A priori algorithm	Back-propagation, 135
generating association rules, 186–187	example of, 137–138
generating frequent itemsets, 185–186	rules, 136–137
Adaptation, 165, 166	Balancing the dataset, 104
Affinity analysis, 180–182	Bank of America, 1
Anomalous fields, 50–52	Bar chart, 46–48
Antecedent, 183	Between cluster variation (BCV), 149,
Application of neural network modeling, 143–145	154
A priori algorithm, 184–189	Bhandari, Inderpal, 3
A priori property, 184–185	Bias-variance trade-off, 93–95
Association, 17	mean square error, 95
Association rules, 17, 180-199	Binary trees, 109
affinity analysis, 180–182	Binning (banding), 61–62
antecedent, 183	Boston Celtics, 3
a priori algorithm, 184–189	Bremmer, Eric, 2
a priori property, 184–185	Brown, Dudley, 3
generating association rules, 186–187	•
generating frequent itemsets, 185–186	C4.5 algorithm, 116-127
confidence, 184	Candidate splits, 111
confidence difference method, 195-196	CART, see Classification and regression trees
confidence ratio method, 195-196	Case studies
consequent, 183	Daimler-Chrysler: analyzing automobile
data representation for market basket analysis,	warranty claims, 8-9
182–183	mining association rules from legal data bases.
tabular data format, 182-183	19–21
transactional data format, 182-183	predicting abnormal stock market returns,
definition of, 183	18–19
extension to general categorical data, 189-190	predicting corporate bankruptcies using
frequent itemset, 184	decision trees, 21–22
generalized rule induction (GRI), 190-196	profiling materials and market using clustering
application of GRI, 191-193	23–24
behavior of the J statistic, 191	CIO Magazine, 1
J-measure, 190–191	Claritas, Inc., 16
itemset, 184	Classification, 14–15, 95–96, 107–127,
itemset frequency, 184	128–146
local patterns versus global models, 197-198	Classification and regression trees (CART),
market basket analysis, 180-182	109–115, 122–126
procedure for mining, 184	optimality measure, 110
supervised or unsupervised learning, 196	Classification error, 114
support, 184	Clinton, President Bill, 2
when not to use association rules, 193-196	Cluster centroid, 153

Clustering, 16–17, 147–162, 163–179	need for human direction, 4, 10
between cluster variation (BCV), 149, 154	software
hierarchical methods, 149–153	Advanced Scout by IBM, 3
agglomerative methods, 149–153	Clementine by SPSS, Inc., 3
average linkage, 150, 152–153	Enterprise Miner by the SAS Institute, 158
complete linkage, 150–152	Insightful Miner by Insightful Corp., 31
dendrogram, 149	Minitab, 12
divisive methods, 149–150	tasks, see Tasks, data mining
hierarchical clustering, 49	why data mining, 4
single linkage, 150–151	Data preprocessing, 27–40
k-means, see k-means clustering	data cleaning, 28–30
within cluster variation (WCV), 149, 154	ambiguous coding, 28–30
Cluster membership for making predictions, 161	anomalous values, 28–29
Cluster profiles, 175–177	character versus numeric formatting, 28–29
Cluster validity, 170	min-max normalization, 36–37
Combination function, 101–103	z-score standardization, 37–38
for neural networks, 132–133	identifying misclassifications, 33–34
Competition, 165, 166	missing data, 30–33
Competitive learning, 163	replace with constant, 31
Completely connected network, 131–132	replace with mean or mode, 31–32
Confidence, 122, 184	replace with random value from distribution,
Confidence interval estimate, 73–74	31–33
Confidence level, 73	outliers, graphical methods for identifying,
Confluence of results, 19, 212	34–35
Confusion matrix, 203–204	definition of, 34
Consequent, 183	histogram, 34–35
Cooperation, 165, 166	interquartile range, 39
Correlation, 53–54, 78	quartiles, 39
Cross Industry Standard Process for Data Mining	scatterplot, 35
(CRISP-DM), 5–7	outliers, numerical methods for identifying,
business research understanding phase, 8,	38–39
18–19, 21, 23	why preprocess data, 27–28
data preparation phase, 7–8, 18, 20–21, 23	Data set
data understanding phase, 2, 8, 18, 20–21, 23	adult, 143
deployment phase, 7, 9, 19, 21–22, 24	cereals, 75
evaluation phase, 7, 9, 19, 20, 22, 24	churn, 42
modeling phase, 7, 9, 18, 20–21, 23	Data transformation, see Data preprocessing
Cross-tabulations, 47–48	Decision cost/benefit analysis, 207–208
Cross-validation termination, 139	Decision nodes, 107–108
	Decision rules, 121–122
Daimler-Chrysler, 5, 8–9	Decision tree pruning, 114–115, 121
Data cleaning, see Data preprocessing	Decision trees, 107–127
Data mining	C4.5 algorithm, 116–127
case studies, see Case studies	entropy, 116
cross industry standard process (CRISP-DM),	entropy as noise, 117
5–7	entropy reduction, 116
definition of, 2	information as signal, 117
easy to do badly, xii, 5	information gain, 116
examples of	classification and regression trees (CART),
Bank of America, 1	109–115, 122–126
Boston Celtics, 3	binary trees, 109
brain tumors, 2	candidate splits, 111
New York Knicks, 3	classification error, 114
Clinton, President Bill, 2	optimality measure, 110
fallacies of, 10–11	tree pruning, 114–115

comparison of the CART and C4.5 algorithms,	Extension to general categorical data,
122–126	189–190
minimum records per node, 125	Extrapolation, 79
decision nodes, 107–108	E-1
decision rules, 121–122 confidence, 122	False negative rate, 204 False negatives, 204
support, 122	False positive rate, 204
group node, 107–108	False positives, 204
leaf nodes, 107–108	FBI, 2
requirements for, 109	Feedforward network, 131–132
Democratic Leadership Council, 2	100010111111011111111111111111111111111
Dendrogram, 149	Gains charts, 208–211
Description, 11	Gartner Group, 2
Description task, model evaluation techniques, 201	Generalized rule induction (GRI), 190–196
"Different from" function, 100	application of, 191-193
Distance function (distance metric), 99-101	Global minimum, 139
city block distance, 148	Gradient descent method, 135-136
Euclidian distance, 99, 148	GRI, see Generalized rule induction
Minkowski distance, 148	Grinstein, Georges, 5
Draftsman's plot, 83–84	Group node, 107–108
Entropy, 116	Hidden layer, 132
Entropy reduction, 116	size of, 132
Error rate, classification, 203–204	Hierarchical clustering, 149
Error responsibility, 137	Hipp, Jochen, 8
Estimated regression equation (ERE), 76	Histogram, normalized, 55–58
Estimation, 12–13, 67–88, 104–105, 131	-
Estimation and prediction using neural networks,	ID3 algorithm, 116
131	Identifying misclassifications, see Data
Estimation error, 77, 201	preprocessing
Estimation task, model evaluation techniques,	Indicator variables for neural networks, 130
201–202	Information gain, 116
Euclidian distance, 99, 148	Input and output encoding, neural networks,
Exploratory data analysis, 41–66	129–131
anomalous fields, 50–52	Input layer, 131–132
binning (banding), 63	Insider trading, 18
categorical variables, 45–50	Instance-based learning, 96
comparison bar chart, 46–48 cross-tabulations, 47–48	Intelligent Data Analysis (journal), 19
directed web graph, 50	Interquartile range, 39 Itemset, 184
two-way interactions among categorical	frequency, 184
variables, 48–50	frequent, 184
dealing with correlated variables, 44-45	
getting to know the data set, 42-44	J-measure, 190–191
multivariate relationships, 59-61	J-statistic, behavior of, 191
interaction, 59–60	
three dimensional scatterplot, 60-61	Kelly, Chris, 1
numerical variables, 52–59	k-means clustering, 153–162
correlation, 53–54	application of, using SAS Enterprise Miner,
graphical analysis of numerical variables,	158–161
54–59	choosing k , 157
normalized histogram, 55–58	cluster centroid, 153
retaining variables in model, 58–59	example of, 153–158
selecting interesting subsets of the data, 61–62	using cluster membership to make predictions,
versus hypothesis testing, 41–42	161

k-nearest neighbor algorithm, 90–106	Mean, 69–70
choosing k , 105–106	Mean square error (MSE), 95, 201
combination function, 101–103	Measures of variability, 70
simple unweighted voting, 101–102	Median, 70
weighted voting, 102–103	Minimum descriptive length principle, 201
database considerations, balancing the dataset,	Misclassification cost adjustment, 205–207
104	Missing data, see Data preprocessing
distance function (distance metric), 99-101	Mode, 70
"different from" function, 100	Model complexity, 92–93
Euclidian distance, 99	Model evaluation techniques, 200–212
similarity, 99–101	confluence of results, 212
triangle inequality, 99	classification task, 203–211
estimation and prediction, locally weighted	confusion matrix, 203-204
averaging, 104–105	decision cost/benefit analysis, 207-208
instance-based learning, 96	error rate, 203–204
stretching the axes, 103–104	false negative rate, 204
Kohonen learning, 165	false negatives, 204
Kohonen networks, 163–179	false positive rate, 204
adaptation, 165, 166	false positives, 204
algorithm, 166	gains charts, 208–211
application of clustering using, 170–177	lift, 208–209
cluster membership as input to downstream	lift charts, 208–211
models, 177	misclassification cost adjustment, 205-207
cluster profiles, 175–177	type I error, 205
cluster validity, 170	type II error, 205
competition, 165, 166	description task, 201
cooperation, 165, 166	minimum descriptive length principle, 201
example of a Kohonen network study, 166–170	Occam's razor, 201
learning, 165	estimation and prediction tasks, 201-202
neighborhood size, 167	estimation error, 201
self-organizing maps (SOMs), 163-165	mean square error (MSE), 201
competitive learning, 163	residual, 201
scoring function, 163–164	standard error of the estimate, 202
winning node, 165	interweaving model evaluation with model
weight adjustment, 167-169	building, 211–212
Kohonen, Tuevo, 163	Mohammed Atta, 2
	Momentum term, 140–142
Layered network, 131–132	Multicollinearity, 84
Leaf nodes, 107–108	
Learning rate, 139–140	Naisbitt, John, 4
Least squares, 78	NCR, 5
Lift, 208–209	Neighborhood size, 167
Lift charts, 208–211	Neural networks, 128–146
Lindner, Guido, 8	application of neural network modeling,
Linkage	143–145
average, 150, 152–153	back-propagation, 135
complete, 150–152	example of, 137–138
single, 150–151	minimizing SSE, 135
Local minimum, 139	stochastic back-propagation, 137
Local patterns versus global models, 197–198	back-propagation rules, 136–137
Louie, Jen Que, 10	error responsibility, 137
	estimation and prediction, 131
Margin of error, 73–74	gradient descent method, 135–136
Market basket analysis, 180–182	provides direction for adjusting weights,
data representation, 182–183	135

learning rate, 139–140	Regression line, 76–77
helps move weights to global minimum, 139	Regression, simple linear, 12
reducing the learning rate, 140	requirements for, 109
momentum term, 140–142	Residual, 77, 201
momentum represents inertia, 141	
neurons, 128–129	Sample, 71
indicator variables, 130	Sampling error, 73
input and output encoding, 129–131	Scatterplot, three dimensional, 60–61
sensitivity analysis, 142–143	Scoring function, SOMs, 163–164
opacity of neural networks, 142	Self-organizing maps (SOMs), 163–165
sigmoid activation function, 134	Sensitivity analysis, 142–143
squashing function, 134	Sigmoid activation function, 134
simple example of a neural network, 131–134	Sigmoid function, 133
combination function, 132–133	Similarity, 99–101
completely connected network, 131–132	Simulatry, 99–101 Simoudis, Evangelos, 2
* •	•
feedforward network, 131–132	Slope, 76
hidden layer, size of, 132	Sodium/potassium ratio, 14–15
input layer, 131–132	SPSS, Inc., 2, 5
layered network, 131–132	Squashing function, 134
nonlinear behavior, 133	Standard deviation, 71
output layer, 132	Standard error of the estimate, 202
sigmoid function, 133	Statistic, 71
weights, connection, 132	Statistical approaches to estimation and
termination criteria, 139	prediction, 67–89
cross-validation termination, 139	bivariate methods, 75–82
global minimum, 139	confidence in our estimates, 73
local minimum, 139	sampling error, 73
Neurons, 128–129	confidence interval estimation, 73–75
New York Knicks, 3	confidence interval estimate, 73-74
Nonlinear behavior of neural networks, 133	confidence level, 73
Normal plot of the residuals, 85	margin of error, 73–74
	precision, 74
Occam's razor, 201	<i>t</i> -interval for the mean, 74–75
Outliers, methods for identifying, see Data	confidence intervals for the mean value of
preprocessing	y given x , 80–82
Output layer, 132	extrapolation, 79
Overfitting, 92–93	dangers of, 79–80
<i>C</i> .	measures of center, 69–70
Parameter, 71	mean, 69–70
Plot of standardized residuals versus fitted values,	measures of location, 69
86	mode, 70
Point estimate, 72	meaures of spread, 70–71
Point estimation, 72	measures of variability, 70
Population, 71	range, 71
Precision, 74	standard deviation, 71
Prediction, 13, 67–88, 104–105, 131	multiple regression, 83–88
Prediction error, 77	draftsman's plot, 83–84
Prediction task, see Model evaluation techniques	multicollinearity, 84
Procedure for mining, 184	prediction intervals for a randomly chosen value
Frocedure for minning, 184	
Quartiles 20	of y given x, 80–82
Quartiles, 39	unusual observations, 82
Quinlan, Ross, 116	simple linear regression, 75–82
D 71	correlation, 78
Range, 71	estimated regression equation (ERE), 76
Regression coefficients, 76	estimation error, 77

Statistical approaches to estimation and	Tabular data format, 182-183
prediction (Continued)	Target variable, 14
least squares, 78	Tasks, data mining, 11–17
prediction error, 77	association, 17
regression coefficients, 76	classification, 14-15
regression line, 76–77	clustering, 16–17
residual, 77	description, 11
slope, 76	estimation, 12–13
y-intercept, 76	prediction, 13
statistical inference, 71–75	Termination criteria, 139
estimation, 72	Terrorism, 2
parameter, 71	Test data set, 91–92
point estimate, 72	t-interval for the mean, 74–75
point estimation, 72	Training data set, 14, 91–92
population, 71	Transactional data format, 182–183
representative sample of population, 71-72	Triangle inequality, 99
statistic, 71	Type I error, 205
univariate methods, 69-75	Type II error, 205
verifying model assumptions, 85-86	
normal plot of the residuals, 85	UCI Repository of Machine Learning Databases,
plot of standardized residuals versus fitted	42, 122
values, 86	Underfitting, 92–93
Stochastic back-propagation, 137	Unsupervised methods, 90
Supervised methods, 91	Unusual observations, 82
Supervised modeling, methodology for, 91–93	
model complexity, 92-93	Validation data set, 92
overfitting, 92–93	Voting
test data set, 91–92	simple unweighted, 101–102
training data set, 91–92	weighted, 102-103
underfitting, 92–93	
validation data set, 92	Web graph, 50
Supervised versus unsupervised learning, 90–91,	Weight adjustment, 167–169
196	Weights, connection, 132
supervised methods, 91	Within cluster variation (WCV), 149, 154
unsupervised methods, 90	
Support, 122, 184	y-intercept, 76