INTRODUCTION 13

The choice of which method (or operator) to use in constructing each child is made at
random for each child. The user specifies ‘operator selection frequencies’, i.e. the bias
given towards choosing Mutation, Crossover, and any other operators which may have

been defined to create new individuals.

Once the new generation of individuals has been created, they are all tested, and the
fitter ones are selected to act as parents of the next generation. This generational cycle

is repeated until one of four things occurs:

e an individual is produced which solves the problem completely but not necessarily
optimally and the search process ends (in some cases it is possible to know when

an optimal solution has been discovered)

e an individual is produced which solves the problem sufficiently well that the user

decides to end the search

e it becomes apparent that the search process will not produce suitable individuals

and the user decides to end the search

e something goes wrong and the process has to be debugged and restarted

(There are no prizes for guessing which two of these possibilities occur most often in

practice.)

A GA is an extremely flexible algorithm, and there are a great many variations upon

the basic theme. Some common ones are:

e Elitism. The best individual(s) of one generation are explicitly copied into the

next generation, ensuring that the GA doesn’t lose or ‘forget’ good individuals.

e Seeding the initial generation with some possibly good solutions. This allows the
GA to take advantage of any extra domain knowledge the user might have, or to
make use of earlier results, allowing the population to start evolving with fitter

individuals.

e Parallel populations and Migration. Several populations are evolved simultan-

eously, all working on the same problem, with occasional individuals transfered

CHAPTER 1. INTRODUCTION 14

or migrated from one population to another. This allows the efficient use of fast

parallel computers. A GA is eminently parallelise-able.

Each aspect of a GA is subject to minute and seemingly never-ending adjustments, and
many many parameters. The design of particular GAs and their assorted parameter
values is still very much an intuitive process, based on experience and feedback from

earlier runs.

Representing Solutions in GP

The standard GA uses a linear representation, such as a string of bits, or numbers, or
characters, for each solution. Ideally, it should be able to represent all possible solutions
to a problem using the particular representation. The linear representation is simple,
concise, and easy to modify. For example, a linear solution string can be mutated by
randomly changing one or more of the characters in the string. Two parent strings
can be combined via Crossover by exchanging substrings between them to produce two
child solutions which contain a mixture of material from both parents, in a process
analogous to genetic crossover. The linear representation is suited to many problems,
especially when the structure and maximum size of likely good solutions are known in

advance.

However, when solution sizes are open-ended, or solutions are likely to have some kind
of hierarchical structure, the linear representation can be restrictive. Genetic Program-
ming is a GA which uses a tree-structured representation. This flexible representation
can be used to encode LISP-like programs (Figure 1.2), algebraic expressions (Fig-
ure 1.3), hierarchical relationships between different parts of a solution, and linear

solutions (Figure 1.1), among other things (see Section 3.1 for more examples).

GP is given a set of functions (i.e. nodes which support subtrees) and terminals (i.e.
leaf nodes which do not support subtrees). A subtree can be a single terminal node or
consist of functions and terminals. Standard GP ensures that there is closure, i.e. any
function can have any subtree(s) and the whole tree is still valid. A simple example of

a supervised learning problem should make this clear.

Imagine the problem is to find an equation for mapping between two input vari-

CHAPTER 1. INTRODUCTION 15

Linear String

[ABCDEFGH|

Figure 1.1: Linear String ~> tree

LISP-like Program
~S>

‘ (cons (append (car ql) (car g2))) ‘

Algebraic Expression

| X*Y + X/Y + Y|

Figure 1.3: Algebraic Expression ~> GP tree

CHAPTER 1. INTRODUCTION 16

ables X and Y and an output variable. GP is allowed to use the functions
{ +, *, div, -, negate }, and the terminals { X, Y }. The functions are the basic arith-
metic operations ‘plus’, ‘times’, ‘divide’, and ‘multiply’ which take two arguments each,
and the function ‘negate’ which negates its one argument (i.e. multiplies by -1). The

terminals are the two problem-specific variables, and have real number values.

An example GP tree is shown in Figure 1.3. The binary arity functions, ‘*’, ‘+’, ‘div’,
each have two subtrees, whilst the single arity function ‘negate’ has one subtree. The
subtree on the left containing ‘*’, ‘X’ and ‘Y’, represents the arithmetic expression
‘X*Y’. The tree as a whole represents ‘(X*Y) + (X/Y + (- (- Y)))’ or, more simply,
‘X*Y + X/Y + Y’. With the standard closure condition, any function node can have
any tree as a subtree. In the case of the division function, this presents a problem. If
Y ever has a value of zero, there would be a division by zero, which is mathematically
undefined, and would normally result in a computer error. In such an instance, a GP
function is ‘protected’, i.e. it is defined to produce a legal value whenever it would
not normally do so, and thus the function is protected from values it cannot handle.
The divide function is often defined to return 1 (or perhaps 0) if the denominator (i.e.
the value returned by the right-hand subtree) is zero. The two ‘negate’ nodes in the
same subtree are obviously redundant, but there is no requirement for GP trees to be

sensible or efficient.

New or child trees can be created from parent trees very easily. A parent tree can be
mutated by replacing a randomly selected node with a different one of the same arity,
e.g. by replacing the ‘div’ (a function node of arity 2) by a ‘-’ node (also of arity 2), or
by replacing one of the Y’ nodes (arity 0) by an ‘X’ node (also arity 0). Another form
of Mutation is to replace a randomly chosen subtree by a new, randomly generated
subtree. Two parent trees can be combined by exchanging a randomly selected subtree
from one parent with a randomly selected tree in the other parent in a process known
as Crossover. There are many variations of these operations for producing new trees.
The closure constraint means that all of these operations on GP trees only ever produce

valid trees.

In such a problem, there would usually be a set of examples of input values (X and

Y) and their associated output value. A GP individual would be tested or evaluated

CHAPTER 1. INTRODUCTION 17

on each example by instantiating the variables X and Y in the tree to their respective
values, calculating the return value of the tree, and comparing this value with the
correct or target output value. The sum of absolute differences over all the examples
could be used as a measure of how good or fit the solution is, i.e. the smaller the better.
This method of evaluating the fitness of an individual is known as Supervised Learning

(or perhaps supervised training).

Several useful variations of basic GP are:

e Strongly-Typed GP
The closure constraint is removed, and constraints based upon data-types are
used instead. This means that not all possible trees will be valid trees. Function
nodes can only have subtrees as arguments which return the correct data-type.

[Montana 95, Haynes et al. 96].

e Mutation-only GP
Some research suggests that the standard crossover operator may not necessarily
be A Good Thing, [Gathercole & Ross 96], (see Section 4.1). Some modifications
to Crossover have worked well, [Angeline 96a, Angeline 96b], as has an assort-

ment of mutation operators, [O'Reilly & Oppacher 94b].

e Hill Climbing and Simulated Annealing
Ignoring the population aspect of GP, but making use of the tree-structured

representation, [O’Reilly & Oppacher 94b]

e Automatically Defined Functions
A more powerful representation, allowing GP to evolve hierarchical function
definitions, especially suited to problems whose solutions have a strong hier-

archical structure, [Koza 92, Koza 94, Kinnear, Jr. 94] (see Section 3.3).

o “A Compiling Genetic Programming System that Directly Manipulates the Ma-
chine Code”, with an awesome speedup in evaluation times, and only a few

restrictions, [Nordin 94]

e Representing the GP population using a Directed Acyclic Graph

This highly efficient method for representing a collection of trees can lead to

CHAPTER 1. INTRODUCTION 18

massive savings in memory usage, and huge speedups in evaluation time by cach-

ing earlier results of subtree evaluations, [Ehrenburg 96].

1.6 Basics of Supervised Learning

Supervised Learning can be any one of a variety of ways for presenting a problem to
a computer-based learning algorithm. The simplest analogy is that of a Pupil-Teacher
arrangement. The teacher presents the pupil with a problem (or sub-problem). The
pupil works out an answer and returns it to the teacher. The teacher compares the
pupil’s answer with the correct answer, and then gives the pupil a reward or punishment
(or an error score) accordingly. The pupil can use this feedback to try an improve its

method for calculating answers in future.

In terms of GP, the teacher is the fitness function. Knowledge of the problem in hand
is encoded in the fitness function, enabling it to assess the worth (i.e. fitness) of all the
candidate solutions produced by GP (the pupil). Good solutions get a good score, i.e.

a reward, and bad solutions get a bad score, i.e. effectively a punishment.

A problem can sometimes be defined in terms of a set of examples. The learning
algorithm has to come up with a mapping between input and output values that
correctly deals with the training set. The (often unspecified) hope is that this mapping
will transfer well to previously unseen examples and be able to cope with all possible
examples of this type. In such a problem, the fitness of an individual would relate to
the sum of errors it makes on the whole training set of examples. It is not possible then
to work out from the fitness score exactly what errors were made on each training case.
This is known as batch-learning. If the problem is to win at chess, the only feedback
the learning algorithm would normally receive is a notification of whether it had won
or lost a game, known as delayed feedback. There is no way of working out from the
feedback what aspects of the way the game was played were good or bad. An even
more difficult situation would be when the chess learning algorithm is presented with

feedback only after several games had been played.

The main problems tackled in this thesis are of the batch-learning type, in Chapters 5

to 8. The aim is to correctly classify a training set of, say, 4000 example cases. In

CHAPTER 1. INTRODUCTION 19

one problem there is also a test set which is used as a guide to see how well a solution

generalises to cases which were unseen during the training phase.

So that was an overview of Genetic Programming and Supervised Learning. The

next chapter looks as actually using GP to try and solve problems...

Chapter 2

Ramifications of
a Large and Messy Problem

This chapter illustrates some of the difficulties of using GP in practice by applying
GP to a largish messy supervised learning classification problem. The Thyroid Prob-
lem, described in Section 2.1, has been extensively tackled elsewhere using Neural
Networks, [Schiffmann et al. 92a, Schiffmann et al. 92b], among other algorithms, and
has a benchmark score associated with it. The process of applying GP to the problem
is discussed. Of the many difficulties encountered, the fitness evaluation bottleneck is
the most fundamental and hardest to avoid. To combat this, Dynamic Subset Selec-
tion (DSS), [Gathercole & Ross 94a, Gathercole & Ross 94b, Gathercole & Ross 97a],
a modification of the standard supervised learning approach was designed. DSS en-
ables GP to produce good solutions to the Thyroid Problem, and is described in greater
detail in Chapter 6.

In general, published papers seem to miss out a lot of detail concerning the difficulties
and choices made along the way to the development of a particular method. These
unspecified choices, perhaps dead-ends or mistakes, will likely be repeated by later
researchers, unaware that some of their difficulties have already been tackled. What
follows is a description of how the features of the Thyroid Problem led to the steps
taken towards its solution, using GP, giving the reasons for some choices made along
the way. This should allow for a re-examination of the approach. Hindsight now shows

where several decisions could or should have been made differently.

20

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 21

2.1 Why Choose the Thyroid Problem

Attempting toy problems with GP, such as the Iris Problem, [Fisher 36], (a stalwart
of Machine Learning research which is denounced with feeling as being far too simple
a problem in [Francone et al. 96]), can be a profoundly unsatisfying experience,. If a
problem has one or several simple and easily-attainable solutions, it is difficult to learn
more about GP, and in particular to explore GP’s limitations. The GP literature, e.g.
[Atkin & Cohen 94], suggests that it is difficult to scale GP up to work successfully on

larger problems.

The Thyroid Problem, available from [Werner 92], is considerably larger than the Iris
Problem. It is a Supervised Learning task, like the Iris Problem, but consists of a
set of approximately 4000 training cases and a set of 3500 test cases, where each case
comprises twenty-one fields. In contrast, the Iris Problem consists of 100 training
cases, 50 test cases, and each case comprises four fields. The task in both problems
is to correctly assign each case into one of three possible classes. The Thyroid data
is messy and noisy, and like the Iris data (measured by hand from an assortment
of irises), is based on real measurements. A solution to the Thyroid Problem is of
practical importance, since it relates to the identification of hospital in-patients who
are likely to go on and develop later complications with their thyroid gland. The data
falls into three separate classes, two of which signify a thyroid illness, and are thus the
important ones to identify, and one much larger class (92% of all cases) which signifies

no thyroid illness.

Described by Schiffmann et al is an attempt to use a variety of Neural Network ap-
proaches to solve the Thyroid Problem, [Schiffmann et al. 92a, Schiffmann et al. 92b].
Their results indicate it is possible to solve the problem to a high degree of accuracy,
nearly 98% correct, but that it is not easy to do so (92% correct is actually a trivial
solution since one of the three classes consist of 92% of all of the cases). The Neural
Network results set up a good benchmark, or a target to aim at using GP, enabling a

useful comparison between the two different approaches.

Possibly the earliest published report on using the thyroid dataset in Machine Learning

research is [Quinlan 86]. Later, in [Quinlan 87], Quinlan reports error rates of 0.3%

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 22

and writes,

“This domain is a good starting point becase it uses ‘live’ data from which,

warts and all, extremely accurate classifiers can be constructed.”

A variety of ML algorithms are applied to the thyroid dataset in
[Weiss & Kapouleas 89], including an assortment of statistical pattern recogni-
tion algorithms such as Linear Discriminant, Quadratic Discriminant, Nearest
Neighbour, Bayes Independence, and Neural Networks (back propogation), and
some decision tree induction methods. The best results reported are for CART
(Classification and Regression Trees, [Breiman et al. 84]) scoring 0.21% training and
0.64% test error rates. Weiss and Kapouleas state that the NN runs took by far
the longest of all they carried out, requiring up to 11.5 hours per run for the larger

networks.

Turney tackles the thyroid problem with a variety of algorithms from the point of view
of cost of classification, [Turney 95], where each field in the data, corresponding to a
medical test, has an associated cost. The aim is to minimise the error rate and the
total cost per classification, and the combined error scores reported make it difficult to
compare with work done in this thesis. In [Raymer et al. 97], Raymer et al also look
to minimise classification costs, by attempting to reduce the number of fields used in
the classifications. The best error rate reported for the GA, which evolves a weight set
for use by a K Nearest Neighbours algorithm, is 2.25% on unbiased holdout tests, but

the time taken for a typical run is not reported.

In summary, several different algorithms have been used to tackle the thyroid problem.
The decision tree induction algorithms in particular have produced the best results
in the shortest time, and there have been several investigations into reducing decision
tree sizes or the number of fields used. Neural networks have not managed to perform

as well, and the larger networks appear to require training times roughly equivalent to

GP (i.e. runs for GP+DSS reported in Chapter 8.2).

There are many other Supervised Learning tasks in the public domain whose datasets
are readily available over the Internet, e.g. [UCI 97]. The Thyroid Problem is one of

the larger problems. Its data is already split into Training and Testing sets. It is

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 23

relatively straightforward to apply the standard GP algorithm, although there was a
large initial hurdle, described below in Section 2.4, of how to interpret a GP tree’s

output as indicating one of three categories.

Whilst it is easy to apply GP to solving the Thyroid Problem, it rapidly becomes
obvious that there are many hurdles to overcome, such as very slow fitness evaluations,
premature convergence, the need for a large population, and many more, for GP to
tackle the problem successfully. Although not common to many simple problems,
these difficulties are what makes the Thyroid Problem interesting, and will have to be

overcome if GP is to be applied to larger, more difficult problems in the future.

2.2 Starting Point

The starting point for the attempt, in this thesis, to tackle the Thyroid Problem using
GP consisted of:

e the Thyroid papers, [Schiffmann et al. 92a, Schiffmann et al. 92b],
and data, [Werner 92].

The Thyroid papers indicate that the Thyroid problem is solvable to a high degree
of accuracy, and give a benchmark figure, approx 98% correct on the Test set,
enabling a good comparison to be made with GP. The data is already split into
Training and Test sets. When viewed using XGOBI, [Swayne et al. 91], shown in
Figure 2.1, a large degree of overlap is obvious between the three different classes
of the Thyroid data. Also, one of the three classes is much more common than

the other two.

e Koza’s huge book, [Koza 92].

This opus covers many different example problems, which suggest sensible initial
settings for the many GP parameters. It gives an idea of what might be a
reasonable set of functions to complement the problem-specific terminals (i.e.
the terminals corresponding to the fields in the problem). Koza also strongly
recommends the addition of an ephemeral random constant to the terminal set.

Each time this terminal is selected as a leaf node in a randomly generated subtree,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 24

Var 19

Oog
Var 21

Figure 2.1: A ‘Large and Messy’ Problem: This figure shows a 3D Slice (of 21 dimen-
sions) of a 500 case subset of the Thyroid training data showing the overlap between
the 3 classes. Classes 1 and 2, signifying a thyroid illness, are represented by () and X.
Most of the cases belong to the largest class, signifying no thyroid illness, represented
here by 0. Only a subset of these cases have been included since they would obscure
most of the figure.

The view presented here has been selected by hand on the basis that it shows the three
classes more clearly than any other view, though the classes still overlap a great deal.
From most other viewpoints, the classes overlap even more and are much less distinct.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 25

for example when a random individual is created at generation 0 or during a
mutation operation, it will take on a random floating-point value. This value
remains fixed throughout the remainder of that particular node’s existence in the

population, where it might be spread by the actions of the crossover operator.

e off-the-peg GP code, “Simple Genetic Programming in C” (SGPC),
[Tackett & Carmi 93].

The SGPC code is a well-written implementation of the standard GP algorithm,
written in C, and available in the public domain. It is easy to adapt to supervised
training problems. In SGPC, a GP tree is represented using C pointers, a flexible

approach, but slow and uses up a great deal of memory.

e several Sun and HP workstations.

Once the GP program was ready to run, there were several Sun and HP work-
stations available. Each was able to handle jobs of no more than approximately
10Mb or so. There was also a large server available, able to handle much larger
jobs up to 100Mb or so. These machine limitations imposed an upper limit on

population ‘volume’, i.e. total number and size of individuals in the population.

2.3 First Impressions

The overriding initial impression from the early runs of GP on the Thyroid Problem
was that GP is very slow, inefficient, and impractical. The runs would converge early
to bad solutions and then enter long periods of no improvement at all, producing large
numbers of unfit individuals. Population sizes of several thousand were needed to
improve solution quality, which had a severe impact on the turnaround time for GP

runs, taking many days to achieve non-trivial solutions.

2.4 Early Snags and Decisions

Choosing Parameter Values One of the most daunting aspects of using GP is the
very large number of parameters that need to be specified before the algorithm can be

used. Parameters include the function and terminal sets, population size and structure,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 26

replacement method, operator type and selection frequencies, etc. All of these affect
GP’s performance to varying degrees. More often than not, wrong choices will lead to

GP performing very badly.

To some extent, Koza’s book answers all of the questions raised above. Among the
many examples in the book are practical suggestions for parameter settings. This is
a great help when starting out on a problem, but it quickly becomes clear that each
problem is unique, and GP responds differently to different parameter settings on each
problem. What is left after Koza’s book is educated guesswork, and feedback from

previous runs.

Perhaps the most important GP parameters to ‘get right’ are the terminal set, the
function set, population size (and structure and replacement strategy), in combination
with fairly ‘standard’ settings for other parameters such as the operators and operator

selection frequencies.

For the Thyroid problem, the terminal set is specified by the 21 fields in the problem,
where each variable in the terminal set refers to one of the fields in the Thyroid data.
Koza recommends including an ephemeral random constant, described above in Sec-
tion 2.2, but early runs indicated that this had no significant effect (for the Thyroid
problem) and was replaced with a small group of fixed constants, { 0, 1 }, which also,
it later appeared, had no significant effect. The selection of sets of functions and ter-
minals, constant or otherwise, is a topic of much debate within the GP community. It

wasn’t the focus of work done in this thesis and is not pursed further here.

Constructing the function set is something of an art form. It has to be powerful
enough to allow GP to construct good solutions, flexible enough to allow for variety,
and not too large that it reduces the efficiency of GP’s search. The function set is
{ IFLTE, +, -, *, %, tanh, log, minimum _of_3, negate, sqrt }, where the functions be-

have as follows:

e IFLTE (If argl is Less Than or Equal to argl then the answer is arg3 else it is
argd)

e +,-.* (plus, minus, multiply)

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 27

e % (protected division where division by zero is defined to be 1)

e tanh

e log (protected natural logarithm, where log(0) is defined to be -1000)
e minimum of 3 (returns the smallest of its three arguments)

e negate (multiplies by -1)

e sqrt (protected square root of the absolute value of its argument)

The function set seems to have most of these properties, and was found through a

combination of Koza’s book, guesswork, and feedback from early runs.

Koza makes no bones about recommending that population size should be set as large
as possible, i.e. at least in the 1000’s. Whilst this is certainly more likely to enable GP
to find non-trivial solutions it is not very practical from the point of view of computing

resources (see below).

Population structure can take many forms. The simplest, used in this thesis, is pan-
mitic, where any individual can be combined with any other individual during the
breeding stage. Another structure involves the population topologically separated into
demes or islands, where only neighbours (in some sense) can be combined during breed-

ing.

There are many proponents of the two different replacement strategies: generational,
where an entirely new generation is constructed from the previous generation, or
steady-state, where new individuals replace old individuals in the same population.
Generational replacement requires the addition of Elitism, where the best individual(s)
from the previous generation is included in the next generation, to ensure that the pop-
ulation does not lose its best individuals. Steady-state replacement is implicitly elitist
since the best individual will never be replaced. Early results indicated that steady-
state replacement was perhaps a bit more susceptible to prematurely converging to
bad solutions, so generational replacement was used throughout this thesis. A pan-
mitic population requires fewer parameters than a distributed population, so for this

reason alone it was used throughout this thesis. Population structure and replacement,

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 28

as with the choice of functions and terminals, are topics of much current debate within

the GP (and GA) community, and are not pursued further here.

How to distinguish between more than two classes The task in the Thyroid
Problem is to construct a solution which distinguishes between three classes of examples
in the training data. For GP, this means that when an individual tree is evaluated on
a particular case, the tree’s output must be interpreted as indicating which one of the
three classes the case belongs to. It quickly becomes clear that this is not a trivial

step.

The obvious approach is to subdivide possible GP tree outputs into ranges such as

e output < 0, signifies class 1

e output = 0, signifies class 2

e output > 0, signifies class 3
Thus a tree output of 7.4, say, would be interpreted as class 3. Early results with this
choice of ranges and others, such as

e output <0

o 0 < output < 100

e 100 < output
were discouraging. GP seems unable to cope with this extra step, instead fixating on
the largest class, 3, with trivial trees. To be successful, GP individuals would have to
cope with the extra translation step for their outputs to be interpreted correctly, as

well as distinguishing between the different classes using the information in the fields

of each example.

Fortunately, with the Thyroid Problem, there exists a ‘natural’ division into two sub-
problems, where each subproblem is simpler than the whole problem, and one of the

subproblems involves a much smaller training set. This natural division creates two

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 29

Figure 2.2: Easy Thyroid subproblem: 3D Slice (of 21 dimensions) of all 83 class 1
cases, represented by (), and 191 class 2 cases, represented by x, showing the distinct
split between the two classes. This subproblem is simple to solve.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 30

binary classification problems. The first is to distinguish between cases from class 3
(the largest class, which signifies that the patient has no thyroid trouble) and all the
others (much smaller classes, which signify that the patient has some form of thyroid
trouble), and then if the case is not in class 3, to distinguish between cases from class
1 and from class 2 (two distinct thyroid ailments). Even more fortunate is the fact
that the smaller subproblem, distinguishing between classes 1 and 2, is very easy. The
split between these two classes is obvious in Figure 2.2. Using the same setup as used
to tackle the larger subproblem, it is easy for GP to discover a 100% correct solution
for distinguishing between classes 1 and 2. This means that most of the effort can be
focussed on the one binary classification task of identifying class 3 cases. Interpreting
a GP tree’s output as identifying one of two possible classes is much easier than the

situation involving three classes. For this thesis,

e output < 0, signifies class 3

e output > 0, signifies not class 3

The approach of splitting a large, multi-class (i.e. more than two) classification problem
into smaller binary classification subproblems can, in principle, be expanded to cope
with any number of possible classes in the training data. A group of cases belonging
to N classes could be classified using log, N binary classification steps. Experi-
ment and/or pre-processing for dependencies would be needed to find the best way
to subdivide the main problem. The initial approaches of translating from ranges of
possible tree outputs to an indication of particular classes emerged as being too great
a hurdle for GP to overcome, and although an interesting topic for further study, was

not pursued further in this thesis.

Fitness Measure One of the simplest fitness measures possible in this type of clas-
sification problem is the error count, i.e. the number of misclassifications made, but
it does suffer from several deficiencies. It is unable to distinguish between two trees
which make different errors but make the same total number of errors. It is also heavily
affected by the relative sizes of classes in the data. In the Thyroid data, class 3 is much

more prevalent than the other two classes combined, so it is possible for a tree to score

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 31

well (only 8% errors !) by always choosing class 3. In hindsight, an obvious approach
is to re-scale the size of an error corresponding to a misclassification, according to the
relative size of the classes. Thus choosing the largest class incorrectly would incur a
higher penalty than choosing one of the other smaller classes incorrectly. However,
the simple error count was used in this thesis, until the addition of Dynamic Subset

Selection, described below in Section 6.

Bad Solutions All the early runs failed to produce anything like good solutions,
i.e. they failed to evolve individuals which significantly outperformed the randomly
generated trees in generation 0 of each run. Runs quickly fixated on solutions which
classified all cases as belonging to the largest class, producing small trees, and rapidly
converging in a few generations to close copies of one individual. In such a situation
the population quickly loses most of the variety in the function and terminal sets. An
obvious approach to the problem of small trees is to forbid the addition of small trees
to the population, by imposing restrictions on the operators. But, as with rescaling

the error count, it was not used here on the Thyroid problem.

Need for many runs to provide good Statistics In order to get useful informa-
tion about GP performance, say the effect of some parameter changes, many runs are
needed to provide adequate statistics about their effectiveness since, in some circum-
stances, GP can produce widely differing results using the same parameters. This is
very difficult to achieve with GP since the runs are very slow. When starting on a prob-
lem, there are so many parameter choices that need to be made and tested that a large
element of guesswork is necessary, leaving later choices vulnerable to being affected by
spurious results. Unfortunately, GP seems quite sensitive to a variety of parameters.
Many decisions taken during this thesis were based on a very few successful runs, and

have no doubt led to some bad choices for parameter settings.

Bugs GP is a robust algorithm. It is very effective at hiding errors in the program,
or even taking advantage of them in the fitness evaluation stage, producing poor but
extremely ‘fit’ individuals! The C language used in SGPC is susceptible to many

subtle bugs, in particular the pointer representation used can easily produce obscure

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 32

bugs that are difficult to track down. To deal with bugs in C, the ‘assert’ function is
extremely helpful. It is best used at every stage in the program to confirm that things
are as they should be. A good programming methodology involving frequent testing is
needed right from the start to prevent later GP research from descending into an ever

more desperate search for wily and elusive bugs.

GP is slow As indicated in [Koza 92], GP may need a large population size. This,
plus the needs of supervised training (i.e. evaluation of individuals on each training
case), combined with the flexible but inefficient C-pointer approach used by SGPC to
represent GP trees, leads to a major bottleneck at the fitness evaluation stage of the
GP algorithm. The GP program becomes very large, requiring many megabytes of
computer run-time memory, and very slow, due to the large number of evaluations.
Runs can take many days. The large process size exacerbates CPU use, making it
much less efficient. This is due to thrashing, where a CPU spends most of its time
swapping pages of memory in and out of swap space, rather than allocating processing
time to its processes. A further problem is that GP produces a large number of unfit

trees.

There are several ways of tackling the fitness evaluation bottleneck.

Increasing the speed of the algorithm can be done through better coding. This
involves a major rewrite of the code, which is a lengthy process, and a detailed look
at efficient representations such as in [Keith & Martin 94]. The approach of efficient
coding has been taken to a successful extreme in [Nordin 94, Nordin & Banzhaf 95,
Francone et al. 96], producing linear GP individuals which are evaluated directly as
raw machine code. Nordin et al seem to have surmounted the obvious difficulties
which might occur when allowing GP to produce and execute raw machine code. They
report speedups in the region of 100x faster than traditional C-based programs. Such
a speedup would allow a much faster turnaround time for GP runs, allowing a great
deal more study to done on optimising parameters. However this approach does have
several limitations such as lack of flexibility, and the functions and terminals can have

no side-effects (which means they do not affect the context of any subsequent function

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 33

calls or terminals, e.g. a node whose evaluation causes a robot to turn left has a side-
effect, but a node which simply returns a value does not). A more expensive speed
increase can be gained through the purchase of larger and faster computers, but this
is perhaps not an option available to the average researcher. A more feasible approach
might be to make use of smaller computers in parallel, since the basic GP algorithm
can be easily adapted to work in parallel. This is probably ‘the way of the future’,
but unfortunately it brings up a large number of new parameters. Andre and Koza
seem to have the best of both worlds, using a parallel network of powerful computers,

[Andre & Koza 96].

Looking once again at the bottleneck of fitness evaluation, another approach is to
reduce the need for so many fitness evaluations. Reducing the size of the population
leads immediately to worse solutions, but as can be seen in Chapter 8, when allowed to
run for many more generations, a small population can outperform a large population

using fewer fitness evaluations overall.

It would be nice to be able to reduce the size of the training set, since it is directly
proportional to the length of the fitness evaluation step. A closer inspection of the
performance of a GP population on the Thyroid training set reveals that many of the
training cases are easy, given that most of the population can correctly classify them.
This leaves a core of more difficult cases which are frequently misclassified. Using only
this core of difficult cases (545 out of 3772) as a training set leads to Historical Subset
Selection (HSS), described in Chapter 6. HSS allows much faster fitness evaluations,
whilst still producing good solutions. A more flexible approach is to select a subset
of the training set dynamically. If each case in the training set is assigned a weight
based on its difficulty, i.e. how often it was misclassified when it was last part of a
fitness evaluation stage, and the number of generations since it was last selected, a
subset of cases can be selected and used to evaluate the fitness of each generation.
With the subset size around 10% of the full Thyroid training set, Dynamic Subset
Selection (DSS), described in Section 6, leads to roughly a 10x speed increase in the
GP generation rate, and produced better solutions than when the whole set was used

to evaluate each generation.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 34

What runtime information to look at and store The aim in the Thyroid prob-
lem is to construct a solution which performs well at classifying the training data.
Consequently, the ultimate measure of success of a run is the fitness of the best indi-
vidual it produces. The next most important measure of a run is how long to let it
continue running, which could be for a fixed number of generations or, more usually,
until the run shows no signs of further improvement. A measure of improvement can
be taken from the change in fitness of the best individual in successive generations.
However, this approach ignores any dynamics within the population. Fitness diversity
is a useful guide but it is hard to measure. Average population fitness does not in-
dicate how the trees themselves are changing. Tracking the frequencies of nodes in
the population involves the output of a lot of information, especially when runs can
take many thousands of generations. Tracking tree structure, and the frequencies of
subtrees can be CPU intensive as well as requiring even more output, and is represent-
ation independent. By storing a unique seed for the random number generator for each
run, it should be possible to reproduce earlier runs exactly, and extract more details
at a later stage. This saves memory use for storing output but runs the risk of missing

important information first time round, and is very slow.

2.5 Longer Term Snags, Workarounds, and Hindsight

Longer term difficulties and decisions can be divided into two main categories: coding

strategy, and research method.
Coding Strategy

Old Bugs One of the most disheartening aspects of using a computer program to
produce data in a series of runs over an extended period of time is uncovering old bugs.
These well hidden monsters have remained incognito until the most recent modification
to the program, or perhaps an inspired test run. Having found a bug it is necessary to
check its impact (if any) on previous runs. If the bug is sufficiently serious there might
be nothing for it but to go back and repeat all the previous runs. Obviously, the best
approach is to avoid or prevent bugs in the first place but, as mentioned above, the

GP algorithm is very robust, and its output and performance can be very deceptive.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 35

The best strategy is to assume bugs will arise, to pepper the code with error checks

right from the start, and to carry out frequent and varied tests.

Tweak Parameters or Add New Code Tweaking parameters allows you to im-
prove the existing setup, but there is the possibility that tweaking will be a never ending
process, especially if the solution is not achievable with the current setup. Adding new
code or extending the algorithm, however, is an excellent way to add more parameters
to the system, adding complexity to the code and the algorithm. No matter what high
hopes there are for getting these new parameters right first time, they and the others

will still need tweaking.

Reproduce-ability One of the major problems which arises after adding modific-
ations to the code is that the code is likely not to be backwards compatible, unless
great efforts are made every step. This causes difficulties when it comes to reproducing
old results, which means it is more important to store key information from each run
instead of relying on being able to reproduce the data later from re-runs. A version
control system such as RCS [Tichy 85] is (and indeed would have been) extremely

useful.

Research Method

Being led astray An insidious consequence of very slow runs is the idle time between
starting a run and viewing its results. It is very easy to extrapolate from earlier and
partial results to make changes to parameters and start new runs, following up the
assumptions made. This can lead to dead-ends, where parameter changes do not
improve GP performance. By the time this is realised, a great deal of time can be
wasted. It is important to base modifications on good statistics, involving many runs
using the same parameters but different random number seeds. Unfortunately, given

that GP is very slow, this is somewhat difficult to achieve.

Use of Test set as a Training set Ideally, for comparisons with other algorithms,

or assessment of an algorithm’s performance on a problem, there should be a test

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 36

set of unseen data. Only after all the development and training has finished should
the algorithm be checked on the unseen data. There are many established methods for
selecting representative test and training sets from one large data set of examples, some
of which are described in Section 5.2. For the Thyroid problem, the data was already
split into training and test sets by Schiffmann et al. In this thesis, every effort was
made to ‘ignore’ the test set when making modifications to improve GP’s performance.
The test set was certainly never explicitly used to guide modifications towards making

GP better at generalisation from the training set.

Data Explosion Completing many long runs, each with a large population, over
many generations, produces a vast volume of data to be processed and/or stored.
There are many details which may or may not be important later. The approach
of making runs reproduce-able runs into the difficulties mentioned above, and still
requires the storing of all parameter settings and random seed numbers for each runs,

and makes data mining impossible.

Parameter Explosion Extending the GP algorithm throws up a huge number of
parameters. It is important to document each one, use clear names, make the defaults
clear, and to assume idiocy on the parts of the user and especially the programmer
by including extensive error checks on the bounds of all the parameter ranges. If not,
chaos could well ensue. At the end of the programming done for this thesis, there were
170 input parameters, 55 special data types, 500 function definitions, and over 30,000

lines of C code.

Reputation with other non-GP users Given that GP is CPU intensive, memory
intensive, sometimes increasing greatly in size during a run, when runs can last several
days, and many runs are needed to produce adequate statistics, the GP user won’t win
any popularity awards on multi-user computers. There seems to be no way of avoiding
this (apart from obtaining your own computer), so it is best to get used to the idea of

receiving hate e-mail.

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 37

2.6 Applying GP to a problem

The procedure for using GP can be divided into four main parts:

Knowledge Acquisition

Knowledge Representation

GP Tuning

GP Runs

Knowledge Acquisition is the first stage in problem solving. For the purposes of
this thesis, the problems were chosen in order to investigate the performance of GP,
rather than from any particular urge or need to actually solve them. Having selected
a problem, the next step is to analyse it and extract any salient features. Armed with
this information, it should be possible to make an informed choice about what might
be the best approach to use in order to try and solve the problem. Once again, for the

purposes of this thesis, the approach is always GP.

Knowledge Representation is a key stage. With a good representation, a prob-
lem can be made much more amenable. With GP, the underlying representation is
obviously a tree structure, but that is only the start of the process of designing a rep-
resentation. Most test problems come prepackaged with data fields. These can often
be taken directly as the terminal set for GP, but in many cases some pre-processing,
such as Principal Components Analysis [Jolliffe 86], is needed to identify the relevant
parts of the problem data, to remove extraneous data, or to construct more useful
combinations of the data. An example of this process is well described in [Tackett 93],
where GP is used to classify feature vectors extracted from infrared images containing

images of tanks (or not, as the case may be).

Though the terminal set is often easily decided upon, the function set is often not as
simple to construct. It is the glue which binds the terminals into useful expressions,

and needs to be sufficiently powerful to allow GP to construct good solutions. This

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 38

step is still a ‘black art’. Despite many different researchers using GP, there is no
straightforward formulae which can be applied to decide upon suitable function sets.
It is clear that Automatically Defined Functions, described and used in [Koza 92,
Koza 94], can and probably should be added to the GP representation when a problem
contains inherent hierarchy of small solutions forming part of larger solutions, or when
there is a great deal of similarity between different parts of the problem. Both of these
characteristics are apparent in the Even-N Parity problem, described in Chapter 7.
However Koza has demonstrated that ADF can be an impediment if such characteristics
are not present. Other more powerful features such as indexed memory, [Teller 94], only
seem useful in certain specially constructed problem areas. Successful GP applications
have involved incorporating as much problem knowledge as possible into the function
and terminal sets. If there are known links between terminals, then those links, e.g.
square root, or logig, should be included in the function set. It is not necessarily the
case that reducing the volume of input data is the best approach to take, since key

relationships within the data may be lost.

Along with the basic tree-based representation, GP comes with some standard oper-
ators, i.e. ways of changing or recombining existing trees to produce new and different
and possibly better trees. Crossover is often considered the main GP operator, where
subtrees are exchanged between two parent trees to produce one or two child trees
containing a mixture of nodes from each parent. Along with Crossover is usually some
form of mutation, where nodes or subtrees are replaced by randomly generated nodes or
subtrees. Usually the sites in the parent trees where these operators work are chosen at
random, without any regard to which parts of the parent trees are in some way import-
ant or essential to the functioning of the tree or causing the tree to produce incorrect
answers. This blind action of the operators results in high percentage of child trees
performing worse than their parent trees. Using a specific classification-tree repres-
entation, [Vere 95], the benefits of more targeted operator actions are obvious, where
leaf decision analysis can make use of the fact that the “fitness (error) contribution
of each subtree is localised and independent of other disjoint subtrees”. O’Reilly and
Oppacher, using various mutation operators and Simulated Annealing, have shown
that Crossover is not necessary for the successful use of the GP tree representation

in solving problems, [O'Reilly & Oppacher 96]. Lang has shown how mutations and

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 39

simple hill climbing can perform better than GP, calling into question the effective-
ness of Crossover, [Lang 95]. All in all, it is never usually obvious what are the best

operators or combination thereof for particular problems.

Associated with the set of operators is the set of operator selection probabilities, which
establish how frequently each operator is used to generate individuals for the next
generation. With very low operator success rates, i.e. the children are usually worse
than the parents, it is not obvious how to balance the operator selection. Research
in GAs, [Tuson & Ross 96b, Tuson & Ross 96a], has shown that dynamically alter-
ing the selection probabilities can be difficult to do well as it is both problem- and
representation-dependent, and in fact can hinder the GA. Section 4.1 provides some

food for thought when constructing operators and choosing selection probabilities.

Given a particular GP representation, the fitness function needs to be specified in
such a way that it can identify the relative merit of solutions expressed using this
representation. In combination with the GP operators, the fitness function defines
a search space for GP to traverse in search of good solutions. The fitness function
encodes a great deal of the knowledge the user has about the problem. Ideally the
fitness function should facilitate an easy path from bad solutions via a series of easy
steps (i.e. operator actions) to optimal solutions, where each solution along the path has
a better fitness than the ones before. Unfortunately, most problems do not have such
well-behaved search spaces. A great deal of effort has gone into looking at the behaviour
of search spaces in GA, also known as fitness landscapes, [Jones 95], but rather fewer
studies have been published on GP search spaces. Needless to say, GP search spaces
are hideously complicated. Especially in supervised learning problems, the fitness
evaluation of the population is the main bottleneck in the GP algorithm. Chapters 5
to 8 look at ways of alleviating this bottleneck and extracting more information from

the supervised training set.

Tuning GP i.e. selecting initial or new settings for its assorted parameters, is a ‘black
hole’ into which a great deal of time and effort disappears. The number of aspects of
a GP program which can be tweaked in a desperate attempt to improve its perform-

ance is nothing short of phenomenal. Perhaps the single most important parameter

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 40

is population size. Too large and GP takes forever to complete each generation. Too
small and, well, a thought-provoking part of this thesis shows that GP can, in certain
situations, perform better with a very small population than a very large population,
i.e. it finds better solutions in a much shorter time (see Chapter 8). Taking population
size to the extremes: infinite — means that GP should be able to randomly generate an
optimal tree in generation 0; one — means you have a form of Hill Climbing or, with a

few extra features, Simulated Annealing, which have both been shown to perform well.

Although not conclusive, the impression gained from work done during this thesis is
that the effective population size is dependent on the type of problem being tackled in
the following way. If the search space contains a wide range of fitness values (ignoring
the addition of parsimony), where it is possible to produce a succession of trees with
small increments in their fitness values, such as the TicTacToe and Thyroid problems,
small populations over many generations perform better. If the problem is difficult,
and the search space contains only a small number of distinct fitness values, such as
the Even-N parity problem, described in Chapter 5, a larger population is necessary
to allow GP the chance to construct better solutions. Experience has shown that it
is worthwhile trying GP first with a small population running over many generations.
If there are still signs of improvement in fitness after many generations, then a larger
population is probably unnecessary, and would perhaps hinder rather than help. It
appears that a large population might be more prone to converging prematurely to sub-
optimal solutions (perhaps it finds and fixates upon local optima too rapidly, whereas
a smaller population might not even find most of these local optima and wouldn’t move

towards local optima as quickly).

One debate which occurs in the GP community but not the GA community concerns
restrictions on tree size. Given GP’s propensity to ‘bloat’, [Blickle & Thiele 94], where
the size of individuals in the population increases as they accumulate garbage, running
into practical limits on the availability of computer memory, it has become common
practise to impose some limits on tree size, or to use parsimony, a bias in the fitness
function against larger trees. Not all reports have been in favour of such restrictions.
Rosca has indicated that GP trees tend to grow to a certain (large) average size and

then oscillate around this size, [Rosca 96]. A more general study of the principle

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 41

of Occam’s Razor, the idea that ‘smaller is better’ which is used in much Machine
Learning literature, indicates that such a bias leads to solutions which are less able
to generalise successfully on unseen data, [Webb 96]. Section 4.1 takes a look at an
adverse interaction between the Crossover operator and restricted tree size. There is
no consensus as yet on what is the best approach to take, except perhaps that GP
tends to use up too much memory, especially with large populations, and parsimony

seems to hold down tree size quite effectively without appreciably hindering GP.

Since, for many problems, the optimum solutions are not known (and also, often, their
fitness values), a decision must usually be made about when to end GP runs. Too few
generations and GP might not have had sufficient chance to evolve good solutions. Too
many generations and much time might be wasted as GP shows no sign of improvement,
with its population having converged to become copies or damaged copies of the best
individual, unable to produce any better solutions. If left for long enough, the mutation
operators can in theory generate all possible trees, but this isn’t perhaps the most
efficient way to use GP. The stopping criteria in this thesis are usually when a known
optimum is found, or after a certain number of fitness evaluation or generations have
passed, or the computer has crashed. In most cases, trial runs are needed to establish

a baseline performance for GP.

As new features are added to GP, the programmer experiences what can only be
described as a parameter explosion. Each new parameter can affect all the original
parameter settings. There is usually no way of knowing what is the best setting for
a particular parameter. Guesswork, some testing, and reading the literature, are the

only options available.

Once a particular GP design has been decided upon, the decision of what to record as
output is relatively simple. Usually the fitness of the best individual in each genera-
tion is sufficient, along with, perhaps, the average population fitness. Deciding upon
a particular GP design is usually quite challenging. During the design, much experi-
mentation is needed to find the best parameter settings, and much data needs to be
examined, processed and stored. A balance has to be struck between recording all in-
formation about the GP run that might be useful, and not filling up gigabytes of disk

computer space with millions of numbers. If the runs are made repeatable, it should

CHAPTER 2. RAMIFICATIONS OF A LARGE AND MESSY PROBLEM 42

be possible to recover any data if it is later deemed necessary.

GP Runs: The phrase “A watched kettle never boils” must have been thought
of with GP in mind. GP can be very slow. Although Nordin et al, [Nordin 94,
Nordin & Banzhaf 95], seem to have hit upon an impressively fast GP implementa-
tion, where the individuals consist of directly evaluated raw machine code, most im-
plementations, such as [Andre & Koza 96, Tackett & Carmi 93, Implementations 97],
are compiled from a high level language such as C, or C++, or are even interpreted, e.g.
Lisp. Large populations, many generations, difficult problems, all conspire to produce

long run times.

The single most important bottleneck in GP is the fitness evaluation stage. In partic-
ular with Supervised Training, tree evaluation gets carried out many millions of times.
Larger training sets mean more evaluations. Chapter 5 looks at ways of alleviating this
bottleneck. In particular, Dynamic Subset Selection (DSS), has proved to be a very
effective and robust method for speeding up run times and enabling GP to solve the

difficult Thyroid problem to a high degree of accuracy.

2.7 Summary

There is a morass of parameters and possible variations of the GP algorithm. Without
much useful theory as a guide, all that remains is re-use of suggested parameters

settings by other practitioners, or seat-of-the-pants twiddling by trial and error.

There is as yet no satisfactory way of getting GP to produce trees which can successfully
classify cases from more than two classes, though there is always the option of splitting

the problem into a series of binary decisions.

GP is approaching its current practical limits with the Thyroid problem. Concentrating
on the fitness evaluation bottleneck has produced several approaches for speeding up
GP evaluations, reducing run times, and producing better solutions than GP using the

standard Supervised Learning method.

Part 11

A Closer Look
At Genetic Programming

43

Chapter 3

GP Tree Representation

This chapter looks at GP’s tree-based representation, with an eye towards boosting the
performance of GP. Following a short reprise of the standard GP tree representation,
Section 3.2 investigates the size of the GP search space, which is really very large indeed.
Section 3.3 looks at variations of the standard GP tree representation, concentrating
especially on the approach of Automatically Defined Functions (ADF), where GP can
develop its own functions, potentially more powerful and useful than those in the
original function set. The summary in Section 3.4 highlights the speed of the machine
code GP implementation, and the power of ADFs, but indicates that tackling the
fitness evaluation bottleneck, as in Chapters 5 and 8, provides more immediate and

widely applicable improvements in GP for supervised learning problems.

3.1 The standard GP tree

The standard GP tree is a simple structure, consisting of a mixture of terminal (or
leaf) nodes, and non-terminal (or function) nodes with branches. The terminal and
non-terminal nodes are drawn from a set of permitted nodes. Each node, when it
is evaluated, returns a value. For a terminal node, this value could be the current
instantiation of a variable represented by that node, or a constant number, or it could
represent an action (also known as a side-effect) such as “rotate the left wheel forward
by 90 degrees”. If a node does have such a side-effect, its value could be simply a
constant, or it could be a value which indicates the success (or not) of the action.

A function node’s evaluated value usually depends on the evaluations of its subtrees

44

CHAPTER 3. GP TREE REPRESENTATION 45

(also known as arguments). Such a function node could represent the simple operation
of addition, in which case its evaluated value would be the sum of the values of its
two subtrees, or the function node could represent a sequence of actions, in which
case each of its subtrees would be evaluated in turn, and the function node’s value
might be the value of its last subtree. One of the commonly used function nodes is
IFLTE (If Less Than Or Equal to), with four subtrees, i.e. an arity of four, shown in

Figure 3.1.

Structure of IFLTE subtree Mazimum of A and D

@ IFLTE

1st 2nd 3rd 4th D A A D

Figure 3.1: Structure of IFLTE subtree — (If Less Than Or Equal to), arity=4

The tree on the left shows the structure an IFLTE subtree, and the tree on the right
gives an example of IFLTE subtree in practice where it returns the maximum value
of the variables A and D. If the value of the first subtree is less than or equal to the
value of the second subtree, the function node’s value is taken to be the value of its
third subtree, otherwise it is taken to be the value of its fourth subtree. If the first
subtree always has a value which is less than the second subtree, the fourth subtree of

the function node IFLTE will never be evaluated.

Any and all combinations of function and terminals are permitted. To ensure that
all combinations of nodes produce sensible values, i.e. closure, the function nodes are
‘protected’ to be able to cope with any possible value. This is easily demonstrated by
the divide function. In normal arithmetic, division by zero is not defined, and would
lead to a fatal error in the GP program if a division by zero was attemped. In GP, this
special case is covered by defining the value of division by zero to be one, or perhaps
zero. Thus, if the second argument of a division node returns a value of zero, the
division function still evaluates to a sensible value. This generality is very flexible and

robust, allowing any subtree to be replaced by any other subtree, whilst the overall

CHAPTER 3. GP TREE REPRESENTATION 46

tree can still be evaluated successfully. Very often, GP trees will not ‘make sense’,
and consist in effect of mathematical junk. However, it is often possible to construct
very powerful expressions using GP trees. Function nodes can be nested to any depth,

though there is usually some restriction on overall tree size.

The question of choosing what function and terminal nodes GP is allowed to use is not
straightforward. If function and terminal sets are not sufficiently powerful, GP will
not be able to construct trees which can perform well on the particular problem. If
the sets are too large, the search space is very large, and GP can be made even less
efficient than usual. Choosing function and terminal sets for each problem is an art
form, often requiring some experimentation, good knowledge of the problem, and luck,

and this thesis makes no attempt to take this aspect of GP any further.

3.2 Counting Trees

The number of GP trees which can be constructed from given function and terminal
sets and even with a size restriction can be very very large (obviously the number of
trees is infinite without such a size restriction). This section looks at just how large

that is.

It is not a simple task to count the number of trees possible with given function and
terminal sets, and, of course, a restriction on tree size. Without such a restriction, the
question of how many trees are possible becomes rather easy to answer. There are two

main type of tree size restriction:

maximum number of nodes —

unlimited depth, but an overall limit on the number of nodes.

maximum depth -
a limited number of levels below the root node, though all subtrees are allowed to
fill out to this depth. It is a much coarser control on tree size than a restriction

on the number of nodes.

A literature search produced no easy method for calculating the number of trees pos-

sible for a given set of nodes, however it is quite straightforward to design a recursive

CHAPTER 3. GP TREE REPRESENTATION 47

search algorithm to do the calculation quickly. Such an algorithm for calculating the

number of trees possible with a restriction on the number of nodes is as follows:

CHAPTER 3. GP TREE REPRESENTATION

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Algorithm for calculating the number of trees possible
with a restriction on the number of nodes:

Given a maximum number of nodes, N
Given a list of function node arities, L
Given a number of terminals, T

Store the results for the number of possible trees in a 2-D array,
indexed by the number of subtrees and the maximum number of nodes,
Tree_Count [subtrees, nodes]

Define the recursive COUNT_TREES_WITH_MAX_NODES algorithm, to
calculate the number of trees with exactly N nodes, with these
arguments:

Remaining_subtrees,

the number of subtrees to be filled out with at least one node
Remaining_nodes,

the number of nodes still to be included in the tree

define

COUNT_TREES_WITH_MAX_NODES(Remaining_subtrees,
Remaining_nodes) -

if (Tree_Count[Remaining_subtrees,Remaining nodes] is defined)
then

{
return(Tree_Count[Remaining_subtrees,Remaining_nodes])

}

otherwise calculate it as follows...
if (Remaining_subtrees == Remaining_nodes)
i.e.\ can only use terminal nodes
then
{
Tree_Count [Remaining_subtrees,Remaining_nodes]
= T *x Remaining_subtrees
return(Tree_Count[Remaining_subtrees,Remaining_nodes])
b
if (Remaining_subtrees == 1)
have to use a function node at this point
then

{
Subtotal = 0
foreach function arity F in the list L, where F < Remaining_nodes

48

CHAPTER 3. GP TREE REPRESENTATION 49

{
Subtotal
= Subtotal
+ COUNT_TREES_WITH_MAX_NODES(F,Remaining_nodes-1)
}

Tree_Count [Remaining_subtrees,Remaining nodes] = Subtotal
return(Tree_Count[Remaining_subtrees,Remaining_nodes])

}

...otherwise divide nodes amongst subtrees.

The algorithm divides the remaining nodes between the first subtree
and the rest of the subtrees, with the rest of the subtrees getting
at least Remaining_subtrees-1 nodes, and the first subtree getting
at least one node. R is the number of nodes allocated to the rest of
the subtrees. For any particular allocation of nodes, the number of
possibilities is the product of First_subtree_count and
Rest_subtree_count. The total of all possible allocations gives the
number of ways of distributing Remaining_nodes amongst
Remaining_subtrees.

Subtotal = 0

for(R = Remaining_subtrees -1;
R < Remaining_nodes;
R=R+1)

{

First_subtree_count

= COUNT_TREES_WITH_MAX_NODES(1,Remaining_nodes-R)
Rest_subtree_count

= COUNT_TREES_WITH_MAX_NODES (Remaining_subtrees-1,R)

Subtotal
= Subtotal + (First_subtree_count * Rest_subtree_count)
Tree_Count [Remaining_subtrees,Remaining _nodes] = Subtotal

return(Tree_Count [Remaining_subtrees,Remaining_nodes])

-: End of definition of COUNT_TREES_WITH_MAX_NODES

CHAPTER 3. GP TREE REPRESENTATION 50

The number of trees with exactly N nodes is the result returned by
COUNT_TREES_WITH_ MAX_NODES(1,N). The algorithm works by recursively cal-
culating the number of possible trees with less than N nodes before using that in-
formation to calculate the final value for N. It will return 0 for a particular N if it is
impossible to construct a tree with exactly N nodes, e.g. with binary arity functions
and even N. A similar algorithm can be constructed to calculate the number of possible
trees of a particular maximum depth (i.e. where no nodes exceed the maximum depth)

by using the ideas of Remaining depth instead of Remaining nodes.

The number of possible trees for a variety of maximum numbers of nodes N, and a
variety of function and terminal sets, are given in Table 3.1 below. As can be seen, the
number of possible trees with a maximum number of nodes N increases exponentially
with N. The search space for the Thyroid problem increases in size by a factor 30,
approximately, for each increment of N. The search space for the TicTacToe problem
increases more slowly, by a factor 12, approximately. This is due to there being more

variety of function and terminal nodes in the Thyroid problem.

If the trees are restricted by depth, then the largest function arity becomes the most
important factor to consider. For each increment in allowed depth, the number of
possible trees increases enormously quickly, much faster than with the restriction on
numbers of nodes. If Treesp is the number of possible trees filled out to depth D,

and A; is the arity of function i, then

Treespyi1 = Z(TreesD)Ai

)

Treesy = NumberofTerminals

It can be seen by inspection that the most important contribution to the increase
of trees with depth comes from the largest function arity, A;,rges¢. For the Thyroid
problem, this means for each increment in depth, the number of possible full trees
increases by at least a power of 4, and the number of nodes in these trees ‘only’

increases by a factor of 4.

It has to be said that the GP search space is rather large, rapidly reaching ten to the

power of several hundred even for quite simple problems - far too large to even consider

CHAPTER 3. GP TREE REPRESENTATION

The number of possible GP trees with N nodes
Thyroid Problem, TicTacToe Problem,
in Section 6 in Section 8.1
arities={1,1,1,1,2,2,2,2,3,4} | arities={1,2,2,2,2,2}

N 23 terminals 10 terminals
1 2.3e+01 1.0e+4-01
2 9.2e+01 1.0e+01
3 2.5e+03 5.1e+02
4 3.9e+04 1.5e+-03
5 1.1e+06 5.3e+04
6 2.2e4-07 2.6e4-05
7 5.8e+-08 7.0e+06
8 1.4e+10 4.6e+07
50 2.7e471 1.7e+56
51 8.2e+72 2.4e+57
52 2.4e+74 3.6e+58
53 7.3e+75 5.3e+59
54 2.2e47T7 7.8e4-60
55 6.5e+78 1.1e+62
56 1.9e+-80 1.7e+63
57 5.8e+81 2.5e+64
58 1.7e+83 3.7e+65
200 4.4e+293 2.2e+232
201 1.3e+295 3.4e+233
202 4.1e+296 5.1e+234
203 1.2e+298 7.6e4+235
204 3.8e+299 1.1e4-237
205 1.2e+301 1.7e+238
206 3.5e+302 2.6e+239
207 1.1e+304 3.9e+4-240
208 3.3e+305 5.8e+241

Table 3.1: The number of possible GP trees with N nodes

CHAPTER 3. GP TREE REPRESENTATION 52

an exhaustive search. The brief calculations above merely hint at its complexity. On
the face of it, GP is presented with a daunting task when it is required to search the
space for useful trees. In this context, efforts to reduce the size of the search space
through the use of parsimony (a penalty against large trees) and more powerful and

compact functions (described below) seem well worthwhile.

3.3 Extending the Function and Terminal Sets

Data-Typing One consequence of the flexibility of the standard GP representation
is that a function node can take any function or terminal nodes as arguments, i.e.
function arguments, function node values, and terminal node values, all have the same
data-type. This allows GP operators to combine subtrees indiscriminately and still
produce legal (though not necessarily effective) trees. [Montana 95] looks at strongly-
typed GP (STGP), eliminating the closure constraint. Instead of just one data type,
the functions and terminals have a variety of data types, and the GP operators are
restricted in what combinations of nodes are allowed, restricting the search space.
Montana introduces generic functions, generic data types, and local variables. This
results in GP producing a higher percentage of ‘sensible’ trees, though with a larger
overhead for the operators. Montana looks with some success at a variety of “mod-
erately complex problems involving multiple data types”, but highlights the difficulty
of defining good evaluation functions, and shows that STGP (as with most versions
of GP) has difficulty scaling up to much larger problems. [Haynes et al. 96] extends
STGP by allowing more data types.

Linear Representation [Perkis 94] looks at the use of a stack, and a linear program
representation instead of the usual tree based representation. Terminals are a class of
function which push preset variables onto a stack. Functions pop their arguments off
the numerical stack and return their result by pushing it onto the stack. Function
calls that occur with too few items on the stack simply do nothing. Perkis reports
that stack-based GP can be implemented very efficiently, and works well with simple

problems, but again has difficulty scaling up to larger problems.

[Nordin & Banzhaf 95] describes a compiling GP system that directly manipulates

CHAPTER 3. GP TREE REPRESENTATION 93

SPARC machine code. As with Perkis’s Stack-Based approach, Nordin and Bahnzaf
use a linear program representation. Although this machine code approach has some
limitations in that the functions are not allowed any side-effects, the GP algorithm
can run two orders of magnitude faster than the usual approaches of manipulating
tree representations, and with much smaller memory requirements. This increase in
speed allows Nordin and Bahnzaf’s GP to be successfully applied to much larger and
more complex problems than before. Francone et al indicate that rather than being
a hindrance, when compared with the less restricted standard GP tree structure, the
compiling GP’s linear representation performs very well on a variety of sparse data
problems, [Francone et al. 96]. Extending their representation, Nordin and Bahnzaf
have demonstrated that their compiling GP system can successfully use a close ana-

logue of Koza’s Automatically Defined Functions.

Automatically Defined Functions [Koza 92, Koza 94] introduces the idea of
Automatically Defined Functions (ADF). ADF imposes a high-level structure on each
tree in the GP population. Each tree thus has a result-producing branch, which is
evaluated to determine the tree’s fitness, and the one or more other branches provide
the definitions of the one or more functions which can be referred to in the result-
producing branch, all of which evolve together. Each main branch has its own function
and terminal sets, and a structure-preserving crossover can only occur between the
result-producing subtree of the same main branch in each parent. An example ADF

tree is given below in Figure 3.2.

|MAIN RESULT BODY

RESULT BODY

Figure 3.2: Example of an ADF tree

Only the subtrees labelled ‘RESULT BODY’ can be changed during the evolutionary

CHAPTER 3. GP TREE REPRESENTATION 54

process. In the case of this example, the tree consists of two ADF branches and a main
results-producing branch. The main results-producing branch has an extra function
ADF1 in its function set. The ADF1 branch has an extra function ADFO0 in its function
set, and two extra, local, terminals ARGO and ARG1 which refer to the arguments of
any occurrence of ADF1 (which is defined here to takew two arguments) in the main
results-producing branch. The ADF0 branch has two extra, local, terminals ARGO and
ARG1 which refer to the arguments of any occurrence of ADF0 (which is also defined
here to take two arguments) in the ADF1 RESULT BODY subtree. This structure
enforces a hierarchical arrangement of ADFs. Care is taken to avoid recursion by not
allowing an ADF branch to refer to itself i.e. not including an ADF in its own function
list. Any tree-combining operations such as crossover are only permitted between
equivalent branches in different trees, e.g. the ADF1 result body branch of one tree
can only be crossed with the ADF1 result body branch of another. In effect, for the
example above, there are three separate breeding populations of branches: the main

result body, the ADFO result body, and the ADF1 result body.

Koza demonstrates that the ADF approach is effective on problems which contain
a hierarchical structure, in particular where solutions to the main problem can be
constructed through a combination of solutions to easier subproblems. This is demon-
strated on the Even-N Parity problem, (also covered in Section 7), where solutions for
large N can comprise combinations of solutions for smaller N. The whole hierarchy can
be represented by a single GP tree, though the number of ADFs must be specified in
advance. For problems where there isn’t a hierarchical structure for ADF to exploit,
it is less clear how much ADF is of benefit to GP. The extra overheads necessary for

ADF mean that it can cause GP to run more slowly and less efficiently.

Anarchically Automatically Defined Functions FEarly experiments in this thesis
with a more flexible form of ADF, Anarchically Automatically Defined Functions
(AADF), indicate that part of the success of ADF is the structure it imposes on the
form of the solution. With AADF, automatic function definitions can occur anywhere
and more than once within the GP tree, unlike in ADF where the tree structure places
strict limits on possible function definitions. An example AADF tree is shown in Fig-

ure 3.3 below, where the ‘div’ function node is being redefined. Any of the functions in

CHAPTER 3. GP TREE REPRESENTATION 95

the function set or terminals in the terminal set could be redefined in this way includ-
ing, strangely enough, the key REDEFUN function node by which the redefinitions

take place.

The REDEFUN function takes three arguments:

e Left branch: the name of the function being redefined, taken to be the root node
of that subtree (‘div’, in this example). If this subtree consists solely of a terminal

node, then that terminal is being redefined.
e Middle branch: the new definition of this function (or terminal)

e Right branch: a result-producing branch in which the new definition of the func-

tion (or terminal) takes effect

Each function has a default definition that can be overridden by REDEFUN. In this
example, the default definition of ‘div’ is protected division, i.e. its value is the result of
dividing its first argument by its second argument, with checks to ensure that division
by zero does not occur. The ‘div’ function has an arity of 2, i.e. it takes two arguments.
Thus the redefined version must also have two arguments. (All the functions in this
example have an arity of two or one.) In the example, where ‘div’ occurs in the right-
most, result-producing branch of REDEFUN, it has two arguments ‘B’ and ‘X’. The
values of these two arguments are passed to the new definition of ‘div’ by temporarily
changing the values of ‘X’ (to be the first argument, i.e. the value of ‘B’) and ‘Y’ (to
be the second argument, i.e. the value of ‘X’) within the middle, redefinition branch of
REDEFUN. In the example, ‘X’ is being used within the redefinition, but ‘Y’ is not,
so the value of the second argument of the ‘div’ node in the result-producing branch

has effectively been ignored within the redefinition branch.

‘X” and ‘Y’ have been added to the terminal set specially to allow REDEFUN to define
functions up to an arity of two. Redefinitions of any of the arity two functions will
involve the use of ‘X’ and ‘Y’ in this way. Redefinitions of any arity 1 functions, e.g.
‘SQRT”, will only make use of ‘X’. In other function sets, with higher arity functions,
more terminals would need to be used to pass the values of the functions’ arguments

into the redefinition. The ‘X’ and ‘Y’ (and however many other argument-related)

CHAPTER 3. GP TREE REPRESENTATION o6

nodes would normally be initialised with some simple default values, e.g. 1.

As can be seen in the example tree in Figure 3.3, the new behaviour of ‘div’ is to
multiply its first argument by the value of ‘A’, ignoring the value of its second argument.
Thus, in the result branch of the REDEFUN node in the example, the value of the
‘div’ subtree is B multiplied by A, rather than B divided by X.

The same approach can be used to redefine terminal nodes. In this case, the left-most
REDEFUN subtree would consist simply of one terminal node, the middle subtree
would be its new definition, possibly making use of the original value of the terminal.
Unlike in the redefinition of function nodes, as described above, the two terminals X
and Y would not be redefined, since the terminal node takes no arguments. The right-
most subtree would be the result-producing branch in which the new definition of the

terminal takes effect.

AADF in action!
...takes

~=777 7 three
arguments

a--- - -- redefinition

takes effect
inthis
|B||C||X||A|,' branch
nodebeing A 4 TS
redefined L .-

e e
garbagé defi nition " definition
nodes of “div’ is used
(unused) (andof ‘X and ‘Y here

within this branch)

Figure 3.3: example AADF tree

This AADF representation is extremely flexible and almost totally useless. Like the
basic GP representation, it has closure, so that any function node can take any function
or terminal nodes as arguments. It can allow recursion, iteration, redefinition of any
function or terminal, and hierarchical definitions, all at any location within the tree,

and as often as any restrictions on tree size permit. Recursion can be avoided or

CHAPTER 3. GP TREE REPRESENTATION o7

controlled by providing a default behaviour if a new definition refers to itself, e.g. the
definition branch of the REDEFUN node can only make use of an earlier definition of
the node being redefined. It makes sense to put a block on the REDEFUN node being
redefined.

Extremely powerful and flexible trees can be constructed using AADF. By adding a
REDEFUN at the top of a tree, all instances of the redefined node have their beha-
viour changed simultaneously. It is possible to create function hierarchies of arbitrary
depth, whereas in ADF the hierarchy is defined at the start of the run. However, such
AADF trees are also very unlikely to occur during the evolution of a population, since
several parts of a tree have to be right simultaneously for an instance of a REDEFUN
node to be effective. This is extremely unlikely to say the least. Early, discouraging,
experiments with several variations of AADF indicate that GP is totally unable to
take advantage of such flexibility. The REDEFUN nodes and their associated extra
subtrees behave much like spurious junk nodes, with no impact on the trees’ fitnesses,
except perhaps bringing about a larger parsimony penalty. Much care and much more
thought is needed to enable GP to take advantage of AADF. One possibility is to
cause certain links between nodes to be made inviolate, i.e. the reproduction operators
prevented from splitting the trees at those points. Another possibility is to include
rewards in the fitness function for making use of the extra features. This might enable

GP to retain the extra complications long enough to make use of them.

Adaptive Representation (AR) [Rosca & Ballard 94| looks at the discovery of
useful subtrees (building blocks) in a population, generalising them, and adding them
to the function set, in effect ‘adapting the problem representation on-the-fly’. The next
generation of trees can then make use of these new and hopefully more powerful func-
tions, allowing GP to construct a hierarchy of new function definitions in the function
set for the entire population to exploit. Although this approach requires lots of extra
processing of the population, Rosca and Ballard state that “all new building blocks
can be discovered in O(population size) time”. Each time a new function is added,
the population goes through ‘considerable’ changes as it evolves to take advantage of
it. Rosca and Ballard use this adaptive representation to tackle the Even-N-Parity

problem (also covered in Chapter 7) up to N = 11, showing that AR compares well

CHAPTER 3. GP TREE REPRESENTATION o8

with ADF in terms of computational effort, scaling up well to the larger N. As with
ADF, AR is an effective hierarchical approach to problem solving with GP.

Both ADF and AR enable GP to explore a search space of smaller trees, by allowing
GP to use smaller, more powerful trees, rather than larger unwieldy trees with less

powerful components that are more prone to being split up during reproduction.

3.4 Summary

This chapter has taken a brief look at GP’s tree-based representation, with an eye
towards boosting the performance of GP. The number of possible GP trees is huge,
and is most dependent on the largest arity of the functions in the function set. The
basic speed of the GP algorithm can be boosted by two orders of magnitude by directly
manipulating machine code segments, though with several restrictions such as using a
linear representation with a limited number of possible instructions, and the functions
and terminals not having any side-effects. However, it still performs very well and
is, of course, exceedingly fast, so that it seems worthwhile persevering despite the
limitations it might have. Koza’s Automatically Defined Functions and Rosca and
Ballard’s Adaptive Representation can both take advantage of hierarchical structure
inherent in several difficult problems, allowing GP to solve problems of far greater
complexity than it could manage with the standard representation. However, it is not
clear how well ADF and AR would perform on similarly difficult problems without

such an exploitable hierarchical structure.

Although obviously powerful additions to the GP toolkit, the compiling GP system,
ADF, and AR, all would require a fairly substantial modification or rewrite of an exist-
ing implementation of GP. This thesis concentrates on some modifications to standard
GP which are easier to implement, such as the more complex fitness function of Dy-
namic Subset Selection, in Chapter 5, which should work well with all of the extensions

to GP mentioned above.

Chapter 4

GP Tree Recombination and
Selection

There have been many studies of the performance and effects of operators in
GAs, and rather fewer for GP. [Koza 92] looks at the standard operators, insisting
that Crossover is essential to GP performance. O’Reilly and Oppacher in several
studies, [O'Reilly & Oppacher 96, O’Reilly & Oppacher 92, O’Reilly & Oppacher 94b,
O’Reilly & Oppacher 95a], concentrate on designing powerful Mutation operators
which function with a variety of Hill-Climbing techniques, (i.e. they do not re-
quire either a population or Crossover), or looks at other hybrids involving Cross-
over. [O'Reilly & Oppacher 95b] looks at a GP version of the GA Schema Theorem,
[Holland 75], the main backbone of GA theory, and finds that it does not transfer well
to GP, concluding amongst other things that it “constitutes a narrow and imprecise

account of GP search behaviour.”

The most common GP operators are simple, and inefficient, i.e. they have a low like-
lihood of producing children which are as fit or fitter than their parents. This thesis
does not look any further at ways of improving GP operators, which would be highly
problem specific (but see [Vere 95] for work on efficient operators working on decision
trees, and [Montana 95, Haynes et al. 96] for work on Strongly-Typed GP, where op-
erators are restricted in how they can alter trees). The use of a restriction on tree size
is also common to many GP implementations, and this can be seen in Section 4.1 to

interact adversely with the main GP operator, Crossover.
Tournament Selection is a widely used method for picking individuals from the pop-

99

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 60

ulation as parents for the operators to work on, and is the selection method used
throughout this thesis. Section 4.2 takes a look at some of the consequences of using

Tournament Selection and some reasons why it was used in this thesis.

4.1 Crossover and the MAX problem

The Crossover operator is common to most implementations of GP, providing a simple
but powerful method for recombining genetic material in a population. Crossover seems
to be in widespread use in its simplest form, described in Section 4.1.3, mixing two
parent trees through the exchange of randomly selected subtrees to produce one or two
child trees. Mutation operators are often used in combination with Crossover. Also
common to most GP is some form of upper limit on tree size, necessary to prevent the

population expanding to exceed available computer resources.

This section introduces the MAX problem for GP, a convenient mechanism for looking
at the machinations of Crossover. The task is to produce the largest possible value
for a given function and terminal set and maximum tree depth or maximum number
of nodes. Ostensibly an easy problem for GP to solve, results for several variations of
the MAX problem, given in Section 4.1.5, confirm some inadequacies of the crossover
operator in normal use. These are highlighted in an analysis in Section 4.1.6. Even
with the mitigating effects of some mutation operators, described in Section 4.1.3, a loss
of diversity in the upper levels of trees in the population due to Crossover, discussed
in Sections 4.1.5 and 4.1.7, leads to premature convergence to sub-optimal solutions.
This is made irreversible through the interaction of Crossover and the restriction on

tree depth.

The tendency of Crossover to ignore the upper tree levels should be well known, but
the extent of its negative impact on population diversity and premature convergence

are made more apparent here through the use of the MAX problem.

This section is an extension of the paper [Gathercole & Ross 96], in which the MAX
problem was first published, which looked solely at a restriction on tree depth. With a
restriction on the number of nodes, the MAX problem is more complex for GP, exper-

iencing more subtle interactions between the action of the operators and the tree size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 61

restriction. Langdon and Poli take the MAX problem further in [Langdon & Poli 97],
concentrating on the restriction on tree depth, but considering bigger trees, different
selection pressures, different initialisations of the population, measuring population

variety, and the number of steps required to solve the MAX problem.

4.1.1 Why Restrict Tree Size

GP effortlessly takes computers beyond their limits both in terms of memory and
CPU use. Ways of reducing CPU use are investigated in Chapters 5 to 8. Two of
the easiest ways for reducing GP’s memory requirements are restricting the population
size, also investigated in Chapter 8, and restricting individual tree sizes within the
population. Both of these methods limit GP’s use of memory. This section looks at

some consequences of imposing restrictions on tree size.

Trees in a GP population have a tendency to ‘bloat’. This phenomenon, noted in
[Blickle & Thiele 94], might be explained by the fact that larger trees (i.e. ones which
contain more garbage or redundancy in the form of superfluous subtrees) are more
likely to survive the actions of Crossover undamaged. Smaller trees are likely to result
in damaged, unfit trees after Crossover. Whilst nice from a perspective of wishing the
trees well, the bloat phenomenon can be a hindrance to the GP user. Another factor
could be ‘hitch-hiking’, where superfluous subtrees benefit from their proximity in fit
trees to fit subtrees. Crossover and selection are quite likely to copy and spread the
associated non-contributory subtrees along with the fit subtrees. The trees in the GP
population expand with each generation, requiring a larger memory allocation, and

can result in a reduction in CPU efficiency.

The open-ended nature of bloating is questioned in [Rosca 96]. Rosca suggests the
existence of “size attractors”, where trees in a population will expand to a certain
size range and then fluctuate within this range without continuing to expand indef-
initely. Rosca also questions the bias commonly introduced into GP runs in favour
of small trees, suggesting that the generalisation capabilities of such small trees are
less than those of larger trees. To avoid these difficulties, Rosca proposes an Adaptive
Representation, explicitly evolving and selecting code modules instead of entire trees

(described in Section 3.3).

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 62

In theory, for a classification problem, it is usually possible to construct a huge GP
tree which can perform 100% successfully on the training set by explicitly dealing with
every case in the training set. In effect, the tree memorises the entire training set -
an extreme form of overfitting. Such a tree is unlikely to perform well on a different
test set, where the individual cases are not the same as those in the training set. This
is the dilemma of generalisation versus memorisation (overfitting). Ideally, GP should
produce small trees which contain the essence of what is needed to solve all possible
cases, having generalised from the training set to all possible cases. One of the simplest
methods of biasing GP towards generalising rather than memorising is to prefer smaller
trees to larger trees in the selection process, and is sometimes known as the principle
of Occam’s Razor. A standard approach used in Machine Learning is to train using
just the training set, and regularly test the best individual using the test set, stopping
when the performance on the test set begins to worsen. It has been hypothesised in
discussions within the GP community that GP is quite resistant to overfitting. Such
overfitting was not apparent during the runs of GP in this thesis. Best-of-generation
trees’ performances on test sets were always still improving towards the end of runs if
the training performance was improving. Perhaps the runs never ran long enough to

reach a situation where the test performances would begin to worsen.

Looking further at the generalisation capabilities of smaller versus larger decision trees
(i.e. not specifically GP trees), [Webb 96] questions the “utility of Occam’s Razor” as
a guiding principle in Machine Learning. Starting with small, simple decision trees,
Webb adds complexity to them without affecting their performance on the training
sets, using only the training sets as a guide, then compares their performance on the
associated test sets. The larger trees generalise better. Whilst not demonstrating that
larger GP trees generalise better than smaller GP trees, Webb’s study does suggest

that the bias towards smaller trees should be considered carefully.

Nevertheless, despite possible good reasons for allowing GP trees to grow unbounded,
it is often impractical to let them do so. Some form of tree size restriction is necessary.
There are four main types of size restriction reported in the literature: two of which set
explicit size limits, one which edits trees to remove superfluous nodes, and one which

biases GP against selecting larger trees as parents.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 63

e A limit on the number of nodes in a tree
- each time a new tree is generated in the breeding stage, it is scanned, and the

number of nodes counted.

e A limit on the depth of a tree
- each time a new tree is generated in the breeding stage, it is scanned, and the

depth calculated, i.e. the longest path from the root node to any leaf node.

If the child tree size exceeds the limit, some form of default is applied, e.g. the child
tree is made into a simple copy of its parent, or the breeding step is repeated until it
generates a ‘legal’ tree, or the too-large tree is pruned in some way down to size. Each
of these methods for dealing with the size limit has consequences for the direction of

the evolution of the GP population.

e Tree editing
- there are several ways of explicitly reducing the size of trees. [Soule et al. 96]
looks at the removal of known and obviously superfluous subtrees. Such subtrees
can be calculated in advance using the properties of the function set. However,
Soule et al then noted the spreading of super-superfluous subtrees, i.e. superfluous

subtrees which avoided the culling process.

Another, more subtle and directed form of editing is described in
[Blickle & Thiele 94, Blickle 96]. The edges of each GP tree traversed during
evaluation are marked. Unmarked edges are those which did not contribute to
the fitness of the tree, and those subtrees are replaced by randomly chosen ter-

minals.

e Parsimony
- a penalty is added to the fitness value of a tree proportional to its size, i.e.
trees with more nodes have a larger penalty included in their fitness values. This
method can function without any explicit upper limit on tree size. Instead, it
biases the selection of parents towards smaller trees. In effect it turns a GP

problem into a multi-objective optimisation problem, where the fitness of a tree

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 64

Spike and Decay with Parsimony: Plot of tree size of Best-of-generation tree
600 T T T T T T T

Number of nodes in tree —<—

500

400

300

200

Number of nodes in Best-of-generation tree

100

o & i i i i i i i
o] 500 1000 1500 2000 2500 3000 3500 4000
Generations

Figure 4.1: Spike and Decay with Parsimony - shows a typical profile of the tree size
of the best of generation individual, as parsimony provides a bias towards the selection
of smaller but equally fit variants of the best of generation individual (showing a decay
in tree size), without hindering the discovery of new, fitter, but much larger trees,
(showing a spike in tree size).

depends both on its performance on a problem and on its size. The bias against
large trees can be made very weak when the size of the penalty is always less than
the smallest unit of fitness. In classification problems this is easy to implement,
since the smallest unit would be 1, corresponding to a misclassification of a single
case. With a penalty factor of 0.001 * NumberO f NodesInTree, the parsimony
factor would only have an effect on two equally fit but different sized trees, as
long as the trees never exceeded 999 nodes in size. For other problems with a
more fine grained fitness function, a decision has to be made on the impact of

the parsimony on the fitness value.

[Zhang & Muehlenbein 95] looks at an “adaptive balancing of accuracy and parsi-
mony”, a method for automatically varying the size of the parsimony penalty
according to the quality of the current best solution. The parsimony penalty

starts low, and is increased as the quality of the best solution increases.

In use, parsimony has the desired effect of restricting tree growth. During a

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 65

typical run, the trees expand quickly to a certain, problem (and parameter)-
related size range. New, fitter trees which are the result of Crossover are often
much larger than the population average. These fitter trees will continue to be
selected, but any child trees which have the same fitness but fewer nodes, perhaps
through the action of a mutation operator snipping out a superfluous subtree,

will be preferentially selected.

Looking at Figure 4.1, a typical run taken from Chapter 8 on the TicTacToe
problem, showing the size of the best of generation tree as the generations pro-
gress, a spike-decay curve is evident several times during the course of this typical
run. The ‘spike’ corresponds to the discovery of a fitter but very large individual.
The ‘decay’ corresponds to the discovery of equally fit but smaller variations of
the tree. The final spike which occurs just before generation 2500, coincides with
the discovery of an optimum tree which scores 100% on the training set. As the
run continues, selection pressure favours smaller but equally fit variants of this

tree, resulting in a classic decay curve.

In practise, if the difficulty of the problem is not known, and it is likely that
the population will expand to exceed the memory allocation even with the bias
towards selecting smaller trees, parsimony is used in combination with one of the

explicit limits on tree size mentioned above.

In this thesis, every effort was made to allow the GP trees to expand without any
explicit limits, but with a weak parsimony factor biasing selection towards smaller
trees. With large populations, e.g. 5000, in Section 6, this was not possible, and an
explicit size restriction was needed. With smaller populations, e.g. 400, and 50, in
Sections 7 and 8, there was sufficient memory to allow the trees to grow unbounded to

their ‘natural’ size.

The MAX problem, described below, looks at the consequences of a strict upper limit
on tree size interfering with the actions of the Crossover operator when the trees in

the population have expanded close to the limit.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 66

4.1.2 The MAX Problem

The MAX problem was constructed specifically to investigate what happens when the
trees in a GP population expand to reach an explicit restriction on tree size. The
task is to find a tree which returns the largest possible value for a given terminal and
function set, with a depth limit, D, or a limit on the number of nodes, N. No trees are
allowed to exceed the size restriction. GP is given a maximum number of generations
(the cutoff) in which to find an optimal tree, after which it is considered to have failed.
The cutoff is made sufficiently large so as to give GP a good chance of finding the
optimal tree before reaching the generation limit. In every successful run of the MAX
problem the number of generations needed to find the optimal tree was much less than

the cutoff.

The MAX problem for GP is analogous to the Ones-Max problem for GAs,
[J.D.Schaffer et al. 91], where an individual consists of a fixed length binary string
(since GP uses a non-linear representation, this analogy can only be a very loose one),
and its fitness is simply the sum of its bit values. The optimal solution has all of its
bits set to on. Although a simple problem, in practice a GA’s population often con-
verges to a state where every individual has some bits set to off in the same positions
as every other individual, if the chromosome is sufficiently long. Thus GA Crossover,
the usual method for recombining individuals where substrings are taken from two or
more parents to create a child, will result in new individuals with the same bits set
to off. GA Mutation is then the only operator which can change the off bits to on,
resulting in only a slow progression of the population towards discovering the optimal
solution. The process by which off-bits turn up at the same positions in each individual
in the population is known as hitch-hiking, and is a consequence of using the crossover
operator and selection. When substrings are recombined by Crossover to produce fit
individuals, the fit individuals get favoured by the selection process and any off-bits
get carried along for the ride. Soon all individuals in the population are the same as

or close copies of the fittest individuals, all sharing the same off-bits.

For GP and the MAX problem, since the optimal trees will, by necessity, need to

extend to the maximum depth (or number of nodes), the size restriction in the MAX

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 67

problem is obviously a more important factor than in most other GP problems. It
becomes apparent below that the interactions between the function and terminals sets,
size restriction, Crossover, and selection pressure, can combine to make it very difficult
for GP to find an optimal tree. In fact, the problem can be considered deceptive for
GP, where the fitness contributions of subtrees discovered early on in the search lead

GP astray, away from discovering the necessary subtrees later on.

There are several advantages of the MAX problem for looking at GP as stated: results
are known quickly; the solution space is easy to visualise; the optimal trees are known

in advance; the problem can be varied and made more difficult in small steps.

The MAX problem can be expressed as

e MAX-depth-D-{Function Set}{Terminal Set}

e MAX-nodes-N-{Function Set}{Terminal Set}

representing the two different size restrictions. The different versions of the MAX

problem covered in this thesis are as follows:

MAX-depth-D-{Function Set}{Terminal Set}

The simplest form of the MAX problem is MAX-depth-D-{+}{1}, where the only
optimal solution (shown in Figure 4.2, for D = 4) is a full tree of ‘+’s and ‘1’s. For a
given depth D, where the root node is counted as depth 0, the maximum possible tree

value is 2. The depths tested are from 3 to 8.

In MAX-depth-D-{*,+}{n}, the “**’ (times) function is of no use in terms of return-
ing large values unless both its arguments are greater than 1. This requires the use
of the ‘4’ function to add the small terminals together, creating values greater than

“*? function

1. So the ‘4’ function is most effective near the leaves of the tree. The
is most effective at the top of the tree, if sufficiently large values are returned by the

subtrees.

For MAX-depth-D-{*,+}{1}, the optimal tree, shown in Figure 4.3 for D = 4,

consists of ‘1’s in the bottom layer, ‘+’s in the penultimate layer, ‘+’s or ‘*’s in the

68

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION

Figure 4.2: Optimal Tree for MAX-depth-4-{+}{1}

Figure 4.3: Optimal Tree for MAX-depth-4-{*,+}{1}

Figure 4.4: Optimal Tree for MAX-depth-4-{* +}{0.5}

o
N
Te)
N
Te)
N
Te)
N

/A

Figure 4.5: Optimal Tree for MAX-depth-5-{*,+}{0.25}

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 69

next-to-penultimate layer, and ‘*’s in any layers above that. For a given depth D, the
maximum possible tree value is 42D72, where D >= 2, and there are 2”2 distinct

optimal trees. The depths tested are from 3 to 6.

The MAX problem can be made progressively more difficult for GP by decreasing the
size of the constant terminal (the reasons for this are described below in Section 4.1.7).
To keep the arithmetic simple, the constants have been kept to inverse powers of 2.
With MAX-depth-D-{*,4}{0.5}, the constant has been reduced from 1 to 0.5,
and now an optimal tree consists of one more layer of ‘+’s and one less layer of “*’s.
The generic optimal tree is shown in Figure 4.4 for D = 4. For a given depth D,
the maximum possible tree value is 42D_3, where D >= 3, and there are 2”73 distinct

optimal trees. The depths tested are from 3 to 7.

With MAX-depth-D-{*,4+}{0.25}, the constant has been reduced again to 0.25,
with an extra layer of ‘+’s in the optimal tree as a consequence, shown in Figure 4.5

for D = 5.

Figure 4.6: Optimal Tree for MAX-depth-4-{*,/}{0.9}

The variation MAX-depth-D-{*,/}{0.9} involves the ‘/’ (divide) function instead of
the ‘+’ function. The two functions, ‘*’ and ‘/’, must be combined together asymmet-
rically to create an optimal tree. The “*’ function’s role becomes that of providing as
small a value as possible which, as the second argument of the ‘/” function, is turned into
a large value. The optimal tree for MAX-depth-D-{*,/}{0.9}, shown in Figure 4.6 for
D = 4, has a different structure from the optimal tree for the MAX-depth-D-{* +}{n}

problems. Most of the tree layers consist of an unbalanced mix of the two functions.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 70

MAX-nodes-N-{Function Set}{Terminal Set}

A subset of the variations described above are attempted with a restriction on the
number of nodes instead of depth. The optimal trees for the MAX-nodes-N variations
are more complex than for MAX-depth-D. For this reason, MAX-nodes-N-{*,/}{0.9}
is not investigated further here, since it isn’t immediately obvious what an optimal
tree would look like. For the other variations, MAX-nodes-N-{*,+}{n}, the optimal
trees have been established. Unlike with the MAX-Depth-D versions, there are many

optimal trees for each problem, and the search spaces are much much larger.

©
© ©
() () () ()
OO OO0 OO0
ODEOE O OEOREGO & OFE6ORG
2 HEEEEORE OFE OFEEEOE OFE EH G
2 (+) 2 ()2 [[2] [ERONERONNOIE
2 (+)
() [
2] ()

Figure 4.7: An optimal tree for MAX-nodes-81-{* +1}{0.25}

One of the many optimal trees for MAX-nodes-81-{*,4-}{0.25} is shown in Figure 4.7.
As with the optimal trees for MAX-depth-D, the tree has ‘*’ nodes near the root
joining subtrees consisting entirely of ‘4+’s and the constant 0.25, in this case. There
are 41 terminal nodes, 38 ‘+’s, and 3 “*’s. Three of the four {+,0.25} subtrees have
ten constants and nine ‘+’s each, with a return value of 2.5. The other subtree has
eleven constants and ten ‘+’s, with a return value of 2.75. The four subtrees are joined

by three ‘“*’s to give an optimal return value of 2.75 * 2.5 x 2.5 * 2.5 = 42.96875.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 71

No set formula is given here for the tree structure or return value of an optimal tree
for each MAX-nodes-N problem. The proof of such a formula is not straightforward,
though it is made easier by sticking with the binary arity functions ‘+’ and ‘“*’. The
problem of constructing provably optimal trees by hand is an interesting topic in its own
right. Instead, a quick enumeration algorithm was constructed to generate the struc-
ture and hence return value of an optimal tree for a given N. The following guidelines

can be used to speed up the algorithm to find an optimal tree.

A MAX-nodes-N-{* +}{n} tree can be viewed as

m+n+n+.)x(n+n+.)xn+n+n+n.)*..

made up of some subtrees consisting only of ‘+’s and ‘n’, combined together by some

“*’s. This can be written as

t
TreeValue = H S;
i=1

where t is the number of subtrees, S;, containing only ‘4+’s and ‘n’s, and
Cj
Si = Z n=mnsx Cl
1

where ‘n’ is the value of the constant node, and C; is the number of constant nodes in
subtree S;, with the following constraint on the total number of nodes to satisfy the

size restriction

t
t—14+) (Ci+Ci—1)=N
i=1

“*" nodes joining

where N is the maximum allowed number of nodes, i.e. the number of
the t subtrees (i.e. t-1) plus the sum of the number of ‘4’ and ‘n’ nodes in each subtree
must be no greater than N. An optimal tree would use all N nodes, assuming N is
odd, otherwise it could only use N-1 nodes, being unable to incorporate the remaining

node into the binary tree (a binary tree can only have an odd number of nodes). More

specifically, when N is odd,

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 72

since the number of terminal nodes is one greater than the number of function nodes
(with the proviso that the function nodes are binary). All the remaining % nodes
are function nodes. It is simple to show that if C; > C; + 1, for some i and j, (i.e. one
subtree has at least two more constant nodes that another subtree), the overall tree
value can be increased by decrementing the larger C; and incrementing the smaller
Cj. Thus all the {4+,n} subtrees in an optimal tree have the same number of nodes,
or differ only by one ‘+’ and one ‘n’. For sufficiently small N, there is a cutoff point

ko

where the optimal tree need contain no nodes. For the values of the constant n

used here, i.e. 1, 0.5, and 0.25, this cutoff point can be calculated from

N+1<4
5 =

n x

i.e. when there are insufficient nodes to construct a {+,n} subtree with a return value
greater than 4. If a {+,n} subtree has a return value greater than 4, it can be split
into two smaller {4,n} subtrees, and combined using ‘*’ to produce a greater return
value than before. For larger values of the constant n, an extra constraint would be

needed.

Using all the above criteria, a quick enumeration of the few remaining possibilities
for a given N results in a list of the number of terminal nodes in each {+,n} subtree.
From here it is straightforward to calculate the optimal tree value, and the various

permutations of these subtrees to give all the optimal tree structures.

A MAX-nodes-N-{* +}{n} tree can be represented by a list of numbers, where each
element in the list is the number of constants in a {4,n} subtree. The length of the
list gives the number of such subtrees. These subtrees are then combined by ‘*’ nodes
to produce the final tree. For example, the list (11,10,10,10) represents all the optimal
trees for MAX-nodes-81-{*,4+}{0.25}, one of which is displayed in full in Figure 4.7.
The total number of trees for a given list, such as (11,10,10,10), can be calculated as
follows (making use of the algorithm for calculating the number of possible tree with a

given number of nodes, and for given function and terminal sets, shown in Section 3.2):

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 73

Given the list of numbers of constants in subtrees, (11,10,10,10):

subtree;; = 16796, the number of subtrees with 11 ‘n’ nodes (and 10 ‘4’ nodes)

subtreejp = 4862, the number of subtrees with 10 ‘n’ nodes (and 9 ‘+’ nodes)

The number of ways of combining 4 subtrees and 3 ‘*’ nodes, where 3 subtrees are the
same size, is the number of permutations of 4 objects (with 3 being identical) times
the number of ways of combining 4 subtrees (where each subtree can be considered as

a terminal node) and 3 “*’ nodes, subtrees.

SubtreePermutations = 4 * subtreey, = 4 x5 = 20

Thus the total possible number of trees from {11,10,10,10} is

NumberO fTrees = SubtreePermutations * subtreeqq * (subtreelo)?’ ~ 8% 10"

In Table 4.1, the optimal tree value, the number of possible optimal trees, the
number of trees possible up to and including the size limit, the list of sub-
tree sizes, and the list of subtree values, are given for a range of values of N
for the problem MAX-nodes-N-{* +1}{0.25}. A periodic variation is apparent in
the list of subtree sizes whose period increases as N increases. Table 4.2, for
MAX-nodes-N-{* +}{0.5}, and Table 4.3, for MAX-nodes-N-{*,4+-}{1}, show similar
features to that for MAX-nodes-N-{*,4+-}{0.25}. The period of the cycle is shorter for
n = 0.5, and shorter still for n = 1, due to the fact that the {4+,n} subtrees with larger

ok

constants need fewer nodes to produce a sufficiently large return value for the ‘*’ nodes

to be effective.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION

74

Details of the optimal trees for MAX-nodes-N-{*,+}{0.25}, where 27 < N < 97

N | MAX Value | Optimal | Possible Constants Subtree
trees trees per subtree values

27 | 3.5 7.43e+05 | 7.08¢+09 | 14 3.5

29 | 3.75 2.67e+06 | 5.09¢e+10 | 15 3.75

31| 4. 9.69e+06 | 3.69e+11 | 16 4

33| 4.5 1.23e+06 | 2.69¢+12 | 9 8 2.25 2

35| 5.0625 2.04e+06 | 1.97e+13 | 99 2.25 2.25

37 | 5.625 1.39e+07 | 1.45e+14 | 10 9 2.5 2.25

39 | 6.25 2.36e+07 | 1.07e+15 | 10 10 2.5 2.5

41 | 6.875 1.63e+08 | 7.95e+15 | 11 10 2.75 2.5

43 | 7.5625 2.82e+08 | 5.93e+16 | 11 11 2.75 2.75

45 | 8.25 1.97e+09 | 4.43e+17 | 12 11 32.75

47 1 9. 3.46e+09 | 3.32e+18 | 12 12 33

49 | 9.75 2.45e+10 | 2.50e+19 | 13 12 3.25 3

51 | 10.5625 4.33e+10 | 1.88e+20 | 13 13 3.25 3.25

53 | 11.390625 2.92e¢+09 | 1.42e+21 {999 2.25 2.25 2.25

55 | 12.65625 2.98e+10 | 1.08e+22 | 109 9 2.5 2.25 2.25

57 | 14.0625 1.0le+11 | 8.16e+22 | 10 10 9 2.5 2.5 2.25

59 | 15.625 1.15e+11 | 6.20e+23 | 10 10 10 2.5 2.5 2.5

61 | 17.1875 1.19e+12 | 4.72e+24 | 11 10 10 2.75 2.5 2.5

63 | 18.90625 4.11e+12 | 3.60e+25 | 11 11 10 2.75 2.75 2.5

65 | 20.796875 4.74e+12 | 2.74e+26 | 11 11 11 2.75 2.75 2.75

67 | 22.6875 4.98e+13 | 2.10e+27 | 12 11 11 3 2.75 2.75

69 | 24.75 1.74e+14 | 1.61e+28 | 12 12 11 33275

71 | 27. 2.03e+14 | 1.23e+29 | 12 12 12 333

73 | 29.25 2.16e+15 | 9.45e+29 | 13 12 12 32533

75 | 31.6875 7.63e+15 | 7.26e+30 | 13 13 12 3.25 3.25 3

77 | 35.15625 6.57e+14 | 5.58e+31 | 10 10 10 9 2.5 2.5 2.5 2.25

79 | 39.0625 5.59e+14 | 4.30e+32 | 10 10 10 10 25252525

81 | 42.96875 7.72e+15 | 3.31e+33 | 11 10 10 10 2.75 2.5 2.5 2.5

83 | 47.265625 4.00e+16 | 2.56e+34 | 11 11 10 10 2.75 2.75 2.5 2.5

85 | 51.9921875 | 9.21e+16 | 1.97e+35 | 11 11 11 10 2.75 2.75 2.75 2.5

87 | 57.19140625 | 7.96e+16 | 1.52e+36 | 11 11 11 11 2.75 2.75 2.75 2.75

89 | 62.390625 1.11e+18 | 1.18e+37 | 12 11 11 11 3 2.75 2.75 2.75

91 | 68.0625 5.85e+18 | 9.12e+37 | 12 12 11 11 332.752.75

93 | 74.25 1.36e+19 | 7.06e+38 | 12 12 12 11 333275

95 | 81. 1.19e+19 | 5.47e+39 | 12 12 12 12 3333

97 | 87.890625 4.00e+18 | 4.24e+40 | 10 10 10109 | 2.5 2.5 2.5 2.5 2.25

Table 4.1: Details of the optimal trees for MAX-nodes-N-{*,+}{0.25}

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 75

Details of the optimal trees for MAX-nodes-N-{*,+}{0.5}, where 27 < N < 99

N | MAX Value | Optimal | Possible Constants Subtree
trees trees per subtree values

27 12.5 2.94e+03 | 7.08e+09 | 5,5,4 2.5,2.5,2

29 15.625 2.74e4+03 | 5.09e+10 | 5,5,5 2.5,2.5,2.5

31 18.75 2.47e+04 | 3.69e+11 | 6,5,5 3,2.5,2.5

33 22.5 7.41e404 | 2.69e+12 | 6,6,5 3,3,2.5

35 27. 7.41e+04 | 1.97e+13 | 6,6,6 3,3,3

37 31.5 6.99e+05 | 1.45e+14 | 7,6,6 3.5,3,3

39 39.0625 3.84e+04 | 1.07e+15 | 5,5,5,5 2.5,2.5,2.5,2.5

41 46.875 4.61e+05 | 7.95e+15 | 6,5,5,5 3,2.5,2.5,2.5

43 56.25 2.07e+06 | 5.93e+16 | 6,6,5,5 3,3,2.5,2.5

45 67.5 4.15e+06 | 4.43e+17 | 6,6,6,5 3,3,3,2.5

47 81. 3.11e+06 | 3.32e+18 | 6,6,6,6 3,3,3,3

49 97.65625 5.38¢+05 | 2.50e+19 | 5,5,5,5,5 2.5,2.5,2.5,2.5,2.5

51 117.1875 8.07e+06 | 1.88e+20 | 6,5,5,5,5 3,2.5,2.5,2.5,2.5

53 | 140.625 4.84e4+07 | 1.42e+21 | 6,6,5,5,5 3,3,2.5,2.5,2.5

55 | 168.75 1.45e+08 | 1.08e+22 | 6,6,6,5,5 3,3,3,2.5,2.5

57 | 202.5 2.18¢+08 | 8.16e+22 | 6,6,6,6,5 3,3,3,3,2.5

59 | 244.140625 7.53e+06 | 6.20e+23 | 5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5

61 | 292.96875 1.36e408 | 4.72e+24 | 6,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5

63 | 351.5625 1.02e409 | 3.60e+25 | 6,6,5,5,5,5 3,3,2.5,2.5,2.5,2.5

65 | 421.875 4.07e409 | 2.74e4+26 | 6,6,6,5,5,5 3,3,3,2.5,2.5,2.5

67 | 506.25 9.15e4+09 | 2.10e+27 | 6,6,6,6,5,5 3,3,3,3,2.5,2.5

69 | 610.3515625 1.05e+08 | 1.61e+28 | 5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5

71 | 732.421875 2.21e+09 | 1.23e+29 | 6,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.5

73 | 878.90625 1.99e+10 | 9.45e+29 | 6,6,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.5

75 | 1054.6875 9.96e+10 | 7.26e+30 | 6,6,6,5,5,5,5 3,3,3,2.5,2.5,2.5,2.5

77 | 1265.625 2.99e+11 | 5.58¢+31 | 6,6,6,6,5,5,5 3,3,3,3,2.5,2.5,2.5

79 | 1525.87890625 1.48e4+09 | 4.30e+32 | 5,5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5

81 | 1831.0546875 3.54e+10 | 3.31e+33 | 6,5,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.5,2.5

83 | 2197.265625 3.72e+11 | 2.56e+34 | 6,6,5,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.5,2.5

85 | 2636.71875 2.23e+12 | 1.97e+35 | 6,6,6,5,5,5,5,5 3,3,3,2.5,2.5,2.5,2.5,2.5

87 | 3164.0625 8.37e+12 | 1.52e+36 | 6,6,6,6,5,5,5,5 3,3,3,3,2.5,2.5,2.5,2.5

89 | 3814.697265625 2.07e+10 | 1.18e+37 | 5,5,5,5,5,5,5,5,5 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5

91 | 4577.63671875 5.58¢e+11 | 9.12e+37 | 6,5,5,5,5,5,5,5,5 3,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5

93 | 5493.1640625 6.69e+12 | 7.06e+38 | 6,6,5,5,5,5,5,5,5 3,3,2.5,2.5,2.5,2.5,2.5,2.5,2.5

95 | 6591.796875 4.69e+13 | 5.47e+39 | 6,6,6,5,5,5,5,5,5 3,3,3,2.5,2.5,2.5,2.5,2.5,2.5

97 | 7910.15625 2.1le+14 | 4.24e+40 | 6,6,6,6,5,5,5,5,5 3,3,3,3,2.5,2.5,2.5,2.5,2.5

99 | 9536.7431640625 | 2.89e+11 | 3.29e+41 | 5,5,5,5,5,5,5,5,5,5 | 2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5

Table 4.2: Details of the optimal trees for MAX-nodes-N-{* +}{0.5}

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION

Details of the optimal trees for MAX-nodes-N-{*,4+}{1}, where 15 < N < 63

N | MAX | Optimal | Possible Constants Subtree
Value trees trees per subtree values

15 18 | 1.20e+01 | 6.50e+04 | 3,3,2 3,3,2

17 27 | 8.00e+00 | 4.31e+05 | 3,3,3 3,3,3

19 36 | 6.00e+01 | 2.92e+06 | 4,3,3 4,3,3

21 54 | 3.20e+01 | 2.01e+07 | 3,3,3,2 3,3,3,2

23 81 | 1.60e+01 | 1.41e+08 | 3,3,3,3 3,3,3,3

25 108 | 1.60e+02 | 9.93e+08 | 4,3,3,3 4,3,3,3

27 162 | 8.00e+01 | 7.08e+09 | 3,3,3,3,2 3,3,3,3,2

29 243 | 3.20e+01 | 5.09e+10 | 3,3,3,3,3 3,3,3,3,3

31 324 | 4.00e+02 | 3.69e+11 | 4,3,3,3,3 4,3,3,3,3

33 486 | 1.92e+02 | 2.69e+12 | 3,3,3,3,3,2 3,3,3,3,3,2

35 729 | 6.40e+01 | 1.97e+13 | 3,3,3,3,3,3 3,3,3,3,3,3

37 972 | 9.60e+02 | 1.45e+14 | 4,3,3,3,3,3 4,3,3,3,3,3

39 1458 | 4.48e+02 | 1.07e+15 | 3,3,3,3,3,3,2 3,3,3,3,3,3,2

41 2187 | 1.28e+02 | 7.95e+15 | 3,3,3,3,3,3,3 3,3,3,3,3,3,3

43 2916 | 2.24e+03 | 5.93e+16 | 4,3,3,3,3,3,3 4,3,3,3,3,3,3

45 4374 | 1.02e+03 | 4.43e+17 | 3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,2

47 6561 | 2.56e+02 | 3.32e+18 | 3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3

49 8748 | 5.12e+03 | 2.50e+19 | 4,3,3,3,3,3,3,3 4,3,3,3,3,3,3,3

51 | 13122 | 2.30e+03 | 1.88e+20 | 3,3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,3,2

53 | 19683 | 5.12¢+02 | 1.42e+21 | 3,3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3,3

55 | 26244 | 1.15e+04 | 1.08e+22 | 4,3,3,3,3,3,3,3,3 4,3,3,3,3,3,3,3,3

57 | 39366 | 5.12e+03 | 8.16e+22 | 3,3,3,3,3,3,3,3,3,2 3,3,3,3,3,3,3,3,3,2

59 | 59049 | 1.02e+03 | 6.20e+23 | 3,3,3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3,3,3

61 | 78732 | 2.56e+04 | 4.72e+24 | 4,3,3,3,3,3,3,3,3,3 4,3,3,3,3,3,3,3,3,3

63 | 118098 | 1.13e+04 | 3.60e+25 | 3,3,3,3,3,3,3,3,3,3,2 | 3,3,3,3,3,3,3,3,3,3,2

Table 4.3: Details of the optimal trees for MAX-nodes-N-{*,+}{1}

76

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 7

4.1.3 Crossover in GP

Crossover is part of the standard GP ‘package’. It is the most obvious and ‘natural’
method for recombining two trees to produce child trees. It is considered by some to be
the main power underlying the GP algorithm, and by others to be at best just another
form of Mutation and at worst an actual hindrance to GP, [Angeline 97]. Whatever
its effectiveness, Crossover appears in virtually every description of GP, and every

implementation of GP. It is the operator with which most newcomers to GP begin.

The standard crossover operator in GP, as described in Section 1.5, given two parent
trees, can in theory bring a subtree from anywhere in one parent tree and swap it with
a subtree anywhere in the other parent tree to produce two new child trees containing
a mixture of genetic information from both parent trees. There are no restrictions
on the selection of subtrees. Any node in either tree can be chosen as a crossover
point, though occasionally there are biases in favour of non-terminal nodes. There
is no direct equivalent of a static location as with genes in a chromosome in a GA.
Thus, if a particular node, e.g. a ‘4+’-node, appears anywhere within any tree in the GP
population, then it is possible for GP Crossover (assuming such a tree is ever selected to
be a parent) to spread that particular node to anywhere in a tree in the next generation.
Only when that particular node disappears from all trees in the population, will GP

Crossover be unable to spread it into the next generation.

In a typical GP setup, operators such as Crossover work with some idea of a maximum
allowed depth or maximum number of nodes allowed for each tree in the population,
as described above in Section 4.1.1. A consequence of this restriction on tree size is
that the crossover operator may no longer be able to swap all possible pairs of subtrees
between two parents and still produce ‘legal’ trees. This effect is minimal when the
population consists only of trees much smaller than the size limit, but becomes more

marked as GP trees usually tend to increase in size in later generations.

There are many simple ways of dealing with Crossover’s propensity for producing illegal
trees, as mentioned above in Section 4.1.1. The simplest is to select just one of the
two child trees, at least one of which is guaranteed to be legal, and is the method used

here. Other methods include reselecting the crossover points in some way until both

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 78

children are legal, pruning over-large trees, or default to making the children identical
copies of their parents. Thus, in practice, Crossover in GP is not free to move just any
subtree to any part of another tree. The tree size restrictions limit the effectiveness
of Crossover and, as discussed below, can hinder GP’s discovery of better trees via

Crossover.

In normal use, Crossover is used along with other operators, usually some forms of
Mutation, creating one offspring from one parent (ascertained after many discussions
and examining the literature). Omne oft used type of Mutation operator randomly
generates a new subtree in a parent tree to produce a child. This method is useful since
it can introduce small effective subtrees to a population but is not likely to introduce
large effective subtrees. Another form of mutation operator replaces an individual
node in a parent tree with another node of the same arity to produce a child. This
method is useful for reintroducing nodes back into a population. But, unless the
population can make immediate use of them, Selection will probably wipe them out
in the next generation. In the case of MAX-depth-D-{+,*}{0.5}, (see Figure 4.4) this
would speedily bring about the discovery of the optimal tree since replacing a high-level
‘+’-node with a ‘“*’-node creates a fitter tree. Looking at MAX-depth-D-{/,*}{0.9},
(see Figure 4.6), the left-hand side of the trees often requires the introduction of large
effective subtrees which are unlikely to be created by mutating a subtree and would
not be created by mutating an individual node. Thus incorporating either or both of

the mutation operators as described above would not help GP find the optimal tree.

4.1.4 Experiment Details

The MAX-depth-D variations discussed in this section are {+}{1}, {+,*}{1},
{+,*}{0.5}, {+,¥}{0.25}, and {*,/}{0.9}. The depths are between 3 and 8, where
the upper depth limit depends on the size of the optimal tree value overflowing the
floating-point representation, or complete failure by GP at smaller depths. Fifty runs
were made for each variation, with the only operator being Crossover. These runs were
then divided according to whether or not they were successful, as detailed below in Sec-
tion 4.1.5. For comparison, MAX-depth-D-{+,*}{0.5} and {*,/}{0.9} were repeated

with the addition of the mutation operators mentioned above in Section 4.1.3. Their

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 79

selection frequencies were: 60% Crossover; 20% Mutate Node; 20% Mutate Subtree.

An effort was made to keep the GP used here simple since the aim was to demonstrate
some qualitative aspects of the crossover operator, and not to strive for optimal GP
performance. The implementation used generational replacement with elitism on a
population size of 200. A tournament of size 6 was used with the MAX-depth-D runs.
With hindsight this tournament size is probably too large with a population size of only
200 for GP to perform as well as it could, but many of the runs were successful despite
this. A tree’s fitness is the maximum possible return value minus the tree’s return
value. Thus a fitness score of zero is optimal, with worse fitnesses being large and
positive. Standard crossover was used, with two parents producing one child, where all
trees were limited to a maximum depth D. A crossover point was chosen by randomly
selecting one node from all of the nodes in a tree. Crossover could have been made
more likely to produce a child different from its parents by requiring that at least one
of the crossover points in the two parents was a function (i.e. non-leaf) node, since all
terminal nodes were identical. Runs were stopped after 500 generations as failures, or

earlier as successes if the optimal tree was produced.

For the MAX-nodes-N variations, {*,4+}{1}, {*,+}{0.5}, {*,+}{0.25}, the population
size was kept at 200, but the tournament size was reduced to 3, after early results
indicated that GP was often failing to find the optimal trees. Reducing the selection
pressure in this way did improve GP performance by a small amount. Just the results
involving tournament size 3 are described in detail below. Since the MAX-nodes-N
problems are apparently substantially harder for GP than the MAX-depth-D problems,
GP was set a later cutoff at 3000 generations. Most of the successful runs finished well
before the cutoff generation. Those that discovered an optimal tree close to the cutoff
had shown no signs of improvement for many hundreds of generations before that,
making it fairly safe to conclude that the discovery of the optimal tree was a chance
event due to an extremely unlikely but successful mutation of all or most of a tree. As
with the MAX-depth-D variations, the size restriction was raised as high as possible so
that the optimal tree values did not exceed the machine-specific limits of the floating-
point representation used. For sufficiently small N, the MAX-nodes-N problem is

trivial, with GP usually discovering an optimal tree in generation 0, i.e. when trees are

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 80

initially generated at random. Also, as with the MAX-depth-D variations, the runs
were repeated with the addition of the Mutation operators, leading to over 20,000 runs

being carried out.

4.1.5 Results

Performance of GP on MAX-depth-D

The average number of generations for the successful runs for each of the variations
of the MAX-depth-D problem, in Figure 4.8, shows the MAX problems increasing in

difficulty for GP with increasing depth, unsurprisingly.

The percentage of runs which ended in failure, shown in Figure 4.10, increases rapidly
with depth for all but MAX-depth-D-{*,+}{1} and {+}{1}. The populations in these
failed runs reached a state where it was impossible or extremely unlikely to produce
the optimal tree. The populations in successful runs were, in effect, ‘lucky’ to discover

the optimal trees before the disappearance of crucial subtrees from the populations.

Adding the mutation operators, shown in Figure 4.11 has helped
MAX-depth-D-{+,*}{0.5} to achieve 100% success at all the depths tested (and
similarly for MAX-depth-D-{+,*}{0.25}, though it is not shown on the graph). The
MAX-depth-D-{/,*}{0.9} runs, on the other hand, still have difficulty in finding the
optimal trees. Looking at the runs which failed, the entire population had usually

converged to be a duplicate (or very close copy) of the ‘best of run’ tree.

Typical sub-optimal trees found for MAX-depth-D

The following trees exemplify the sub-optimal trees discovered by GP in the variations

of the MAX problem (where depth 0 refers to the root node):

For MAX-depth-5-{*,+1}{0.5}, the ‘best of run’ tree shown in Figure 4.12 is not

very different (in terms of node changes) from the optimal tree. Each node at depth 1

ko Ok _

is a ‘+’ instead of a “*’. However all the fit trees in the population also had no
nodes in this layer, and were all the same size and shape (i.e. full to depth 5). The

only “*-nodes in the population were at depth 0. Given this situation, Crossover is no

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 81

Average Number of Generations needed for Successful MAX runs
200 T T T T T T
MAX-depth-D-{+}-{1} —=—
MAX-depth-D-{+,*}-{1} -+~

150 | MAX-depth-D-{+,*}-{.5} -B-- |
MAX-depth-D-{+,*}-{.25} ~x-
MAX-depth-D-{/,*}-{.9} &~

100

50

Average Number of Generations

Figure 4.8: Average number of generations needed by the successful MAX-depth-D
runs using Crossover, showing difficulty increasing with depth

Standard Deviation of Number of Generations needed for Successful MAX runs
100 T T T T T T
MAX-depth-D-{+}-{1} ~—
80 MAX-depth-D-{+,*}-{1} -+~]

5 MAX-depth-D-{+*}-{.5} -&--
| MAX-depth-D-{+,%}-{.25} -
H 60 - MAX-depth-D-{/,¥}-{.9} -&- h
o
o 40 + LB E
=
8 .
c
g 20 | E
n
0 = e
1 1 1 1 1 1
3 4 5 7 8

Figure 4.9: Standard Deviation of number of generations needed by the successful
MAX-depth-D runs using Crossover, showing difficulty increasing with depth

longer able to improve on ‘best of run’ tree. An operator which mutated individual

nodes could easily construct a fitter tree from this one.

For MAX-depth-5-{*,/}{0.9}, the ‘best of run’ tree shown in Figure 4.13 needs
two more ‘/’-nodes down the left-most side to become the optimal tree. Given that all
the fit trees in the population came to be duplicates of this tree, Crossover could not
improve upon it. Any subtree not containing a ‘/’-node would have a smaller value
than the ‘.9’-node at depth 3, and thus would result in the whole tree having a smaller
fitness. The only ‘/’-nodes are to be found at depths 0, 1, and 2, and Crossover cannot
bring those subtrees down to start at depth 3 since that would create an illegal tree.
An operator which mutated subtrees might be able to construct a fitter tree from this

one.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 82

Percentage of Unsuccessful MAX runs

100 — T T X T T
20 1= A e MAX-depth-D-{+}-{1} —=— o
o 80 P MAX-depth-D-{+,*}-{1} —+— |
H MAX-depth-D-{+,*}-{.5} -8--
: 70 I Fay MAX-depth-D-{+,*}-{.25} X 7
© 60 [.0 MAX-depth-D-{/,*}-{.9} -4~ |
B g7) U
50 | S R
[0 L e
7 40 R i
E 30 | s i
o 5
3 2or < .
Y 10 K.:i," e i
oF ® A e e % |
1 1 1 1 1 1
3 4 5 6 7 8

Figure 4.10: Percentage of MAX-depth-D runs failing, using Crossover

Percentage of Unsuccessful MAX runs involving Mutation
100 T T T T T T

90
80
70
60 -
50
40
30
20
10

MAX-depth-D-
(Mutation) -MAX-depth-D-

MAX-depth-D-
(Mutation) -MAX-depth-D-

+, %=1
+, %01
/oxp-1.
/oxp-1-

Percentage Failure
w0 v uTum

Figure 4.11: Percentage of MAX-depth-D runs failing (dashed lines), using Crossover
only (O) and Mutations (+), and Percentage of MAX-depth-D runs failing (solid lines),
using Crossover only (A) and Mutations (x)

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 83

99999999999999999.9.9.

Figure 4.13: Sub-Optimal tree for MAX-depth-5-{*,/}{0.9}
Performance of GP on M AX-nodes-N

As with the results for MAX-depth-D above, the results for the variations of the
MAX-nodes-N are in two main sets of figures. The average number of generations
needed by the successful runs are shown in Figures 4.15 to 4.20. Although there were
50 runs for each N and sets of operators with and without Mutation, the averages
shown for MAX-nodes-N-{*,4+}{0.25} and MAX-nodes-N-{*,+}{0.5} become very er-
ratic and effectively meaningless for larger values of N, since so few runs were successful.
If there were no successful runs for a particular N, then that point doesn’t appear in the
graphs. Many of the points for large N which do appear, correspond to very few suc-
cessful runs, often only one successful run. The averages for MAX-nodes-N-{*,+}{1}
show both that few generations were needed, and that the addition of the Mutation
operators actually hinders GP for this particular variation, sometimes doubling the
number of generations needed. The averages for MAX-nodes-N-{*,+}{0.5} without
Mutation show a rapid increase in the number of generations needed up to N=100,

whereas for MAX-nodes-N-{* +}{0.5} with Mutation the generations needed by suc-

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 84

9
© ()

)) OO
ORNONNO ® BEEEO
OEEERG B E§O
ef ERERO ONENO)

()) HEH ©E 6 6 ©E

A (+) Ol= A O EOE R E OB

ERERO) ([OfE=
ENERONENCO (+)[

Figure 4.14: A Sub-Optimal tree for MAX-nodes-81-{*,4+-}{0.25}, with error 3.156250

cessful runs rises much more slowly. The averages for the MAX-nodes-N-{*,4+}{0.25}

runs both with and without Mutation also rise slowly.

Figures 4.21 to 4.26 show the percentage of runs which ended in failure. These graphs
are statistically more reliable than the ones mentioned above for average genera-
tions to success. Each point is a value averaged over 50 runs. The two graphs for
MAX-nodes-N-{*,+}{1} in Figures 4.23 and 4.26 show that this version of the MAX
problem is very easy for GP both with and without the Mutation operators. The
graphs for the average generations to success, in Figures 4.17 and 4.20, show that GP
needs few generations to successfully find an optimal tree. The optimal trees for this

?

problem consist of many small {4+,n} subtrees joined by many ‘*’ nodes. GP quickly
discovers these small subtrees, and the subproblem of putting them together optimally

is quite simple.

The sets of graphs for MAX-nodes-N-{*,+}{0.25} and MAX-nodes-N-{*,+}{0.5}, on
the other hand, show some distinctive features. Both the graphs showing failures and

the graphs showing average generations to success show a periodic variation in difficulty

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 85

as N changes. Looking at both the graph in Figure 4.18, showing the percentage
failures of the MAX-nodes-N-{*,+}{0.25} runs, and Table 4.1, indicating the structures
of the optimal trees, it is apparent where the periodic variation comes from. As N
increases, each sudden jump in the percentage failure corresponds to an increment in
the number of {+,n} subtrees in the optimal solution. Reading from the table, for
N=53, the first optimal subtree structure with three {+,n} subtrees is (9,9,9), and the
next time the number of {+,n} subtrees increases (to four) is for N=77. These two
values of N correspond to the first two spikes in the graph. Similarly, each spike after
that corresponds to the next increase in the number of {4,n} subtrees in the optimal
solution. The relative difficulty of the MAX problem is related to the distribution of
sizes of {4+,n} subtrees in the optimal tree and the sizes of {+,n} subtrees which GP

is likely to construct.

Regarding the impact of the Mutation operators on GP’s performance, for small N (up
to around 50), the addition of the Mutation operators corresponds to a much lower fail-
ure rate for both MAX-nodes-N-{*,4}{0.25} and MAX-nodes-N-{*,+}{0.5}. For lar-
ger N, GP can be seen to have benefited greatly from the addition of Mutation operators
in MAX-nodes-N-{*,+1}{0.25}. The periodic variation in difficulty is more obvious, but
there are many more successes as N increases all the way to 249. Somewhat confus-
ingly, the same improvement for large N is not apparent in MAX-nodes-N-{*,+}{0.5}.
Instead, it appears that the addition of Mutation operators has actually hindered GP

for larger N, with GP performing worse than without Mutation.

Typical sub-optimal trees found for MAX-nodes-N

The sub-optimal trees discovered for MAX-nodes-N-{*,+}{0.25} and
MAX-nodes-N-{*,+}{0.5} follow a common theme. A typical sub-optimal tree
is shown in Figure 4.14 for MAX-nodes-81-{*,4+-}{0.25}. Whereas the optimal tree
should be of the form (11,10,10,10), shown in Figure 4.7 and discussed in 4.1.2,
i.e. with four subtrees containing 11, 10, 10, and 10 ‘0.25’ nodes, the sub-optimal
tree shown in 4.14 is of the form (14,14,13). It contains fewer but larger subtrees,
producing a slightly smaller return value than the optimal tree. In fact, all of the

sub-optimal trees discovered by GP were of this form, containing one fewer subtree

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 86

9 Average Generations to Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover
= T T T
< 2500 : -
£
=1 4
o) 2000
e
@ 1500 -
2
®
5 1000 .
c
(]
O 500 .
Q
(2]
o
g 0 -
<
Nodes N
Figure 4.15: Average number of generations needed by the successful
MAX-nodes-N-{*,+}{0.25} with Crossover
9 Average Generations to Success of MAX-nodes-N-{*,+}{0.5} runs with Crossover
= T T
T 2500 [.
£
a b b 4
o) 2000
e
@ 1500 [G Y G T g -
2
®
5 1000 o e g D e B .
c
(]
O BQQ [R e .
Q
(2]
m H
a;, 0 b= b b jooo]
< 0 150 200 250
Nodes N
Figure 4.16: Average number of generations needed by the successful
MAX-nodes-N-{*,+}{0.5} with Crossover
9 Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover
= T T T
T 2500 [R .
£
a o 4
o) 2000
e
@ LBO0 [-
2
®
T L L o .
c
(]
1 e .
Q
= ;
a;, 0 o 000000660 s i b b jooo]
< 0 50 100 150 200 250
Nodes N
Figure 4.17: Average number of generations needed by the successful

MAX-nodes-N-{*,+}{1} runs with Crossover

[0}
o
'_
= 2500
£
=
& 2000
e
@ 1500
9
®
$ 1000
c
(]
O 500
Q
(2]
®
g 0
<

Figure 4.18:

[0}
0
'_
= 2500
£
S 2000
e
@ 1500
S
T
$ 1000
c
O
o 500
()
()]
[o]
5] 0
>
<

Figure 4.19:

[0]
o
'_
= 2500
£
a
& 2000
Qo
@ 1500
ks
®
$ 1000
C
O
o 500
(0]
o
o
o 0
<

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 87
Average Generations to Success of MAX-nodes-N-{*,+}¥0.25} runs with Crossover and Mutations
! R T
0
Nodes N
Average number of generations needed by the successful
MAX-nodes-N-{*,+}{0.25} runs with Crossover & Mutations
Average Generations to Success of MAX-nodes-N-{*,+}0.5} runs with Crossover and Mutations
! I ']
L S S b
0 150 200 250
Nodes N
Average number of generations needed by the successful
MAX-nodes-N-{* +}{0.5} runs with Crossover & Mutations
Average Generations to Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations
! R T
ok A [S S b
100 150 200 250
Nodes N
Average number of generations needed by the successful

Figure 4.20:
MAX-nodes-N-{*,+}{1} runs with Crossover & Mutations

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 88

Percentage Failure (of 50 runs) Percentage Failure (of 50 runs)

Percentage Failure (of 50 runs)

Success of MAX-nodes-N-{*,+}0.25} runs with Crossover

100 -

gL N o2 20 RO S S il
60 --- ” ,, -
40 - 0 -
. O - .
e o o =
0 150 200 250

Nodes N

Figure 4.21: Success of MAX-nodes-N-{*,4+}{0.25} runs with Crossover

Success of MAX-nodes-N-{*,+}0.5} runs with Crossover

100 |- -, L
L B -
S -
e e 1 .
L e o € S S .
0 e e i
0 150 200 250
Figure 4.22: Success of MAX-nodes-N-{* +}{0.5} runs with Crossover
Success of MAX-nodes-N-{*,+{1} runs with Crossover
100 |- ., -, L
80 - SR S— A W—]
e O OO B R - -
40 - S S -
L S .
0t , , e e —— i
0 50 100 150 200 250
Nodes N

Figure 4.23: Success of MAX-nodes-N-{*,+}{1} runs with Crossover

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 89

Success of MAX-nodes-N-{*,+}0.25} runs with Crossover and Mutations

100 -

80

60 [

40 |

20 |-

Percentage Failure (of 50 runs)

Nodes N

Figure 4.24: Success of MAX-nodes-N-{*,+}{0.25} runs with Crossover & Mutations

Success of MAX-nodes-N-{*,+}0.5} runs with Crossover and Mutations

@ 100 - e b
=
3 L | I € S 1
s
o BO [.
3
[
w QO L R .
]
g
= 20 [.
8
g (N | """""""""""""""" 1
0 150 200 250

Figure 4.25: Success of MAX-nodes-N-{*,4+}{0.5} runs with Crossover & Mutations

Success of MAX-nodes-N-{*,+}{1} runs with Crossover and Mutations

@ 100 - R S T I
E : : :

3 Lo e .
S

o S e e T .
3

‘T

s 40 - S OO OSSR SRRSO [—
[

g

c T e -
o}

o

g 0L 1] o o 1

0 50 100 150 200 250
Nodes N

Figure 4.26: Success of MAX-nodes-N-{*,+}{1} runs with Crossover & Mutations

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 90

than the optimal tree. It is not possible for Crossover to produce a fitter child tree
from two trees of this form. It is not possible for mutating a single node to produce
a fitter child. It is possible but extremely unlikely that mutating an entire new tree
could produce an optimal tree, but that applies in all situations where such a mutation
is being used. To construct a fitter tree, using the sub-optimal tree as a basis, each of
the large {4+,n} subtrees would have to be modified (i.e. pruned) and a new subtree

?

added (using the pruned nodes), joined to the main tree via a ‘*’ node.

4.1.6 Analysis of Crossover

This section presents a simple analysis of the crossover operator in GP, showing its
likely impact on GP trees where there is a restriction on tree depth, and the population
consists of ‘full’ trees, i.e. trees which have filled out to the maximum allowed depth.
This situation is frequently reached whilst tackling the MAX-DEPTH problems. The
following calculations apply to GPs with function sets involving functions of arity of
two, e.g. like the MAX problems. If the largest function arity is greater than 2, the

problem is exacerbated.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION

D - the maximum tree depth
l - tree layer, from O (the root node) to D

L; - the number of nodes in layer /

:2l, where 0<I1<D
N; - the number of nodes in all layers from 0 to layer [inclusive
= 25:0 Lj= Zgzo 2 = 2l+1 -1

Np - the total number of nodes in a tree of depth D

=2P*t —1

91

C(any); - the likelihood of any node(s) in a tree, in layer [/, experiencing some crossover

activity, i.e. when a crossover point occurs in any layer from 0 to /

. ﬂ . 2l+171 -~ 2l+1 1

— Np T 2DFI-1 — 2DFT T 5T

C(layer); - the likelihood of crossover occurring within a layer /, i.e. when the two

crossover points are in the same layer

_ 1

22l 22! . 1
92(D—l+1)

Nl2) (2D+1_1)2 — 922D+2 —

C(2 legal offspring) - the likelihood of crossover, based on a random choice of cross-

over points, producing two legal offspring

legal __ Z?:o L3 Ef:o(Qj)Z ~ Z?:O 2%

fotal — — N2 (2DFI-1) © 204D
22D 1
~ ooy = 10 Jorlarge D

Looking at C(any); shows that the upper layers receive relatively little attention from

the crossover operator, especially as the trees grow large. In the MAX problem as used

here, the tree sizes in question are fairly small (e.g. D=6), even so the upper tree layers

are mostly unaffected by Crossover.

Looking at C(layer); shows how an exchange of subtrees within the upper layers is

much less likely again. This implies that there is little or no spread of subtrees within

the upper layers in later generations.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 92

Looking at C(2 legal offspring) shows that Crossover will frequently produce illegal
offspring once the trees in the population fill out. For each pair of offspring produced
by Crossover in this way, there will always be at least one legal offspring, but there is
a high probability that the other will be illegal. Either this illegal offspring has to be

modified in some way or simply take just one offspring from each crossover operation.

Given two full trees, selecting just one offspring produced by Crossover will mean either
that subtrees were swapped between the same layer in each tree, or that a subtree from
a lower level has been raised to a higher level. It is impossible for a subtree from a
higher level to be brought down to a lower level and still produce a legal tree, since it
would exceed the depth limit. Thus Crossover, producing a single offspring from each
pair of parent trees, operating on a population of full trees, will produce offspring in

the next generation in the following manner:

e mostly through the exchange of low level subtrees
e some through the raising of a low level subtree to a higher level
e very few through the exchange of high level subtrees

e none through the lowering of a high level subtree to a lower level

If subtree discovery takes place in the lower levels, Crossover would be very effective
at spreading these new subtrees through the population. If, on the other hand, im-
provements in subtrees solely or largely take place in the higher levels, Crossover will

be very slow to spread these new subtrees through the population.

4.1.7 Discussion of MAX problem

The analysis in Section 4.1.6 highlights one of the main biases that Crossover brings
to GP, even without considering populations of full trees. Subtree discovery and the
spread of subtrees takes place at lower levels, mostly involving the leaf nodes. The
effectiveness of this is highly dependent on the problem in hand. Immediately beneficial
subtrees are quickly spread within the trees and through the population, at the expense
of other subtrees of less immediate benefit. For MAX-depth-D-{+}{1}, this results in

a speedy discovery of the optimal tree.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 93

The situation mentioned above for Crossover in general is made worse when a tree
depth restriction is incorporated. Whilst the GP population consists of trees which are
shallower than the depth restriction, it is still possible, though unlikely for Crossover
to move subtrees around freely. When the trees have expanded to reach the depth
restriction, the situation changes. The only movement of subtrees possible via Cross-
over is from lower levels to higher levels or within the same level. In the case of the
other MAX problems, such as MAX-depth-D-{+,*}{0.5}, this can result in a purging
of “*’-nodes from the population, perhaps only leaving a few of these function nodes in
the higher levels of some of the trees, where they will remain relatively untouched. The
benefit of these nodes only emerges after the trees reach an appreciable size, by which
time it is unlikely or impossible that they can be spread by Crossover. Once the trees
have reached the depth limit, the only way the higher levels are affected is through
the promotion of lower level subtrees, which contain no ‘*’-nodes, and the movement
of subtrees within the same level. If there are no ‘*’-nodes in any tree at a particular
high level, it is now impossible for Crossover to introduce a ‘*’-node to this level; the
population has effectively converged to being duplicates of a sub-optimal tree, and no
further improvement is possible. Langdon and Poli’s study of the MAX-DEPTH prob-

lem “..

. show([s] that this can happen even when the population retains a high level of
variety and show that in many cases evolution from the sub-optimal solutions to the

solution is possible if enough time is allowed”, [Langdon & Poli 97].

Results from the MAX-nodes-N runs show some characteristics similar to the
MAX-depth-D results. Early loss of ‘*’ nodes from the lower levels hinders the search
for the optimal tree later on. Until the trees reach an appreciable size, the fitter subtrees
are those which contain more ‘+’-nodes. Only after gaining large ‘4’-subtrees does it

become worthwhile to have high level ‘*’-nodes. After gaining high level *’

-nodes, it
then becomes worthwhile to have more but smaller ‘+’-subtrees which would involve
altering all of the large ‘+’-subtrees simultaneously. Making just one ‘4’-subtree a
little smaller would simply lower the fitness of the tree. Thus the trees are trapped in

a sub-optimal form.

A scan of published papers has indicated that this restriction on the number of nodes is

used more often than a maximum tree depth, since it lends itself well to various memory

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 94

and CPU-efficient GP implementations. The trees in a GP population still expand
with the generations, quickly reaching their size limit. At this stage, Crossover affects
mainly the peripheral (i.e. leaf) nodes, and becomes unable to modify upper levels of

the trees effectively, although perhaps not as often as with the depth restriction.

ko

Further runs, tracking the number, distribution, and location of ‘*’ nodes throughout

ko

the population should make the pattern of loss of ‘*’ nodes more explicit.

Modifications to Crossover Several other investigations have focussed in some
way on Crossover in GP. [Rosca 95] looks at causality in GP, relating the changes
in the structure of GP trees caused by Crossover with changes in the properties of
the trees. [D’haeseleer 94] looks at context preserving Crossover in GP, attempting
to ensure that swapped subtrees will still be effective. This moves away from the
more fluid approach proposed by Koza. Instead of allowing any and all combinations
of functions and terminals, D’haeseleer removes the closure constraint, allowing sev-
eral different data-types, only allowing nodes of the same data-type to be brought
together. With less flexibility, GP has fewer opportunities to construct inappropri-
ate trees. [O’Reilly & Oppacher 95a] looks at hybrids of operators such as Crossover
and Hill Climbing, maintaining that these mutation-based operators can match or
outperform basic Crossover. [Lang 95] shows how mutations and simple hill climbing
can perform better than GP with Crossover, calling into question the effectiveness of

Crossover and the population-based approach of GP.

There is no doubt that it should be possible to modify Crossover or its use so that it
is more likely to result in the discovery of optimal (or at least better) solutions in the
MAX problem, even if this is at the expense of speed on those problems where it does
well already. In practice, where the focus of a paper is not on the operators themselves,
‘standard’ Crossover still seems to be used as one of the main GP operators, usually in
combination with other operators such as Mutation. More attention should be paid to
ensure that the other operators are capable of overcoming Crossover’s shortcomings.
Simple mutation operators have been shown here to be insufficient. Using very large
population sizes to boost Mutation’s chance of constructing large useful subtrees only

obscures the problem.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 95

The method of selecting crossover points could be modified to ensure that the tree layers
get a more even spread of crossover activity. [Koza 92] uses Crossover where internal
nodes have a 90% chance of being selected as a crossover point compared with 10% for
leaf nodes. However, the higher tree levels will still experience much lower crossover
activity than the lower levels. It might be better to scale the selection probability
according to depth or the number of nodes in each level, perhaps targeting sections
of tree which have a low node variance across the population, but this requires extra
processing, and the identification of important tree sections would likely be somewhat

problematic.

For the purposes of enabling GP to solve the MAX-depth-D problem more easily,
there is one operator action in particular which will obviously be highly effective. It
could be considered as a form of Mutation, or incorporated into a form of Crossover.
Either way, the operator would select a point near the root of a parent tree, copy the
subtree below this point, and insert it at a point further away from the root, replacing
the subtree there. Excess nodes would be pruned off, so that the resulting child tree
satisfied the size constraints. The consequences of this operator would be to counter
the main weakness of standard Crossover in the MAX problem, i.e. its inability to bring
subtrees down to the lower levels, and would enable the downward spreading of the
“*" nodes. This would certainly result in a very much higher success rate (if not 100%
success) in the MAX-depth-D problems, and would probably help in MAX-node-N.
This operator, whilst undoubtedly effective with the MAX-depth-D problems, is also
likely to be useful for other GP problems where nodes near the root are crucial at lower

levels, as well counteracting Crossover’s main weakness mentioned above.

However, with MAX-node-N, there is another difficulty to overcome, where the sub-
optimal trees have several large {+,n} subtrees, but the optimal trees have one or more
{+,n} subtrees all of which are smaller. To move from such a sub-optimal tree to an
optimal tree, all of the large subtrees have to be modified and a new subtree added, all
in a single operator step, otherwise the resulting child tree, though ‘nearer’ to being an
optimal tree, will have a lower fitness, and is thus unlikely to be chosen as a parent. An
operator which explicitly corrected for this occurrence is unlikely to be useful for other

GP problems, unless they are known to have similarly deceptive sub-optimal trees.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 96

The simplest approach for avoiding the effects of Crossover is not to use it, instead
relying on an assortment of Mutation operators. It would be a worthwhile extension of
the MAX runs so far to see what happens without Crossover. A hypothesis is that the
MAX-depth-D problems would be solved more slowly, but with a much higher success
rate, and that the success rate on the MAX-nodes-N would also increase, though there
might still be the difficulty with discovering the sub-optimal trees with fewer and larger

subtrees than the optimal trees.

For problems where tree size is part of the solution, allowing unlimited tree sizes
is obviously not applicable. For others, where the optimal tree sizes are unknown,
parsimony (penalising large trees) appears to work well, especially when it is used
only to discriminate between trees which would otherwise have the same fitness (this
impression has been gleaned from many experiments and communications with other
GP practitioners). Thus trees can grow as large as is needed to do better on a problem,
and Crossover can operate in an unrestricted fashion, but there is continual selection

pressure for smaller trees which do just as well.

4.1.8 Summary

The MAX problems for GP show how the crossover operator and selection can be
directly responsible for loss of diversity of nodes within the upper tree levels within a
population, leading to premature convergence to a sub-optimal solution or very very
slow improvement in solutions. When used in combination with a restriction on tree
depth, the premature convergence becomes irreversible. Subtree discovery and move-
ment takes place mostly near the leaf nodes, with nodes near the root left mostly
untouched. Diversity drops quickly to zero near the root node in the tree population,
resulting in GP being unable to create ‘fitter’ trees via the crossover operator. The ad-
dition of simple mutation operators is not sufficient to overcome these problems. Care
should be taken to ensure that the spread of subtrees throughout the GP population

is not stifled by Crossover.

When used in combination with a restriction on the number of nodes in a tree,
the population converges on trees with a sub-optimal structure. It is this struc-

ture rather than the loss of **’ nodes which renders GP from getting any closer to

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 97

discovering an optimal tree. The sub-optimal structure involves fewer and larger
{+,n} subtrees, which are rapidly spread through the population, at the expense of
the smaller {+,n} subtrees which are needed for constructing an optimal tree. For
MAX-nodes-N-{*,+}{0.25 or 0.5}, the failure of GP is not necessarily due to Cross-
over and selection. This MAX problem is quite deceptive, with larger {+,n} subtrees

returning larger values.

This should not be taken as an attack on the crossover operator and GP, or a claim that
the MAX problem epitomises all GP problems. Instead it gives a better understanding
of how Crossover works in practice, often in combination with tree size restrictions,

and enables the user to be aware of its potential failings.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 98

4.2 Tournament Selection

This section looks at Tournament Selection, the method used in this thesis for picking
individuals from the GP population to be used as parents in creating the next genera-
tion of individuals. The aim is to find ways of speeding up GP for supervised learning
tasks, perhaps by reducing the population size, memory requirements, or number of
fitness evaluations. A brief survey of a variety of selection methods in Section 4.2.1 is
followed by an explanation of why Tournament Selection was chosen here. Section 4.2.2
looks at some consequences of using Tournament Selection. A much more substantial
but somewhat opaque study of a variety of selection methods, including Tournament
Selection, can be found in [Blickle & Thiele 95]. Blickle and Thiele take an in-depth
look at the behavioural characteristics of the various selection methods, proving nu-
merous theorems along the way. An earlier study of several common selection schemes
can be found in [Goldberg & Deb 91]. The study below is much simpler and more
straightforward.

4.2.1 Various Selection Methods

Reasons for Selection

There are two stages in the GP algorithm where individuals are selected from the

current population: selecting parents, and selecting individuals to be replaced.
Selecting for Replacement
There are two main methods of replacing individuals in GP:

Steady-State, and Generational.

In Steady-State Replacement, once a new child has been created and evaluated, a
decision is made on whether to insert the child into the population, displacing an
existing individual, or to discard the child. Several alternatives have been used in the

literature:

e replace worst - discard the worst existing individual

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 99

e replace at random if child is better - choose an individual at random and discard

it if it is worse than the child, otherwise discard the child
e replace parent if no worse - discard the parent if the child is no worse

e ctc ... There are numerous other variations

In Generational Replacement (the method used in this thesis), on the other hand, the
entire population is replaced by a completely new generation of individuals, avoiding
all the replacement decisions mentioned above, but usually requires the addition of
Elitism. Elitism is simply the explicit copying of the best individual in the current
generation into the next generation, ensuring that the population does not lose its
previous best individual. Steady-State Replacement is implicitly elitist since the best
individual would never be discarded. For GP, [Koza 92] recommends the use of Over-
Selection, a more extreme version of Elitism. This is considered necessary since GP
tends to produce a large proportion of very unfit individuals. The top 50%, say, of
individuals in the current population are explicitly copied into the next generation,
and only they are used as parents to create the rest of the population, discarding the
worst 50% before the breeding stage. This approach is similar to that used in some

Evolution Strategies, [Béck et al. 91].

Selecting Parents

There are numerous approaches documented in the literature for selecting parents
from a population in GA-type algorithms. Typically there is a bias towards selecting
fit individuals more frequently than unfit individuals. Three of the main types are as

follows:

Roulette-Wheel Selection was one of the earliest methods, described in
[Holland 75], where an individual’s chance of being selected is related to its fitness
(a form of Fitness-Proportionate Selection). This method has fallen out of favour
due to the fact that it is easily swayed by ‘super’-fit individuals in a population.
If an individual has a substantially higher fitness than the rest of the population

it will dominate the breeding process. Likewise, if the population has a high

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 100

average fitness, there will be little difference between individuals over likelihood
of selection, so there will be no effective bias in favour of fitter individuals. In
order to avoid these problems, extra processing is needed to re-scale the fitness

values.

Rank-based Selection involves sorting the entire population in terms of fitness. Now
an individual’s chance of being selected is proportional to its rank in the popu-
lation, i.e. a higher ranked individual is more likely to be selected than a low
ranked individual. Rank-based Selection does not suffer from the two inad-
equacies of Roulette-Wheel Selection mentioned above. Both Roulette-Wheel
and Rank-based Selection involve processing or sorting the fitnesses of the entire

population. Each selection can then involve scanning the entire population again.

Tournament Selection is much simpler and less computationally intensive. A fitness
tournament is held to select a parent, where the best individual picked from a
small set chosen at random from the population is taken to be the parent. Varying
the tournament set size varies the selection pressure, i.e. the likelihood that the
best individuals in a population will be selected as parents. No pre-processing
of the population’s fitnesses is needed. Tournament Selection is amenable to
parallel implementations and spatially-biased selection, where parents are chosen
within a certain neighbourhood of a specified location in a spatially distributed

population.

For the Crossover operator, two or more parents are needed to produce offspring.
Usually, both parents are selected as described above. However, sometimes, as in
[Ratford 96], the choice of the second parent is affected by the choice of the first parent.
This could be to ensure that the two parents are substantially different (or similar).

Another alternative is for the second parent to be selected completely at random.

There have been some studies of selection methods, mentioned above, looking partic-
ularly at GAs. It is not certain that these studies can or should be applied to GP,
but the assumption is usually made that they can. In general, it seems the previously
popularised approach of Roulette-Wheel Selection quickly fell from favour, and has

been replaced with a form of Rank-based or Tournament Selection, with low selection

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 101

pressure, i.e. without a strong bias in favour of the fittest individuals.

Tournament Selection in this Thesis

For the purposes of this thesis, Tournament Selection was used, without over-selection.
Early experiments indicated that Tournament Selection was marginally less likely to
result in the GP population converging prematurely to variations of the best but sub-
optimal individuals. These results could have been spurious, but since Tournament
Selection has appeared to perform adequately, and there didn’t seem to be any other
apparent advantages to using over-selection or other selection methods, it seemed easier
to stick with simple Tournament Selection. Varying other parameters and modifica-

tions to GP had a much bigger impact on GP performance.

In Summary, Tournament Selection is a very simple method to implement. It works
quickly, since it does not require an initial scan of all population fitnesses (though one
is needed to find the best individual for elitism), sorting of the population by fitness,
or repeated scans of the entire population for each selection. It is easy to modify the

selection pressure in small steps using the tournament size.

What follows is a brief investigation into Tournament Selection, looking at the effects
of varying the tournament size, and the distribution of parent selections amongst a

population.

4.2.2 Some Effects of Tournament Selection

The following graphs reproduce the effects of Tournament Selection on a generation
of a population. Generational Replacement is used, i.e. an entirely new population is
generated to replace the old one. Although just one population size, 50, is shown here,
the shape of the graphs would be the same for other population sizes, though the scales

on the axes would change.

For simplicity, the sample population used is ranked in order of fitness, starting with
member 0 having the best fitness. Each selection of a parent involves randomly picking
a tournament set of individuals, and then selecting the fittest of these as the parent.

The effect of different tournament sizes is shown in the graphs. A tournament size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 102

of 1 corresponds to a randomly selected parent with no bias towards greater fitness.
As the tournament size increases, through 2, 4, and 6, the bias towards greater fitness

increases.

The number of parents which would be selected to create the next generation is taken
here to be 1.4 x PopulationSize, i.e. 70. This corresponds to the operators and oper-
ator selection probabilities used in most of the runs in this thesis: Crossover with 40%
probability, requiring two parents, and various Mutation operators with a total prob-
ability of 60%, requiring one parent. Thus the number of parents which are selected

on average from each generation to produce one child is 0.4 * 2 + 0.6 = 1.4.

The selection of parents is simulated for one generation. This is repeated 1000 times
and the results averaged to produce these graphs. The graphs show the frequency of
selection, in Graph 4.27, the distribution of repeated selections, in Graph 4.28, the
likelihood of not being selected, in Graph 4.29, and the likelihood of not being checked

(i.e. the individual is never part of a tournament), in Graph 4.30.

Parent Selection Frequency Graph 4.27 shows how, unsurprisingly, the fitter in-
dividuals get selected more often, with the plot for tournament size=1 showing the
distribution of selections if they are completely random and not based on fitness at
all. Only with tournament size=2 are the least fit individuals in with any substantial
chance of being selected when fitness is used as the selection criteria. Increasing the
tournament size increases the bias abruptly in favour of the fittest individuals. With
tournament size=6, the plot indicates that something very similar to 50% over-selection

is occurring, as mentioned in Section 4.2.1.

The fittest individuals are repeatedly selected, as can also be seen in Graph 4.28. This
suggests that there would be much repetition of subtrees within the population. A
method for storing the entire GP population as a single directed acyclic graph (DAG),
instead of as individual trees is discussed in [Handley 94, Keijzer 96, Ehrenburg 96].
As long as the components of the trees have no side-effects, earlier subtree evaluations
can be cached and do not have to be re-evaluated when they appear in other trees.
Handley reports a 15- to 28-fold reduction in node storage requirements, and 11- to

30-fold reduction in the number of nodes evaluated per run, for populations of size

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 103

Showing Frequency of Selection to be a Parent (70 selections, averaged over 1000 runs)

T T T T T T T T T
IS R I I — I I Toumament Size =1 %— _
X : Tournament Size =2 —+--
R Y R e e s R] ~Tournament Size = 4--8- 1

o % ‘ - Tournament Size =6 -x-

Parent Selection Frequency
o - N w ~ (&a] [op] ~ oo

0 5 10 15 20 25 30 35 40 45 50
Sorted Population Size=50, best(0) -> worst(49)

Figure 4.27: Average Parent Selection Frequency

Distribution of Selection Frequencies
S N R S S O S S N R N A
Lo . . ToumamentSize=1 —

Bpoo o TR
.. TounamentSize=4 &
20 F e e TOUTAMENE SIZE = 6.

Number of Individuals

4 5 6 7 8 9 10 11 12 13 14 15 16 17

Selection Frequency

Figure 4.28: Average Distribution of Repeated Selections

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 104

Showing Likelihood of Non-Selection to be a parent (70 selections, averaged over 1000 runs)

1 - T T T T B A S Ma A Tada A Rl al e
Tournambnt S|ze=?1 o : : XXX * o Ba'@ : j
Tournament Size=2 —+-- o no? o x

0.8 Frournament Size-= 4~ — . xx rrrrrrrrrrrrr < L S AR—]

Tournament Size =6 x- X P T

Likelihood of Non-Selection

] ++—+***++ gﬁéﬁ@

‘gva'“ﬂ i]]]]]]

0 5 10 15 20 25 30 35 40 45 50
Sorted Population Size=50, best(0) -> worst(49)

Figure 4.29: Average Likelihood of Non-Selection

Showing Number of Unchecked Individuals for each Tournament Size

Number of unchecked individuals

Tournament Size, Population Size=50, Selections=70, Averaged over 1000 runs

Figure 4.30: Average Number of Unchecked Parents

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 105

500. Speedups of this magnitude would obviously be a huge benefit for supervised
training problems with large training sets, as discussed in Section 5, but it is not clear
if it would work quite as well with the Dynamic Subset Selection method, discussed
in Section 6, where the evaluations of trees would differ for each generation. Keijzer
looks at the impact of DAGs on Automatically Defined Functions (ADFs, discussed in
Section 3.3), suggesting that in certain situations the memory needed for node storage

can be massively reduced.

Whilst not pursued in this thesis, the use of DAGs for efficiently representing a GP

population looks very promising.

Distribution of Repeated Selections Graph 4.28 shows the distribution of selec-
tion frequencies, i.e. the number of individuals selected with each frequency. Looking
at the Selection Frequency 0, it is apparent that a sizeable fraction of the population
remains unselected. For tournament size=6, 30 out of the 50 individuals (i.e. 60%) are
not selected to be parents. Even with the low selection pressure due to tournament
size=2, on average 30% of the population remains unselected in each generation. This
suggests there could be some practical way of evaluating but not retaining a fraction
of the population. Experiments would be needed to ascertain if a current generation’s
fitness profile could be used as a guide to deciding whether or not to retain certain
child individuals created for the next generation. A simple bias against unfit individu-
als would leave a smaller population that could be ‘representative’ in some way of the
larger, full population. For small population sizes such as 50, shown here, the memory
savings would be small, however they could be significant with much larger popula-
tions, since the percentage of unselected individuals would be the same regardless of

population size.

Likelihood of Non-Selection Graph 4.29 shows the likelihood of individuals not
being selected at all in a generation. To all intents and purposes, for larger tournament
sizes, the top 10-20% of the population are always selected, and the bottom 10-20%
are never selected. However, it can be seen in the plot for tournament size=2 that

most individuals in the population have a substantial possibility of being selected.

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 106

Number of Unchecked Individuals Graph 4.30 shows the number of individuals
in a population which take no part in the Tournament Selection process, i.e. they are
never picked to be part of a tournament. As the tournament size increases, although
the number of tournaments remains the same, the number of individuals being picked
to participate in the tournaments increases substantially. Thus the likelihood of an
individual remaining unpicked decreases substantially. This indicates that there isn’t
much scope for efficiency savings in CPU or memory usage by avoiding the production
and evaluation of these ‘wasted’ individuals. Even with large populations, the number

of unpicked individuals would be small.

Looking at the results above, the main area with scope for improvement (in GP
using Tournament Selection) is the use of a representation such as a directed acyclic
graph, where the entire population is stored compactly, and subtree evaluations can
be cached. The Graphs 4.27 and 4.28 indicate that there would be a great deal of
redundancy within the population, with many trees coming from only a few individu-
als. The potential reduction of memory and/or CPU requirements reported for this
representation is impressive, but with the caveats that to save CPU time the evalu-
ations of the nodes must be free of side-effects. However, the performance of GP can
no doubt be optimised in several different ways (perhaps with different operators as in

[Ehrenburg 96]) to run better using such a representation.

Other than the use of DAGs, there seem to be no obvious areas where GP can be
improved substantially to take advantage of (or avoid the consequences of) Tournament

Selection.

4.3 Discussion

There are two main issues raised in this chapter. The first and perhaps main issue,
raised in Section 4.1 as the MAX problem, is that Crossover (and indeed other operat-
ors) can have an adverse interaction with restrictions on tree size, resulting in a loss of
operator efficiency and, in certain cases, the inability of the operators to improve on a
sub-optimal solution. There are no guaranteed fixes for this problem, which is likely to

arise with varying degrees of severity whenever GP individuals start approaching their

CHAPTER 4. GP TREE RECOMBINATION AND SELECTION 107

limits on size. However, being aware of the possibilities, combined with a few simple
precautionary steps, should minimise its impact. The main precaution seems to be
to allow the individuals, if possible, to grow to their preferred size, perhaps applying
a gentle parsimony pressure to bias GP towards selecting smaller individuals. Where
this is not possible, greater care needs to be taken to ensure that the operators can

function well with individuals approaching or at the size limits.

The second issue, raised in Section 4.2, concerns the great potential of storing the entire
GP population as a directed acyclic graph, with its huge savings in memory require-
ments and reduction in subtree evaluation through the caching of earlier evaluations,

and the caveat that the GP nodes must be free of side-effects during evaluation.

Part 111

Genetic Programming
and Supervised Learning

108

Chapter 5

Making use of the Training Set
in GP

It soon becomes obvious that one of the first and biggest hurdles to overcome when
using GP to tackle a large supervised learning classification problem is the sheer num-
ber of fitness evaluations needed by GP. To calculate the fitness of a GP individual, it
is evaluated against each case in the training set; its fitness relates to the total number
of errors made. A large training set means a large number of evaluations. A difficult
problem may require a large population of individuals, which may take many gener-
ations before finding a good solution. Many tens of millions of evaluations might be

needed, taking many days of computer time.

This chapter looks at what can be done with the training set, including methods
from other fields such as Statistics and Machine Learning, with the aim of speeding
up GP, and making it a more practical and reliable tool. There is a great deal of
literature for training artificial Neural Networks and constructing Decision Trees for
classification problems, some of which is described in Section 5.1. Section 5.2 describes
some methods for selecting training and test sets from raw data in a statistically sound
fashion. Section 5.3 describes several methods which have been applied to evolutionary
algorithms, followed by Section 5.4 which describes some methods applied to GP,

including some original work done for this thesis.

109

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 110

5.1 Training Sets in Machine Learning

Without doubt the GP and Evolutionary Algorithm communities in general are re-
discovering a lot of work that the wider Machine Learning community has known

about for years.

Neural Networks One example from the area of Neural Networks is provided by

[Zhang 94]. Zhang looks for:

“... factors which influence the learning speed and generalisation ability of
the networks. One of them is the nature and size of the training set. While
there is no guarantee that the generalisation performance is improved by
increasing the training set size, the training time increases as the number
of examples increases. In general, one should choose those examples which

are most likely to help the network solve the problem.”

Neural Networks obviously share some of GP’s difficulties with supervised learning of
large training sets. Back-propagation, perhaps the most common method for train-
ing Neural Networks often requires that the training data is presented repeatedly (in
epochs) before the network succeeds in solving the problem. Each time a case or batch
of cases is presented to the learning network, the error between the network’s output
and the target output is propagated back through the nodes in the network, so that
each node has an error term. The links between nodes (i.e. weights) are adjusted in

an attempt to reduce the error.

In the paper, Zhang proposes a criterion for selecting critical examples, and presents an
efficient method for selecting examples and scheduling their training order based on this
criterion. Bypassing a great deal of mathematics, the method can be summarised as
follows: choose the cases on which the network makes the largest errors. The network
is then trained on this subset of cases, minimising the errors. And then the process is

repeated.

Zhang reports:

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 111

“Our experimental results show that the selective incremental learning finds
and uses only a critical subset of given examples, which leads to a consid-

erable enhancement in training speed and generalisation performance.”

Cohn et al present a different approach to training Neural Networks on a subset of
the whole training set, [Cohn et al. 94]. They use the idea of “selective sampling”
from “regions of uncertainty” to guide the choice of training examples. For a binary
classification problem, a network is trained on an initial random sample of training
examples. The network’s real-valued output (between 0 and 1) is then thresholded into
one of three zones: “Class 17 (0.9 or greater’), “Class 2” (0.1 or less), and “Uncertain”
(between 0.1 and 0.9). The “Uncertain” points define a “region of uncertainty”. As

yet unclassified points which fall into this region are selected from the training set.

Several limitations of this approach are highlighted: the “region of uncertainty” can
come to encompass the entire training set; it is highly dependent on the initial random
sample of examples; and there are difficulties in scaling up to more complex problem

domains. Nevertheless,

“... selective sampling demonstrates significant improvement over passive,

random sampling techniques on a number of simple problems.”

Decision Trees One example from the area of Decision Trees is provided by
[Quinlan 86]. A decision tree is a hierarchical arrangement of small classification rules,
where each node represents a ‘decision’ about one of the fields in the problem. For
example, If Field 1 is Red then A else if Field 1 is Blue then B else if Field 1 is green
then C, or If Field 2 is TRUFE then D else E. The components A,B,C,D,E can represent
a final classification, e.g. is-a-fish, or could be a further decision subtree. There is a

large degree of overlap between decision trees and GP trees, e.g. [Vere 95].
Quinlan describes an approach for synthesising decision trees called ID3:
“The basic structure of ID3 is iterative. A subset of the training set called

the window is chosen at random and a decision tree formed from it; this

tree correctly classifies all objects in the window. All other objects in the

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 112

training set are then classified using this tree. If the tree gives the correct
answer for all these objects then it is correct for the entire training set and
the process terminates. If not, a selection of the incorrectly classified objects
is added to the window and the process continues. In this way, correct
decision trees have been found after only a few iterations for training sets
of up to thirty thousand objects described in terms of up to 50 attributes.
Empirical evidence suggests that a correct decision tree is usually found
more quickly by this iterative method than by forming a tree directly from

the entire training set.

While decision trees generated by the above systems are fast to execute
and can be very accurate, they leave much to be desired as representations

of knowledge.”

This last point is one which could also be levelled at much of what is produced by GP.
However, Quinlan has demonstrated several methods for simplifying decision trees,

[Quinlan 87].

Salzburg demonstrates the effectiveness of feature selection “for improving the speed
and accuracy of machine learning programs on large data sets”, [Salzburg 93]. “Com-
bined Stepwise Selection” (CSS) is used in combination with four different methods of
classification: back-propagation, nearest neighbour, nested hyperrectangles, and mul-
tivariate (“oblique”) decision trees which use multivariate tests at each non-leaf node

of the decision tree.

Rather than look at all possible combination of features, which would take a prohib-
itively long time, CSS attempts first to reduce the set of features one by one, then
selects subsets of features from the reduced feature set. A classifier is evaluated (i.e.
trained from scratch) on a set of features. The classifier is then evaluated on each pos-
sible subset where one feature has been removed from the initial set. If the classifier
works equally well without the deleted feature, it is assumed to be OK to ignore it.
The feature which causes the smallest decrease in accuracy is removed. This process

is repeated as long as the decrease is below a preset threshold (0.5%).

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 113

Using brute-force search, the best pair of features is chosen from the reduced feature
set, evaluating the classifier on all possible pairs of features to allow for possible and
quite common pairwise interactions between features. Each of the remaining features
(from the reduced feature set) is then tried in turn, in combination with the best pair.
The feature that gives the best improvement in accuracy is added to the pair, and the
process is repeated with the set of three, and so on, trying each remaining feature in

turn, until the improvement is less than the preset threshold.

Salzburg reports that the classifier methods were able to produce more accurate results
with the smaller feature sets. The smaller feature sets allowed the discovery of new
knowledge about the underlying scientific domain. Whilst the CSS method is not
perhaps ideal for GP (the number of runs needed would probably be prohibitive),
it does indicate again that feedback between the learning method and the way the
problem is presented to the learning method can lead to faster and more accurate

results.

Feature set selection is a topic which is not explored further in this thesis.

5.2 Selecting Training and Test Sets

The topic of selecting training and test sets from raw classification data has had a
great deal of effort and statistics thrown at it. The aim is to choose representative sets
which give the particular learning method every opportunity to produce an effective
classifier, based on the training set, and an accurate estimate of how well the classifier
will generalise to unseen data, based on the test set. Simply partitioning the data
randomly into two sets runs the risk of selecting non-representative sets. One method

in particular has been established as a popular and effective selection method.

Cross-Validation involves splitting the data into k£ equal or nearly equal sized sets. One
of the k sets is taken as the test set, and the remaining k-1 sets are combined to form
the training set. This is repeated, taking each of the £ sets in turn as the test set.
The learning algorithm is trained and tested on each of the combinations. Choosing
the value of k£ can be done by guesswork or experiment. If k£ is the number of cases

in the whole set, so that the test set is of size one each time, the method is known as

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 114

Jack-Knifing.

The data in the Thyroid problem described in Section 6.6 was already divided into
training and test sets for earlier Machine Learning studies, and the TicTacToe data,
described in Section 6.8, was used as a single training set, so the topic of training and

test set selection was not explored in this thesis.

5.3 Approaches for Evolutionary Algorithms

The standard use of a training set in an Evolutionary Algorithm (EA) is to evaluate
each individual against each case in the training set in order to establish the individual’s
fitness. This is repeated for each individual in the population and for each generation.
Whilst laudably simple, this approach can obviously lead to a very large number of
evaluations for any but the simplest of problems. It would be an advantage if a much

smaller subset of the training set could be used in place of the whole training set.

A method for selecting a single representative subset to use as a training set is Historical
Subset Selection, described in Section 6.2. It shows that even a very simple selection
method can work well. The smaller training set leads to much a faster turnaround
time for GP. Variations of this simple approach have been mentioned in several papers
and discussions with other machine learning practitioners, and it is an obvious method

to try when faced with large training sets.

A more flexible method is to pick a variety of subsets during the course of a training
run. There are many ways that different subsets could be selected from the training
set. The goal is to pick the right subsets to allow the learning algorithm to proceed as
fast and as accurately as possible. The simplest method for picking a different set for
each generation is randomly. Random Subset Selection, described in Section 6.4, can
perform surprisingly well, though not as well as the more directed methods described
below. As with HSS, this method has been mentioned in discussions with other machine

learning practitioners as an obvious method to try when faced with large training sets.

HSS and RSS have been described here to provide a context for the following method,

Dynamic Subset Selection, which was developed during the course of this thesis to

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 115

allow GP to use and benefit from large training sets.

One criteria that can be used to guide the selection is the performance of the pop-
ulation. If individuals in the population consistently classify a case correctly, then
that case is of limited use in judging the relative performance of the individuals in the
population. On the other hand, a case which is often misclassified does provide more

useful information for the fitness function.

In Chapter 6, Dynamic Subset Selection makes use of the difficulty of each training
case, i.e. how often it is misclassified, and its age, i.e. how many generations since it
was last selected. This has worked well on some large classification problems, using
less computer resources to produce better results than standard GP. Siegel describes

a similar algorithm in [Siegel 94], but does not make use of the age aspect.

A different approach to selecting subsets on which to evaluate the entire population is
described in [Hillis 90]. Hillis uses two spatially distributed populations, where the fit-
ness of an individual in one population is based on how well it confounds an individual
at the same location in the other population. One population, the ‘hosts’, is evolving
minimal sorting networks, whilst the other population, the ‘parasites’, is evolving diffi-
cult subsets of training cases, where the success of a training subset represents a failure
of a sorting network and vice versa. The host/parasite relationship prevents large por-
tions of the population from becoming stuck in local optima. “Successive waves of
epidemic and immunity keep the population in a constant state of flux.” Only signific-
ant training cases show up in the parasite population, so it is sufficient to apply only
a few tests to an individual each generation, substantially reducing computation time
per generation. These two factors mean the system can be run productively for many

more generations.

Rosin and Belew also co-evolve populations, using a globally calculated fitness and
“fitness sharing” which depends on the difficulty of an individual’s successes, i.e.
the more individuals which share a success, the less important or difficult that suc-
cess is, [Rosin & Belew 95]. This links quite closely with the idea of fitness sharing
and ‘niches’ used by Goldberg and Richardson, where functionally similar individu-

als have their fitnesses reduced, favouring individuals which have unique abilities,

CHAPTER 5. MAKING USE OF THE TRAINING SET IN GP 116

[Goldberg & Richardson 87]. Greene and Smith make a much more explicit use of
niches, [Greene & Smith 93]. Individuals are ranked according to their ‘discriminab-
ility’, i.e. the ability to differentiate examples correctly. Moving sequentially through
this ordering, each training example is allocated to the first individual which correctly
differentiates it. When all the examples have been “consumed”, the remaining indi-
viduals are discarded, i.e. all the available niches are full. Reproduction takes place

randomly within the remaining individuals. Good results and potential are reported.

Angeline and Pollack look at competitive environments where the fitness is related only
to the current ability of the population, [Angeline & Pollack 93]. Individuals compete
against one another in fitness tournaments playing TicTacToe, amongst other things,

rather than a pre-defined ‘expert’ player. They report that

“a competitive fitness function requires only a minimal understanding of
the search space for a complex task.

[Ulsing the population as a reservoir for comparison is preferable to
using an exemplar for the task when an objective measure of fitness is

unavailable.”

5.4 Approaches for GP in this thesis

Chapter 6 presents Dynamic Subset Selection (DSS), and the two simpler methods:
Random Subset Selection, and Historical Subset Selection. Chapter 7 presents Limited
Error Fitness (LEF). DSS and LEF are approaches which can reduce the number of
fitness evaluations needed by GP, and can enable GP to find more accurate solutions.
Chapter 8 demonstrates that these two approaches can allow the use of much smaller

population sizes in GP.

Chapter 6

Dynamic Subset Selection

When using GP on a difficult supervised learning problem with a large set of training
cases and a large population size, a very large number of tree evaluations must be
carried out every generation. This chapter describes three approaches, previously
published in [Gathercole & Ross 94a, Gathercole & Ross 94b], to reduce the number
of such evaluations by selecting a small subset of the training data set on which to

actually carry out the GP algorithm.

Dynamic Subset Selection (DSS) -
using the performance of the current GP population to select a new subset of

‘difficult’ and/or under-selected cases every generation

Historical Subset Selection (HSS) -

using the performance of previous GP runs to construct a single subset

Random Subset Selection (RSS) -

selecting a new subset at random every generation

GP, GP+DSS, GP+HSS, and GP+RSS, are compared on a large classification problem,
the Thyroid Problem. GP+DSS can produce better results in less than 20% of the time
taken by GP, and produces better results than an attempt using a variety of Neural
Networks. GP+HSS can nearly match the results of GP, and, perhaps surprisingly,
GP-+RSS can occasionally approach the results of GP. GP and GP+DSS are then

compared on a smaller problem, the TicTacToe Problem.

117

CHAPTER 6. DYNAMIC SUBSET SELECTION 118

6.1 Subset Selection Methods

At present, the potential of Genetic Programming (GP) and Genetic Algorithms (GA)
has been demonstrated in many different problem areas. Generally, these experiments
have involved solving small, relatively neat problems. The future beckons, however,

with large and horribly messy problems, to which the GP method will have to be scaled

up.

With supervised learning, a training set of cases is involved and the aim is to learn
how to classify these known example cases and hopefully generalise to be able to
correctly classify all possible cases. Large problems will require large training sets.
In the standard GP algorithm, the entire population of GP trees is evaluated against
the entire training data set, and so the number of tree evaluations carried out per
generation is directly proportional to both the population size and the size of the
training set. This chapter looks at ways of reducing the effective training set size, and

shows that this can also allow a reduction in population size.

The simple method of Dynamic Subset Selection (DSS) is described in Section 6.3.
DSS reduces the number of such evaluations that need to be carried out before a
satisfactory answer evolves and, in fact, can produce a more general answer. Two other
selection methods are described for purposes of comparison: the (even) simpler method
of Random Subset Selection (RSS), in section 6.4, and Historical Subset Selection
(HSS), in Section 6.2, which uses previous GP runs to select a single training subset.
A classification problem involving the Thyroid data set, described in Section 6.6 is
used as a token ‘large and messy’ problem. A smaller problem involving TicTacToe

endgame positions is described in Section 6.8.

Following on from the results obtained by DSS, a Dynamic Fitness Function (DFF),

based on DSS, is proposed for further study.

6.2 Historical Subset Selection (HSS) - the algorithm

For HSS, previous straightforward GP runs are used to establish some measure of how

difficult each training case is. Over the course of several runs (say, five or so), the

CHAPTER 6. DYNAMIC SUBSET SELECTION 119

cases misclassified by the best population member in each generation in each run are
recorded. These cases then make up the subset used in further GP+HSS runs, and the
subset remains static after its initial selection. Due to the rough-and-ready method by
which it is selected, the subset contains a mixture of many difficult cases and many
which are actually quite easy to classify. Even a best-of-generation population member

makes some simple misclassifications early on in its development.

Distribution of Classes in Thyroid Data

Set Class 1 Class 2 Class 3 Total
(% of set) | (% of set) | (% of set)

Training | 93 (02%) | 191 (05%) | 3488 (92%) | 3772

Test 73 (02%) | 177 (05%) | 3178 (93%) | 3428

HSS 65 (12%) | 190 (35%) 290 (53%) 545

Table 6.1: Distribution of Classes in Thyroid Data

Some simple checks showed different runs producing very similar subsets selected by
this method. The statistics almost always agreed on which cases were most often
misclassified, and only disagreed on some of the easier cases. The subset size used
in the runs was 545, consisting of every single case misclassified during seven previous
runs of a standard GP. A core of around 300 cases were misclassified more than once or
twice, and so were considered to be at least moderately difficult cases. The distribution
of classes within the set can be seen in Table 6.1. Nearly all of the cases from the two
smallest classes are included in the subset, making up nearly 50% of the subset, as

opposed to just 7% of the whole training set.

6.3 Dynamic Subset Selection (DSS) - the algorithm

Working with the assumption that supervised learning with GP can proceed effectively
even whilst only using a subset of the full training set, this simple idea of DSS is based

upon a few premises and a small amount of hindsight. Firstly, it is of benefit to

CHAPTER 6. DYNAMIC SUBSET SELECTION 120

focus the GP’s attention onto the difficult cases, i.e. the ones which are frequently
misclassified. Secondly, it is also of benefit to check cases which have not been looked
at for several generations. This leads to the final point that all of the cases in the

training set should be looked at, eventually.

The algorithm for DSS involves randomly selecting a target number of cases from the
whole training set every generation, with a bias so that a case is more likely to be
selected if it is ‘difficult’ or has not been selected for several generations. In each
generation, using a very simple procedure, the subset is selected by the following two

passes through the full training set.

e In one pass of the entire training set, of size T, in a generation, g, each training
case, i, is assigned a weight, W, which is the sum of its current ‘difficulty’, D,
exponentiated to a certain power, d, and the number of generations since it was

last selected (or age), A, also exponentiated to a certain power, a:

Vi:1<i<T, Wig)=Dig)"+ Ai(g)"

(A;(0) is set to one so that each case has a non-zero weight.)

The sum of all the cases’ weights is also calculated during this first pass.

e Then, in a second pass of the entire training set, each case in turn is given a
likelihood (not strictly a probability, more an expected number of such cases), P,
of being selected to be in the subset. A case’s selection likelihood is given by its
weight divided by the sum of all the cases’ weights and multiplied by the target

subset size, S:

Vi:1<i<T, Pg)=

A random number is generated between 0 and 1. If the case’s chance P is greater
then the random number, it is selected. If a case, i, is selected to be in the subset,

then its difficulty, D; is set to 0, and age, A; is set to 1 (so that the weights are

CHAPTER 6. DYNAMIC SUBSET SELECTION 121

always greater than zero), otherwise its difficulty remains unchanged, and its age,
A; is incremented. While testing each member of the GP population against each
case in the current subset of training cases, the difficulty, D;, (starting from 0)

is incremented each time the case is misclassified by one of the GP trees.

Using this process, if a weight is sufficiently large it will be scaled by S to be

greater than 1 and so that case will definitely be selected to be in the subset.

The subset size will fluctuate around the target size S each time a new subset is selected.
Given that some cases will be selected with a probability of 1 (due to the rough and
ready selection process), the average subset size will in fact be slightly larger than the
target size. Other selection methods could easily produce subset sizes of exactly S, e.g.
roulette wheel selection as used in Chapter 8, but it was felt that a varying subset size
might contribute more to the efficacy of the GP algorithm, and certainly did not seem
to hinder it. The current generation of the GP’s population is then evaluated against

this subset of cases instead of the entire training set.

The equation for calculating the weights of each case in the training set,
Wi(g9) = D;i(9) + A;(9)%, is kept as simple as possible. The aim is to find a balance
between age and difficulty. The age exponent means that eventually even the easiest
case is certain to be reselected as the age contribution to the weight rapidly increases
with each passing generation. The exponents allow the relative contribution of age and
difficulty to be easily adjusted for different population sizes and training set sizes. As
it happens, the fact that exponents are combined in this way means that the equation
is quite robust when used, unchanged, with a variety of population and training set
sizes. Other, more complicated, combinations of age and weight are possible, but do

not appear to be necessary for DSS to function well.

The difficulty ratings of cases depend on the size of the population. Larger populations
lead to larger difficulty ratings. This could result in difficult cases being reselected
more frequently in runs with larger populations than those with smaller populations.
However, since the age weight uses an exponent, it soon (after a few generations more
for larger populations) increases sufficiently to achieve a balance with the difficulty

weights.

CHAPTER 6. DYNAMIC SUBSET SELECTION 122

To use this form of DSS, the following three parameters have to be set:

Target Number of cases - subset size
Difficulty exponent - importance given to difficult cases

Age exponent - importance given to unselected cases

Currently (and, it seems, as always), choosing useful combinations of parameter set-
tings is somewhat of a black art. For the purposes of the Thyroid data set, a target
size of 400 (out of 3772) was quickly chosen as an effective value after some experi-
mentation, though other values from 200 upwards also worked well. This corresponds
to slightly more than the number of moderately difficult cases selected by the HSS
method, leaving room for a few easy cases to be included. With the target size set at
400, it was easier to select sensible values for the two exponents. An average difficulty
rating for a case, with a population size of 10000, might be around 2000 or so. The
most difficult cases could have a rating of up to 10000. With a target size of 400,
it would take at least 10 generations to cover all the 3772 training cases. Given this
disparity between a very ‘difficult’ case and an ‘old’ case, an arbitrary decision was
made to keep the difficulty exponent to 1.0 and to set the age exponent to 3.5. With
these exponents, the most difficult cases and cases around 15 generations old would

have roughly equivalent weights.

Siegel describes an algorithm similar to DSS in [Siegel 94], but does not make use of

the age aspect, instead using only a bias towards difficulty.

6.4 Random Subset Selection (RSS) - the algorithm

In RSS, for each generation, each case in turn is selected to be in the current subset
of training cases with an equal likelihood, which is scaled to ensure that the subset
selected, on average, is of the target size. As with the DSS method, the subset size

fluctuates around the target size with each generation.

CHAPTER 6. DYNAMIC SUBSET SELECTION 123

Without any weights biased by difficulty or age, RSS provides an opportunity to distin-
guish between the effects of using subsets, and the bias introduced by the performance

of each generation of the evolving population which affects the subset selection in DSS.

6.5 GP Detalils

Generational replacement with elitism was used along with tournament selection with a
tournament size of 6, and large population sizes of 5000 and 10000. A small parsimony
factor was used, in combination with a form of restriction on tree depth to no deeper

than 17. The operators were

e 40% Crossover
e 10% Duplicate Parent

e 50% Mutate Subtree

In hindsight, the restriction on tree depth was probably not ideal; a restriction on the
number of tree nodes would be preferable. Also, the Mutation operator was quite a

blunt operator; perhaps an extra Mutate Node operator might have been useful.

6.6 The ‘Large and Messy’ Thyroid Problem

The Thyroid data set [Werner 92] represents a hard classification problem; one
of several stored at [UCI 97]. The results reported for Neural Networks
[Schiffmann et al. 92a, Schiffmann et al. 92b] provide an useful comparison with the
performance of GP, however, the main aim for this investigation was to improve the

performance of GP on a hard problem.

The data is based upon measurements of in-patients at a clinic. Each measurement
vector consists of 15 binary values (0.0 or 1.0) and 6 floating point values (i.e. 21 fields
in all), and falls into one of three classes. Class 3 signifies a ‘normal’ thyroid gland and
is by far the most common class in both training and test data sets, whilst classes 1 and

2 signify that the patient later experienced a thyroid gland problem. To be useful in

CHAPTER 6. DYNAMIC SUBSET SELECTION 124

practise in identifying potential thyroid problems, a classification scheme would have to
correctly classify significantly more than 92% of all cases, since over 92% of all patients

have a normal (class 3) thyroid gland, as can be seen in Table 6.1.

There are 3772 cases in the training set and 3428 cases in the test set. Examination
of the data in graphical form, e.g. using XGobi [Swayne et al. 91], reveals that the
boundaries between the classes of points are very murky indeed. Points from different

classes seem to mingle freely with each other, as can be seen in Figure 2.1 in Section 2.2.

In all runs, only the training set is used by the GP to try to evolve its population to
classify the thyroid cases into their correct classes. The test set is only used as a check
on each generation’s best (or fittest) classifier (with respect to the training set), to see
how well it generalises to another set of the same kind of data. A run’s best classifier
is taken to be the one which performs best when evaluated on the training set. This is
not necessarily the one which performs best on the test set. The setup which generates
the fittest classifier with respect to the training set which then performs best on the

test set in this way is taken to be the most successful one.

The function set, chosen after a great deal of guesswork is:

{ IFLTE, +, -, *, %, TANH, LOG, MINIMUM_OF_3, NEGATE, SQRT }

and terminal set used in this problem is:

{ By to Bys, Fi to Fg, 0, -1, Random_Constant }

where ‘B’ and ‘F’ refer to the binary and floating point fields of the Thyroid cases.
‘0’ and ‘-1’ refer to constants added to the terminal set as a possible aid to GP in
constructing useful subtrees. There was some experimentation with and without these
extra constants, and with and without Koza’s recommended ‘ephemeral random con-
stant’ (each time a new node of this type is created, i.e. by Mutation, it is given a
random value which it holds for the lifetime of the node). There was no apparent
benefit in using the random constant in the Thyroid problem, making the resulting

trees messy and hard to decipher. It was also not clear if the constant nodes ‘0’ and

CHAPTER 6. DYNAMIC SUBSET SELECTION 125

‘-1’ had any beneficial effect either. Much more experimentation is needed to establish

‘ideal’ terminal and function sets.

Modification to Thyroid Problem

To make things easier for the GP (after a few initial, unsuccessful runs), the Thyroid
problem was reformulated to classifying cases as class 3 or not class 3. This reformu-

lation allowed the GP tree’s outputs to be treated as boolean:

e output > 0 = class 3

e output < 0 = not class 3

It proved relatively straight forward, in a separate run, for DSS to produce a tree
expression which could distinguish between classes 1 and 2 with 100% accuracy on
both the training and test sets. This subproblem can be seen to be quite simple in
Figure 2.2 in Section 2.4. In fact, it is linearly separable. The simple tree shown
in Figure 6.1 is sufficient to distinguish between class 1 and class 2 cases with 100%
accuracy, and was discovered by GP very easily. If this approach were to be used in
practise, two GP expression trees would have to be used in two phases: First (and
most difficult) distinguish between class 3 cases and the others, then, if it is not a class

3 case, distinguish between class 1 and class 2 cases.

-0.069964

Figure 6.1: Simple GP tree which distinguishes between class 1 and class 2 cases with
100% accuracy.

CHAPTER 6. DYNAMIC SUBSET SELECTION 126

Experiments were carried out with three methods of Subset Selection and compared
against the baseline performance of the standard GP which uses the entire training set

in each generation.

6.7 Thyroid Results

This is by far the larger of the two problems attempted in this chapter. Results are
given in Table 6.2 for a typical DSS run with a population size of 10000, and for typical
GP, DSS, HSS, and RSS runs with a population size of 5000, and for the best Neural
Network results reported in [Schiffmann et al. 92a]. It was not possible to complete a

run of GP with a population size of 10000 in a reasonable time!

Figure 6.3 shows the DSS run easily outperforming RSS, though RSS is still showing
signs of improvement after 120 generations. This indicates that subset selection can
produce useful results even without any bias used in selecting cases, though the bias
used in DSS can be seen to greatly improve subset selection. Figure 6.4 shows the
standard GP run outperforming HSS, though only due to a surge around generation
48. These two methods often produce similar scores, but HSS achieves them with
many fewer tree evaluations. For this problem, it is thus possible to extract a useful
subset of cases using a very simple selection process which allows GP to perform nearly
as well (with many fewer evaluations) as with the whole set. Figure 6.5 shows DSS
matching GP results using many more generations, but only 20% of the number of tree

evaluations.

The best tree produced by the DSS run (with population size = 10000) to distinguish
between class 3 and not class 3, was found on Generation 69, giving only 25 errors on
the test set, underlined in Table 6.2, and is shown in Figure 6.2. It used only 13 out

of the 21 variables available in classifying the Thyroid cases.

The dynamics of the DSS components can be seen in Figure 6.7, taken from a run with
a population size of 5000. The curve for ‘average_powered_time_since_used’ shows the
average weight corresponding to the age (i.e. how many generations since last being
selected) of each case in the training set. Rising sharply early on, as only a few are

selected and the rest remain unselected, the curve peaks and drops after generation 10,

127

CHAPTER 6. DYNAMIC SUBSET SELECTION

re] e 3]
2 era] [ostoosc-| [rg] () EnvD) 5]
3] @09) ba] GriD @ [[mg @) 3] [
g () 53] 2] ©) (s) (s09) (009 0D] Bl Eewd (o)
ENZNGE @9) @nvD] [[l foa] @0 md G e Eewdee) ()

Gl B [6 B S) @ G owEHEEE 6 2 BaoE
o)

(- @os (-) @07 [[e2] [re] GoVfea] o] [rre] [o] (- fea] [eg] e [o0] (Qads) @09)
€D €D €T, O Jrdl @um
@ QLvoan) G B

W @) @) ws) () Go) (o)
©0Y) g o) €D
eal euw) e [erg)
€T ©D)
@w ()
O,

Figure 6.2: GP+DSS tree which distinguishes between class 3 cases and all others with

high accuracy.

CHAPTER 6. DYNAMIC SUBSET SELECTION

Performance of GP with RSS or DSS on the Thyroid Test Set

128

200
©
N
<
™M
H
5 150
s}
3
)
0]
a 100
19)
9
I
3]
s
O] 50
0
s
)]
0]
Pt

0 I I I I I
0 20 40 60 80 100
Generations

120

Figure 6.3: The number of errors made on the Thyroid test set by the best-of-generation
trees produced during a run of the DSS and RSS Methods for each generation.

Performance

of GP with and without HSS on the Thyroid Test Set

200 T T T T
© Standard GP; ——
o : HSS: ---—
<
(8}
W 1so Bl kb i
5 150
s}
3
)
@ 100 T i
a 100
o)
9
I
[£a) /A\
N\
is)} /A —_ —
15} 50 P P B N N e -
0 H . A N -
o !
)] :
w H
Pt |
0 I I I I I I
0 10 20 30 40 50 60
Generations

Figure 6.4: The number of errors made on the Thyroid test set by the best-of-generation

trees produced during a run of the Standard GP and HSS Methods for each

generation.

CHAPTER 6. DYNAMIC SUBSET SELECTION 129
Performance of GP with and without DSS on the Thyroid Training Set
plotted against the number of generations
3 250 T T T T T
= Standard GP —<—
™ . DSS -+-
b 200 —
s
3
°
BT S T e -
[]
o)
o
<
[
M 100 [.
s}
[0]
9]
2 50 S R -
= \ x Lo Vs
_§ 4&‘**#,*\#\4,3&*#*#%# \¥ -
= 0 L
100 120
Generations
Performance of GP with and without DSS on the Thyroid Training Set
plotted against the number of tree evaluations
- 200 T T T T T T T
= ks Standard GP —<—
H
o
150 -
s
3
°
]
o)
o 100 i
[
[£a)
s}
[0]
9]
o 50 -
=]
= ‘ ‘ ‘ ‘
- : : : :
o ‘ ‘ ‘ ‘ ‘
& 0 i i i i i i
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09

Tree Evaluations

Figure 6.5: The number of training set errors made on the Thyroid training set by the

best-of-generation trees produced during a run of GP with and without DSS
plotted against the number of generations and tree evaluations.

methods,

CHAPTER 6. DYNAMIC SUBSET SELECTION 130

Performance of GP with and without DSS on the Thyroid Test Set

200 T T
© Standard GP ——
S DSS —+-
™M
1B 0 e _
5 150
s}
5
)
0 100 e _
a 100
0
1
g
M
s
(0] 50 —————————————————————————————— —
w
s
n H
o ;
2 ‘
0 i i i i i i
le+09 1.2e+09 1.4e+09

0 2e+08 4e+08 6e+08 8e+08
Tree Evaluations

Figure 6.6: The number of errors made on the Thyroid test set by the best-of-generation
trees produced during a run of the Standard GP and DSS methods against the number

of tree evaluations carried out.

Plots showing how the DSS weights vary with each generation

1800 — .
VY :
+ 4 : : average dlfflculty ——
1600 '"""""7"W"""T""""""""""""T"""""""'average powered timée since used -+
4 \ : : number selected -&-
1400 g L i average_powered'difflculty """]
1 \ :
I \ : :
1200 [l =
1 \ : : :
1000 1 i : :
+ et 3
BOO [Mo By *
600
400 L F
200
0 Hek i i i i i
6] 20 40 60 80 100

Generations

Figure 6.7: Dynamics of DSS: showing the varying difficulty and age weights

CHAPTER 6. DYNAMIC SUBSET SELECTION 131

‘ Thyroid Training and Test Results ‘

Pop. | Subset | Gener- | Avg. Evals | Total % correct
Algorithm Size Size | ations per Gen. Evals | Training ‘ Test
GP 10000 3772 n/a 3.8e+07 n/a n/a| n/a
GP+DSS 10000 400 69 4.0e+06 | 2.7e408 99.84 | 99.27
GP 5000 3772 60 1.9e+07 | 11.3e+08 99.70 | 99.00

GP+DSS 5000 400 117 2.0e+06 | 2.3e+08 99.70 | 99.00
GP+RSS 5000 400 124 2.0e+06 | 2.5e+08 99.10 | 98.40
GP-+HSS 5000 045 o7 2.0e+06 | 1.6e+08 99.50 | 98.70

| NN - [Schiffmann et al. 92a] - Cascade Correlation | 100.00 | 98.48 |

Table 6.2: Best results by GP on Thyroid Problem, with best NN results for comparison

as the selection process ensures that all of the cases get selected at least once. The
‘average_powered_difficulty’ curve shows the average difficulty rating for the cases rising
as more and more cases are selected and given a non-zero difficulty rating. This curve
can then be seen to drop very slowly over the later generations as the populations
evolves to correctly classify more of them. The early dip in the ‘number_selected’
curve is due to a mistake made when initialising the parameters in early runs which
affected the subset selection process in the first few generations. Generally, the number
of cases selected can be seen to oscillate close to the subset size of 400. The average
age weight can be seen to dominate the average difficulty weight. Cases with above

average weights, however, are much more likely to be selected.

GP+DSS seems to perform well with a variety of different DSS parameter settings.
The DSS algorithm seems quite robust given that, eventually, all cases will have been
selected to participate in several different subsets. If the age weight is too large it
can swamp the difficulty weight, and this is perhaps the most likely problem to be
experienced with different parameter settings. If the difficulty weight is too large, it
will eventually be matched by the age weight, due to the case ages being exponentiated,
and the selection process will reach a balance. A variety of different subset sizes all

seem to work well.

CHAPTER 6. DYNAMIC SUBSET SELECTION 132

6.8 A Smaller Problem: TicTacToe Endgames

The TicTacToe problem is smaller and neater than the Thyroid problem. Nevertheless,

it is used here to show that DSS can transfer well to other problems.

The data, taken from [Aha 93], consists of the complete set of possible, legal 3x3 board
configurations at the end of TicTacToe games (also known as ‘Noughts and Crosses’),
where player ‘x’ is assumed to have played first. The target concept is ‘win for player
x’ (i.e. , true when ‘x’ has one of the 8 possible ways to create a ‘three-in-a-row’).
There are 958 different board positions (taking into account the board’s rotational
symmetries), each of which is represented by 9 fields, each of which can take one of

three values {1, -1, 0} corresponding to {player ‘x’, player ‘0’, blank}. Approximately

65% of the positions are a win for ‘x’.

The task for GP is to construct a tree which can correctly classify all possible board
positions as to whether or not they are a win for ‘x’, using the entire set as a training
set. This is a variation on the standard method of splitting the cases into training and
test sets, but the problem is sufficiently difficult that it still allows a clear comparison
between different GP runs, and there was no wish to study the generalisation perform-
ance of GP here. The problem has a ‘neat’ solution, easily constructed by hand, but

the resulting tree is fairly large and contains a lot of detail.

The allowed function and terminal sets used in this problem are:

{ AND (both args > 0), OR (either arg > 0), IFGTZ (IF arg is Greater Than Zero)}

{ cornerNW, edgeN, cornerNE, edgeW, centre, edgeE, cornerSW, edgeS, cornerSE }

It can be seen that the function set is not sufficiently powerful to make use of all the
possible values of the terminal nodes. The function set cannot distinguish between the
two of the possible position values: player ‘0’ and blank. In effect, the board data has
been reduced to indicating whether of not each board position is held by player ‘x’.
However, even with this reduced level of detail, the problem is still solvable. Other
runs tackling the TicTacToe problem are shown in Section 8, looking at the effect of

using a much smaller population size, and these runs do have a more extensive function

CHAPTER 6. DYNAMIC SUBSET SELECTION 133

set which can make use of all of the detail available in the board data.

6.9 TicTacToe Results

The following results in Table 6.3 are taken from representative runs. The GP popu-
lation sizes used here are 1000 and 2000, and the DSS subset size is 200 (out of 958
training cases). The ‘difficulty’ and ‘age’ weights are the same as those used in the
Thyroid problem. Initial runs indicated that these values produced good results, as

did a variety of other values.

It was not possible to get a standard GP run to produce a tree which could classify
all of the training cases since the runs were very slow, and always converged to a
sub-optimal solution within approximately 100 generations. The GP+DSS runs, with
a variety of subset sizes, always achieved close to 100% (approx 95%) if allowed to

run for enough generations, and always showed signs of improvement even after many

generations.
‘ TicTacToe Training Results ‘

Pop. | Subset | Gener- | Avg. Evals | Total Training set
Algorithm | Size Size | ations per Gen. Evals | % correct
GP+DSS 1000 200 196 2.0e+05 | 3.9e+07 100.00
GP+DSS 2000 200 131 4.0e+05 | 5.2e4+07 100.00
GP 1000 958 114 9.6e4+05 | 1.1e4+08 90.60
GP 2000 958 94 1.9e+06 | 1.8e+08 96.20

Table 6.3: Best results by GP on TicTacToe problem

6.10 A quick summary of results from other runs

Different DSS subset sizes were tried on the different problems. As the subset size is
reduced, the performance of the GP drops, gradually at first but then rapidly, and
seems to mimic that of a much smaller population size. As the subset size is increased
towards that of the full training set, the time taken to produce reasonable solutions
increases, but, the performance with DSS is still at least as good as that of GP on its

OWIl.

CHAPTER 6. DYNAMIC SUBSET SELECTION 134

Adding in a parsimony factor (i.e. penalising large, ‘bushy’, trees) speeds up the running
of the GP program, since it then uses much less run-time memory to store the whole
population of (smaller) trees, and the trees are quicker to evaluate. The standard GP
did not seem to perform as well with this restriction as it did without. However, DSS
seemed, if anything, to perform better than before. In the TicTacToe problem it was
possible to observe the parsimony leading to smaller optimal trees, after the run had

discovered its first optimal tree.

Proposed Dynamic Fitness Function (DFF), based on DSS

A fitness function, based on the statistics accumulated during a DSS run was tried.
Here, instead of the fitness of a GP tree being the number of training cases it mis-
classifies, the fitness is instead taken to be the sum of the ‘difficulty’ ratings of each
of the training cases it misclassifies. Again, the difficulty rating of a case refers to the
number of GP trees which misclassified the case in the last generation. This fitness
function seems to have a somewhat similar effect to DSS in that the GP runs seem to
converge more reliably to good solutions, and occasionally produce better solutions. It
will need many more runs to try and quantify this, but early indications are that this
fitness function works well with both GP on its own and GP+DSS, helping to improve
both types of run.

6.11 Smaller Populations over More Generations

An interesting result of using DSS (and DFF) on small populations was noticed over
many generations. Large populations (using generational replacement) tend to con-
verge to some best fitness value, and thereafter show no signs of improvement, no
matter how many more generations are carried out. On the other hand, smaller popu-
lations show a slowly improving best fitness value, even after several thousand genera-
tions. The same is not true for smaller populations without DSS. They settle down to

a given (often quite bad) best fitness value very quickly.

Table 6.4 contains some indicative runs with different sized small populations. Al-

though they do not achieve as good a peak performance as the large populations, they

CHAPTER 6. DYNAMIC SUBSET SELECTION 135

‘ Further Thyroid Training and Test Results

Pop. | Subset | Gener- | Avg. Evals | Total % correct
Algorithm Size Size | ations per Gen. Evals | Training ‘ Test
GP+DSS 10000 400 69 4.0e+06 | 2.7e+08 99.84 | 99.27
GP+DSS 5000 400 117 4.0e+06 | 2.3e+08 99.70 | 99.00
GP+DSS 200 400 1711 8.0e+04 | 1.4e+08 99.34 | 98.22

GP+DSS+DFF 100 400 1806 4.0e4+04 | 7.3e4+07 99.42 | 98.80
GP+DSS+DFF 100 300 2531 3.3e+04 | 7.6e+07 99.52 | 98.98
GP+DSS+DFF 50 400 3870 2.3e404 | 7.7e407 99.47 | 98.86

Table 6.4: Further Thyroid Training and Test Results

get reasonably close, still using fewer tree evaluations, and using much less computer
memory. Using less memory has a knock-on effect with the efficiency of CPU-usage,
and in fact increases the speed of tree evaluation. These runs were still (very) slowly

improving, but were interrupted when user patience ran out, or a re-boot was sched-

uled.

The use of small populations is explored further in Chapter 8.

6.12 DSS Discussion

GP, DSS, HSS, RSS, and NNs The GP + DSS method produces results as good
as those of the standard GP and in a much shorter time, on the Thyroid Problem at
least. DSS can actually produce better answers, as can be seen with the TicTacToe
problem, and the population appears to produce a larger variety of solutions in later
generations than with standard GP or HSS. The random nature of DSS appears to

assist the basic GP algorithm.

HSS out-performed the standard GP in terms of processing time, and nearly matched
it in terms of quality of results. HSS was the main contender for improvement-of-
the-week until DSS was implemented. One big benefit of HSS is the ease with which
previous standard GP runs can be cannibalised for information to use in selecting a

subset of difficult cases.

RSS performs surprisingly well, and can match the performance of standard GP in

certain situations, in a much shorter time. This perhaps indicates one of the benefits

CHAPTER 6. DYNAMIC SUBSET SELECTION 136

of DSS that, in effect, the fitness function is continually being changed, never allowing

the GP to settle into a rut.

When compared with the Neural Network results in [Schiffmann et al. 92a], the best of
which is shown in Table 6.2 above, GP+DSS produced a tree which generalised better
from the training set. To be fair, in splitting up the problem into two phases (class 3
or not, then class 1 or 2), the GP has been presented with an easier problem than was
presented to the Neural Networks. This could be taken in different ways: splitting up

the problem is mildly cheating, or demonstrating the flexibility of the GP approach.

Thyroid Problem For the Thyroid problem, the distribution of errors made by the
best tree was split more or less evenly between problem cases (classes 1 and 2) and
no-problem cases (class 3). This could be altered by biasing the GP algorithm to erring
on the side of problem cases, i.e. more False-Positive errors and fewer False-Negative

errors, which would be more useful in a medical environment.

Looking at the trees produced, it was interesting how the best tree used only 13 out
of the 21 variables available to classify most of the cases correctly. This could perhaps
lead to some useful savings in data collection costs, or it could help focus attention on
some key measurements. It might be possible to make some further measurements and
split each key measurement into several different, finer measurements. One advantage
of GP over NNs is that it is very difficult to obtain such insights from the node weights
in a trained NN.

DSS DSS does not seem too sensitive to the choice of subset size, and ‘difficulty’ and
‘age’ weights. The ones chosen for the Thyroid Problem carried over successfully to
the TicTacToe problem. It is possible to pick bad values, but it seemed just as easy to
pick useful ones. A reasonable guess so far (albeit one which needs to be checked on
many more and different problems) seems to be a subset size around a fifth to a tenth
of the full training set size, with the weights chosen to allow a difficult case and a case

five to fifteen generations old to have a roughly equivalent weighting.

There are obviously many factors affecting the optimum choice of these parameters. It

appears that a large training set, containing some degree of redundancy, with a core

CHAPTER 6. DYNAMIC SUBSET SELECTION 137

of difficult cases would benefit the most from DSS. However GP, in particular in the
TicTacToe problem, seems to suffer from an inability to reach an optimal solution. This
could be due to many things, but, applying DSS enables GP to correctly classify all of
the training set. Difficult cases are persistently dragged into the subset until the GP
population evolves to be able to deal with them. Standard GP does not differentiate
between easy and hard cases, and this lack of pressure becomes noticeable near the
end of a run when the population fails to find the optimal solution. DSS appears
to epitomise this idea of a dynamic fitness function increasing the pressure to solve

difficult cases.

At this early stage of investigation, there are strong hints that the method is more
widely applicable to general problem solving with GP and GA involving large training
sets (for time saving), and to difficult problems (for better and more general answers).
What is more, DSS is easily added to the basic GP algorithm. The performance of
DSS on the smaller, less messy, TicTacToe problem bodes well for DSS to be applied
to many other supervised training problems. Possibly one of the more useful aspects
of DSS so far has been its ability to produce results quickly which, for GP, means that

different function sets and parameter settings can be experimented with.

DFF DFF is a logical progression from DSS itself, and in many ways has an equival-
ent effect on the fitness function in supervised learning with a training set. DFF and
DSS provide a simple feedback mechanism for focusing a GP population onto its own

deficiencies.

Smaller Populations It is interesting that the DSS method which allows GP to be
used on large problems in a practical time, also allows GP to be scaled down for use
on smaller machines where CPU memory and its usage is more constraining than CPU

speed.

Further Research There are myriad lines of investigation to follow up. For instance,
how widely applicable is DSS to other problems? How does DSS’s randomness influence

the behaviour of GP? Would DSS work as well if it was only based on an individual

CHAPTER 6. DYNAMIC SUBSET SELECTION 138

tree’s measure of difficulty, e.g. the performance of the best-of-generation tree, or does
it need the combined measures from the whole population? Could DSS be applied to
other supervised training algorithms, e.g. Neural Networks, where the training cases are
continually re-assessed until correctly classified? Could DSS be applied to constraint

solving problems? How sensitive is DSS to its parameter settings?

Chapter 7

Limited Error Fitness

This chapter presents Limited Error Fitness (LEF), described in Section 7.1, and first
published in [Gathercole & Ross 97b]. LEF is a variation on the standard fitness func-
tion for GP on supervised classification problems. LEF enables a simple GP, described
in Section 7.2, to solve the previously out of reach Boolean Even N Parity problem for
N > b5, described in Section 7.3. The test results from runs with N=6 and N=7 are

given in Section 7.4, followed by a discussion in Section 7.5.

The Boolean Even N parity problem (finding the parity of N boolean inputs) is a hard
one for GP to solve; increasing rapidly in difficulty and solution size with increasing
N. Koza has shown that N=5 represents, in effect, an upper limit for standard GP,
even with a large population size of 8000. Runs tend to converge rapidly on sub-
optimal solutions. Only with the use of Automatically Defined Functions (ADF), a
more powerful representation, was Koza able to solve for N=6 and higher, with a large

population of 4000, [Koza 92, Koza 94].

“... the parity functions are the hardest Boolean functions to find via blind
random search of the space of S-expressions using the function set F and

they are the hardest to learn via genetic programming.”

With LEF, standard GP without ADF can readily solve for N=6 and N=7 with a pop-
ulation size of 400, but may require several thousand generations. A smaller population
size allows GP to be run on smaller computers at a reasonable speed, in a reasonable

length of time. It has the potential to solve for even higher N with larger populations.

139

CHAPTER 7. LIMITED ERROR FITNESS 140

LEF is variation on the standard GP fitness function for classification problems. An
individual’s fitness score is based on how many cases remain uncovered in the ordered
training set after the individual exceeds an error limit. The training set order and the
error limit are both altered dynamically in response to the performance of the fittest

individual in the previous generation.

Evidence indicates that LEF rewards generality, penalises specialists, and maintains
diversity in the GP population, preventing premature convergence. After many thou-
sands of generations, if it has not yet found an optimal solution, LEF keeps the GP
population in flux. Thus GP is a more effective optimiser, continually emphasising the
relative importance of difficult cases, and de-emphasising easy cases. However, LEF
is very susceptible to the choice of various parameter values, and often causes the GP
population to undergo a catastrophic loss of good individuals. LEF is also used suc-
cessfully on the TicTacToe problem in Chapter 8. However LEF still hasn’t yet been
tried on enough problems to identify other potential weaknesses such as over-fitting on

the training set.

7.1 LEF - the algorithm

LEF is a variation on the standard method used to evaluate the fitness of a GP indi-
vidual in supervised learning on classification problems. In effect, it presents a different
version of the same problem to each generation of the population, based on how well
the population performed on the previous version. The standard method evaluates
the GP individual on each case in the set of training cases, compares its ‘answer’ (or
classification) with the correct answer, and the GP individual’s fitness score is based

on the total number of errors.

With LEF, a GP individual’s fitness score is related to how many of the ordered set of
training cases it classifies correctly before it makes a certain number of misclassifica-
tions. After exceeding the error limit, any cases not yet covered by the individual are
counted as misclassified. The fitness score is the total number of misclassified cases.
If the GP individual is a poor one, i.e. makes many mistakes, it will not be evaluated

on the entire training set. If the GP individual is a good one, it will be evaluated

CHAPTER 7. LIMITED ERROR FITNESS 141

on the entire training set, making fewer mistakes than the number allowed. Thus, in
general, it is quicker to find the fitness value for a poor GP individual than a good GP

individual, saving CPU time.

At the start of a run, the training set is shuffled into a random order to avoid any
biases that may have been introduced in the original ordering. The error limit is set in
advance of the first generation, possibly with the benefit of information gleaned from
previous runs. The first generation could, however, run without an error limit, and the
error limit be set equal to the number of errors made by the best GP individual in the
first generation. Later on, the error limit is raised, lowered, or left unchanged, and the
training set is re-ordered, depending on the performance of the best GP individual in
the preceding generation. The timing of these changes depends on two measures from
the best of generation individual (BOGI), and some parameters set at the start of the
run. The two measures are the number of cases not covered by the BOGI (because it
exceeded the error limit before reaching the end of the training set), and the number
of generations since the last improvement in the BOGI (ignoring generations when it
got worse). In this instance, the term ‘improvement’ is taken to mean that the BOGI
made fewer errors. With parsimony included in the fitness function, i.e. a penalty for
large trees, the BOGI often gets smaller, with a corresponding small decrease in its

fitness score, but remains functionally unchanged.

The algorithm for modifying the error limit is as follows:

e BOGI improvement:
IF the BOGI has improved within the last O-PAUSE generations

THEN make no parameter changes

e Over-Coverage:
IF the BOGI makes fewer errors than the error limit
AND the BOGI hasn’t improved for O-PAUSE generations
THEN

— reduce the error limit by O-DECREMENT

— move the O-BUBBLES easiest training cases

to the end of the ordered training set

CHAPTER 7. LIMITED ERROR FITNESS 142

e Exact-Coverage:
IF the BOGI reaches the error limit, but covers all the cases
AND the BOGI hasn’t improved for E-PAUSE generations
THEN

— reduce the error limit by EEDECREMENT

— move the E-BUBBLES easiest training cases

to the end of the ordered training set

e Under-Coverage:
IF the BOGI exceeds the error limit before covering all the cases
AND the BOGI hasn’t improved for U-PAUSE generations
THEN

— increase the error limit by U-INCREMENT

— move the U-BUBBLES easiest training cases

to the end of the ordered training set

These four phases cover all the possibilities for the interaction of the error limit and the
performance of the BOGI. Over-Coverage corresponds to the BOGI making fewer errors
than the error limit, indicating that the problem could be made harder by reducing the
error limit. Under-Coverage corresponds to the BOGI making more errors than the
error limit, so none of the population can cover the entire training set. Raising the error
limit would give the population a better chance of covering the entire set. The Exact-
Coverage phase has been made explicit, even though it could have been incorporated
into the other two phases. This phase is quite crucial in LEF; it is when the BOGI only
just covers the training set. Reducing the error limit at all will immediately reduce
the fitness of the BOGI, possibly by a large amount, allowing other, previously less fit,

individuals to the fore.
There are several parameters set at the start of a run. Some typical values are as

follows:

e initial error limit - set to allow the first generation BOGI to nearly cover the

entire training set. This obviously depends on the training set, and differs for

CHAPTER 7. LIMITED ERROR FITNESS 143

each problem. Experiments have indicated that it is better to start too large than
too small, though the algorithm allows it to rise if it is set too low. However in
the LEF run for N=6, shown below, the error limit was set quite low at 20 (there
are 64 training cases, and a random solution is likely to achieve approximately
32 errors), to demonstrate how the LEF algorithm copes with a BOGI that can’t

cover the entire training set before exceeding the error limit.
e O-PAUSE - set to 5

e E-PAUSE, U-PAUSE, - set to 15
These delays can be varied somewhat but experiments have indicated that if
E-PAUSE and U-PAUSE are too small, the population doesn’t have time to
adapt to the new version of the problem, and so doesn’t improve very quickly if
at all. If U-PAUSE is too long, the population converges too much on the new
version of the problem, and loses the diversity needed to solve the earlier versions.
In effect, it has to re-learn how later. This loss of diversity is more noticeable
with smaller populations, and is usually catastrophic, setting back the population
by many generations. O-PAUSE seems less important since it only has an effect
when the BOGI makes fewer errors than the error limit, and there are likely to
be several other individuals making few errors. Reducing the error limit at this
stage still keeps the current BOGI in place, but speeds up the evaluation of the

majority of the population.

e O-DECREMENT, E-DECREMENT, - set to 1
These changes to the error limit are kept small. If they are too large, the change
in difficulty of the problem becomes too extreme, the population fails to over-
come the change, and bad GP individuals can suddenly become the best of the

generation.

e U-INCREMENT - set to 1
This parameter can be made larger to help counter the effect of the catastrophic
loss of good individuals in the population, by allowing a faster increase in the

error limit.

e O-BUBBLES, E-BUBBLES, U-BUBBLES, - set to 1

CHAPTER 7. LIMITED ERROR FITNESS 144

The change in order of the training set is kept small. The problem is made
slightly more difficult, but previous good GP individuals should still perform
well. If it is too drastic, as with changes in the error limit, it is detrimental
to the development of the population. The ‘BUBBLES’ refer to one pass of a
bubble sort algorithm. Starting with the first case in the set, and moving along
the order towards the last case, pairs of cases are swapped if the later one has
been misclassified (or left uncovered) more often. This has the effect of moving
the easiest case (i.e. the one that was misclassified least often by the previous
generation) to the end of the ordered set, and moving the harder cases one place
towards the start of the ordered set. There are many other ways of changing the
order of the training set, but this is one of the simplest, and appears to have a
reasonably good effect. One ‘bubble’ only reduces the BOGI fitness by at most
one, even though, potentially, a case could be moved from the start of the set
order all the way to the end. Any difficult cases are only moved towards the
start of the set by one position. Changing the error limit can have a much bigger

impact on the BOGI fitness.

In essence, these parameters control the change in difficulty of the problem in response
to the performance of the population in the previous generation. Many experiments
have indicated that it is better to minimise the impact of the changes to error limit
and set order, especially E-DECREMENT and E-BUBBLES. The population is given
time to adapt to the new version of the problem. If it proves too difficult, the problem
is made slightly easier. If it proves too easy, the problem is made slightly harder. The

ultimate aim is to reduce the error limit to zero, i.e. for the BOGI to make no errors.

Related Work Closely related to LEF is the idea of co-evolving host and para-
site populations, [Hillis 90, Rosin & Belew 95|, niches, [Goldberg & Richardson 87,
Greene & Smith 93], competitive fitness functions, [Angeline & Pollack 93], (These are

described more fully in Section 5.3), and training subset selection, (Chapter 6).

CHAPTER 7. LIMITED ERROR FITNESS 145

7.2 GP Details

The GP setup is kept simple, and Automatically Defined Functions (ADF) are not
used. Generational replacement with elitism is used, with panmitic tournament selec-
tion of size 4, using population sizes from 100 to 800. The operators (and selection

probabilities) are:

40% CROSSOVER AT ANY POINT

- crossover between two parents producing one child

20% MUTATE SUBTREE

- mutate a subtree in a parent to produce a child

20% MUTATE BY SUBTREE PROMOTION

- replace a subtree in a parent by one of its own subtrees to produce a child

20% MUTATE ANY NODE

- replace a random node in a parent with another node of the same arity

The function and terminal sets are described below, in Section 7.3.

An individual’s fitness is based upon the number of classification errors it makes (i.e.
the fewer the better) and, for LEF, the number of training cases left uncovered after
it exceeds the error limit (i.e. also the fewer the better). Parsimony, a penalty for
large trees, is added to the fitness score as a factor 0.001 times the number of nodes
in the tree. Since the maximum allowed tree size is 999 nodes, the contribution from
parsimony never reaches 1.0, and so differentiates only between trees which perform
equally well on the training set. A smaller fitness score corresponds to a fitter tree,
with a minimum (of less than 1.0) equal to the parsimony factor of a tree which makes

no errors on the training set.

The basic GP settings can certainly be improved. In particular, the tournament size
seems to be too large. Some studies [Blickle & Thiele 95, Hancock 94] and several
discussions with GA practitioners seem to indicate that smaller tournament sizes work
better. The choice of operators is also important. They can always be improved,

and care should be taken so that they do not impede GP, (see Section 4.1), though the

CHAPTER 7. LIMITED ERROR FITNESS 146

ones used here prove reasonably successful. The main aim of this section is to show the

possibly beneficial impact of LEF on a standard GP, not to optimise GP parameters.

7.3 The Even N Parity problem

The Even N Parity problem has been used by Koza as a problem which causes diffi-
culties for GP in [Koza 92]:

“The parity family of functions is a very difficult family of functions to
learn. For example, after trying 20 runs of genetic programming without
automatic function definition, no solution was found for the even-5-parity
problem using a population size of 4000 and the given function set F (al-
though we did find one solution on our eighth run after we increased the
population size to 8000). However, if automatic function definition is used,
solutions to both the even-5-parity and the even-6-parity functions can be

readily found with a population size of 4000.”

The training set consists of all the 2V possible combinations of N binary inputs (64 for
N=6, and 128 for N=7). The correct classification is the parity of the N inputs, i.e.
TRUE where an even number of inputs are TRUE, and FALSE where an odd number
of the inputs are TRUE. The parity changes with any change in a single input value.
The task for GP is to find a tree which correctly classifies all the cases in the training

set using the following function and terminal sets:

e Terminal Set - { bg,bl,bQ,...,bN,1 },

N boolean variables

e Function Set F - { AND, OR, NAND, NOR },

standard logical functions, computationally complete.

As N is increased, the problem becomes exponentially harder for a simple GP and, for
N=6 or greater, supposedly impossible (or exceedingly unlikely to be solved) even with

a very large population size of 8000. At this point, Koza then demonstrates the power

CHAPTER 7. LIMITED ERROR FITNESS 147

and might of Automatically Defined Functions (ADF) which he uses to successfully
solve the Even N Parity problem up to N=6, [Koza 92], and up to N=11, [Koza 94],
but using large population sizes of 4000, taking roughly 20 generations for N=6. ADF
is a more powerful representation, particularly suited to the structure inherent in the
Boolean Even N Parity problem, allowing GP to construct hierarchical function defin-
itions. LEF used in combination with a simple GP, without ADF, successfully reaches
the dizzy heights of N=7, with small population sizes ranging from 100 to 800, and has
the potential to solve for larger N. Population size has a major impact on the speed
of GP, and especially on the run-time memory requirements. It can easily exceed the
usable memory generally available in present-day workstations, causing them to run

very inefficiently.

7.4 Results

A series of runs (of the order of 50) were carried out with an assortment of population
sizes and parameter settings, though no runs used ADF. Since each run took several
hours, especially all the runs without LEF, there are not sufficient runs to provide
sound performance statistics. However, some clear trends do emerge. The results from

runs on the Even N Parity problem are as summarised in Table 7.1.

The results confirm that simple GP is incapable of solving the Even N Parity problem
for N=6 or N=7 (or greater) with an assortment of population sizes ranging from 100
to 800, allowed to run for 4000 generations for N=6, and 8000 generations for N=7.
Letting GP run on even longer would almost certainly not result in optimal trees being

discovered since the runs showed no signs of improvement.

Graphs from two sample runs for N=6, with a population size of 400, are shown in Fig-
ures 7.1 to 7.8. The graphs are from a typical, successful run of GP with LEF, showing
the changes in BOGI fitness, Figure 7.2, and tree size (or ‘bushiness’), Figure 7.4, the
population fitness standard deviation, Figure 7.6. These graphs are shown alongside
the equivalent graphs from an unsuccessful run of GP without LEF (they all failed to
find an optimal tree). The next two graphs show the error limit, Figure 7.7, and the

number of tree evaluations per generation, Figure 7.8, for the run with LEF. The runs

CHAPTER 7. LIMITED ERROR FITNESS

32

30

28

26

24

Fitness

22

20

18

16

Without LEF:

148

Plot of Best of Generation Fitness

T T
Fitness —<—

&

o 500

1000

1500

2000

2500

Generations

3000 3500 4000

Figure 7.1: Best of Generation Fitness during a typical run of GP without LEF on the
Even N Parity Problem, where N=6, and PopulationSize = 400

70

60

50

Fitness

30

20

10

With LEF:

Plot of Best of Generation Fitness

T
Fitness —<—

15
d

500

1000
Generations

1500

2000 2500

Figure 7.2: Best of Generation Fitness during a typical run of GP with LEF on the
Even N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 149

Without LEF: Plot of Best of Generation Bushiness
300 T T T T T T
bushiness —<—

250

200

B C T S e B S .

Bushiness - Number of Tree Nodes

i i i i i i i
500 1000 1500 2000 2500 3000 3500 4000
Generations

Figure 7.3: Best of Generation Bushiness during a typical run of GP without LEF on
the Even N Parity Problem, where N=6, and PopulationSize = 400

With LEF: Plot of Best of Generation Bushiness
550 T T T
bushiness —o—

500

450

400

Bushiness - Number of Tree Nodes

{ i i
[0} 500 1000 1500 2000 2500
Generations

Figure 7.4: Best of Generation Bushiness during a typical run of GP with LEF on the
Even N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 150

Without LEF: Plot of Standard Deviation of Fitnesses in Population
T T

-
G2 .
o 9 »tduey of Fitness < —

i i

P!
:

Standard Deviation of Fitnesses in Population
N

(o] 500 1000 1500 2000 2500 3000 3500 4000
Generations

Figure 7.5: Standard Deviation of Fitness during a typical run of GP without LEF on
the Even N Parity Problem, where N=6, and PopulationSize = 400

With LEF: Plot of Standard Deviation of Fitnesses in Population
25 T T T
Stddev of Fitness —<o—

Standard Deviation of Fitnesses in Population

[0} 500 1000 1500 2000 2500
Generations

Figure 7.6: Standard Deviation of Fitness during a typical run of GP with LEF on the
Even N Parity Problem, where N=6, and PopulationSize = 400

CHAPTER 7. LIMITED ERROR FITNESS 151

With LEF: Plot of Error Limit
30 T T

T T
Error Limit —<—

Error Limit

(o] 500 1000 1500 2000 2500
Generations

Figure 7.7: Error Limit during a typical run of GP with LEF on the Even N Parity
Problem, where N=6, and PopulationSize = 400

