
Chapter 2
Pattern Classification Based
on Conventional Interpretation of MFI

Abstract Our aim is to design a pattern classifier using fuzzy relational calculus
(FRC) which was initially proposed by Pedrycz (Pattern Recognition 23 (1/2),
121–146, 1990). In the course of doing so, we first consider a particular inter-
pretation of the multidimensional fuzzy implication (MFI) to represent our
knowledge about the training data set. Subsequently, we introduce the notion of a
fuzzy pattern vector to represent a population of training patterns in the pattern
space and to denote the antecedent part of the said particular interpretation of the
MFI. We introduce a new approach to the computation of the derivative of the
fuzzy max-function and min-function using the concept of a generalized function.
During the construction of the classifier based on FRC, we use fuzzy linguistic
statements (or fuzzy membership function to represent the linguistic statement) to
represent the values of features (e.g., feature F1 is small and F2 is big) for a
population of patterns. Note that the construction of the classifier essentially
depends on the estimate of a fuzzy relation < between the input (fuzzy set) and
output (fuzzy set) of the classifier. Once the classifier is constructed, the nonfuzzy
features of a pattern can be classified. At the time of classification of the nonfuzzy
features of the test patterns, we use the concept of fuzzy masking to fuzzify the
nonfuzzy feature values of the test patterns. The performance of the proposed
scheme is tested on synthetic data. Finally, we use the proposed scheme for the
vowel classification problem of an Indian language.

2.1 Introduction

In real world pattern classification problems, fuzziness is connected with diverse
facets of cognitive activity of human being. The sources of fuzziness are related
to labels expressed in pattern space, as well as, labels of classes taken into
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account in classification procedures. Although a lot of scientific developments
have already been made in the area of pattern classification, existing techniques
of pattern classification remain inferior to the human classification processes
which perform extremely complex tasks. Hence, we attempt to develop a plau-
sible tool using fuzzy relational calculus (FRC) for modeling and mimicking the
cognitive process of human reasoning for pattern classification. The FRC
approach to pattern classification can take care uncertainties in feature values of
patterns under different conditions like measurement error, noise, etc. Though
there are several existing approaches to designing a classifier using the concept of
fuzzy set/fuzzy logic (Mori 1983; Mori and Laface 1980; Hirota 1988; Seif and
Aguilar-Martin 1980; Dubois and Jaulent 1985; Hirota et al. 1987; Huntsberger
et al. 1985; Kickert and Koppleaar 1986; Siy and Chen 1974; Shimura 1975;
Huntsberger et al. 1986; Lee 1972; Zadeh et al. 1975; Bortolan and Degani 1983;
Bortolan et al. 1988; Degani and Bortolan 1987a, b; Pedrycz 1985a, b, c;
Watanabe 1985; Kumar 1977; Saitta and Tarasso 1981; Woodbury and Clive
1974; Bezdek and Pal 1992; Simpson 1992), we have selected the concept
proposed by Pedrycz (1990) and suitably modified it to incorporate our new
concept of computation of the derivative of the fuzzy max—function and min—
function. To represent the knowledge about the training data set, we consider the
conventional interpretation of multidimensional fuzzy implication (MFI) (Sugeno
and Takagi 1983; Tsukamoto 1979). We introduce a novel notion of fuzzy pattern
vector as stated in Appendix-A to represent a population of patterns (a set of
patterns) in the pattern space. It represents the antecedent part of the said par-
ticular interpretation of the MFI to meaningfully carry out the task of pattern
classification using FRC. During the construction of the classifier based on FRC,
we use fuzzy linguistic statements (or fuzzy membership function to represent the
linguistic statement) to represent the values of features (e.g., feature F1 is small
and F2 is big) for a population of patterns (a set of patterns) represented by the
above said notion of Fuzzy pattern vector. Note that the construction of the
classifier essentially depends on the estimation of a fuzzy relation < between the
antecedent part and consequent part of the rules. As, for a given problem of
pattern classification and object recognition, there is no specific guideline to
select a particular logical operator, e.g., Mamani’s min operator, Zadeh’s arith-
metic rule etc. (Mizumoto 1985; Zadeh 1970) to translate a fuzzy implication to a
fuzzy relation we estimate it (the relation <), based on different learning scheme
using soft computing tools. Thus, in our entire treatment for classification and
recognition we replace logic by learning. The estimated < is the core of the
classifier (recognizer). Once the classifier is constructed, the nonfuzzy features of
a pattern can be classified. At the time of classification of the nonfuzzy features
of the test patterns, we use the concept of fuzzy masking to fuzzify the nonfuzzy
feature values of the test patterns. The performance of the proposed scheme is
tested on synthetic data. Finally, we use the proposed scheme for the vowel
classification problem of an Indian language.
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2.2 Statement of the Problem

For the present problem, let us consider the conventional interpretation of a MFI
[see Appendix-A, Eq. A.1 & A.2] as stated below;

aÞ if x is A and y is B then z is C

or

bÞ if x is A then y is B then z is C : ð2:1Þ

The notion of a fuzzy pattern vector (see Appendix-A) represents the ante-
cedent clauses of (a) of (2.1) and locates a population of patterns P in the quan-
tized pattern space. Assume that the quantized pattern space consists of ‘‘c’’
universes U1, U2, …, Uc in the form U = U1 9 U2 9 ��� 9 Uc, where each Ui

represents the universe on the ith feature axis Fi, i = 1, 2, …, c.
Assume that D is a fuzzy relation [formed by the antecedent clauses of (a) of

(2.1)], which is a fuzzy set in quantized product space U, namely lD: U ? [0, 1].
Also, assume that there exists a set Cclass of finite number of classes c1, c2, …, cn,
i.e., Cclass ¼ fc1; c2; . . .; cng; by which the finite range of the pattern space is
covered. The consequent clause of a) of (2.1) is a fuzzy set C ¼

Pn
j¼1 lcðcjÞ=cj;

where lcðCjÞ denotes the degree belongingness of the population of patterns P to
the class cj, for j = 1, 2, …, n (see Example A.1 of Appendix-A). Therefore, by
considering the conventional interpretation of a MFI, the fuzzy set D formed by
the antecedent clauses of (a) of (2.1) is associated with the fuzzy set C which
represents the consequent clause of (a) of (2.1). Hence, there exists a relation
between D and C. More precisely, D and C are related via a certain relation <
(i.e.,D<C), which is presently unknown and has to be estimated, based on the
training data set, for the design of the classifier. Now, for the testing of the
classifier, we specify how C is derived from given D and estimated <. We may
consider the fuzzy relational equation, namely, a direct equation

C ¼ Do< ð2:2Þ

where 0 : max–t composition operator, where t is a T—norm operator.
Equation (2.2) can be rewritten, in terms of the membership function, in the

following form:

lCðCjÞ ¼
_

u2U
½lDðuÞtlRðu; cjÞ� for j ¼ 1; 2; . . .; n : ð2:3Þ

This explicit form of (2.3) is needed for actual design study of the classifier.
Let us assume that the training set consists of ordered pairs

ðP1; C2Þ; ðP2; C2Þ; . . . ; ðPk; CkÞ

and the classifier relation is supposed to specify a system of equations

Cl ¼ Dlo<l; l ¼ 1; 2; 3; . . .; k ð2:4Þ
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then the fuzzy relation which satisfies (2.4) is given by

b< ¼
\k

l¼1
<l: ð2:5Þ

But the above mentioned system of equations in (2.4) may not have a solution
(Pedrycz 1990). Hence, in this chapter we look for an approximate solution of the
system of fuzzy relation equations in (2.4).

2.3 Existing Method to Solve Fuzzy Relation Equation

The numerical solution of fuzzy relational equation has been proposed by several
researchers (Wang 1993; Pedrycz 1983, 1985a, b, 1988, 1991, 1995; Ikoma et al.
1993; Hellendoorn 1992; Dinola et al. 1991; Chakraborty 1985; Ovchinnikov and
Riera 1992; Gottwald 1994; Wangming 1986). In this section, we briefly review
the method proposed by Pedrycz (1983). We focus our attention on max—com-
position operator of fuzzy relational equations, which are defined on finite spaces

C ¼ Do< ð2:6Þ

where 0 : max-t composition operator, D and C are the fuzzy sets defined on
the universe of discourses U ¼ fu1; u2; . . .; umg and Cclass ¼ fc1; c2; . . .; cng;
respectively, and < is the fuzzy relation on U 9 Cclass. Let rij ¼ ðui; cj=uieU;
cjeCclassÞ; i = 1,2, …, m, j = 1,2, …, n; then, the fuzzy sets D and C and fuzzy
relation < are as follows:

D ¼ ½lDðuiÞ�1�m 2 FðUÞ
C ¼ ½lCðcjÞ�1�n 2 FðCclassÞ
< ¼ ½l<ðrijÞ�m�n 2 FðU � CclassÞ:

ð2:7Þ

If the universe U of the quantized pattern space consists of ‘c’ features, say Fi,
i = 1,2, …, c, the D is a fuzzy set defined on the quantized product spaces of U1,
U2, …, Uc, that is U ¼ U1 � U2 � � � � � Uc; where Ui ¼ fui

1; u
i
2; . . .; ui

mi
g is the

universe of the ith feature axis Fi with card ðUiÞ ¼ mi: Let Di be the fuzzy set on
Ui, i.e., Di ¼ ½lDiðui

jÞ�1�mi
2 FðUiÞ for i = 1, 2, …, c; then, card Uð Þ ¼ m ¼

Qc
i¼1 mi and ui is the c tuple each of type ui ¼ ðu1

i1
; u2

i2
; . . .; uc

ic
=up

ip 2 Up; p ¼
1; 2; . . .; cÞ and corresponding membership value belonging to D is determined by
(2.8) shown below;

ð1Þ lDðuiÞ ¼
^c

p¼1
flDpðup

ipÞg ¼ lD1ðu1
i1
Þ ^ lD2ðu2

i2
Þ. . . ^ lDcðuc

ic
Þ

ð2Þ lDðUiÞ ¼
Yc

p¼1
flDpðUp

ipÞg ¼ lD1ðu1
i1
Þ � lD2ðu2

i2
Þ. . .lDcðuc

ic
Þ

ð2:8Þ

where i ¼
Pc�1

p¼1ðPc
k [ pmkÞðip � 1Þ þ ic; for each ip ¼ 1; 2; . . .; mp;

p ¼ 1; 2; . . .; c:
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Equation (2.6) can be put in the following form:

lc cj

� �
¼
_m

i¼1

flDðuiÞtl<ðrijg; for; j ¼ 1; 2; . . .; n ð2:9Þ

where t is the t-norm operator.
Thus, from (2.8) and (2.9), where t of (2.9) is one of the operators in {prod,

min}, we get following four types of problems:
Type I: by using (1) of (2.8) and t : prod of (2.9);
Type II: by using (2) of (2.8) and t : prod of (2.9);
Type III: by using (1) of (2.8) and t : min of. (2.9);
Type IV: by using (2) of (2.8) and t : min of (2.9).
Let E be the sum of the square of the error over p ¼ 1; 2; . . .; n and is defined

by

E ¼
Xn

p¼1
lCðcpÞ � l~CðcpÞ
� �2 ð2:10Þ

where C is the calculated fuzzy set using (2.9), and ~C is the desired fuzzy set.
Now, the basic problem is to estimate < ¼ ½l<ðrijÞ�m�n via some given D

and C which minimize E defined in (2.10) and satisfying fl<ðrijÞ ^ ð1� l<ðrijÞÞg
� 0; 8i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n:

A general method to solve an optimization problem, defined above, is to solve a
set of equations, which form the necessary conditions for a minimum of the square
of the error defined in (2.10). Thus, we have ½ðoEÞ=ðol<ðrijÞÞ�m�n ¼ ½0�m�n: Now,
we discuss the applicability of Newton’s method and its simplification.

The Newton’s iterative scheme for finding the solution of < ¼ ½l<ðrijÞ�m�n is

l<ðrijÞ sþ1ð Þ ¼ l<ðrijÞ sð Þ � as �
oE

ol< rij

� � j < ¼ <ðsÞ ð2:11Þ

where i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n � as is the convergent factor and also is
an nonincreasing gain factor depending on the number of iteration. It can be
described as as ¼ 1=ð2:0þ skÞ � � 0 is chosen empirically in order to achieve
good convergent properties and avoid significant oscillations in the iteration
procedure (Pedrycz 1983).

Now

oE

ol<ðrijÞ
¼ 2flCðCjÞ � l~CðCjÞgPij ð2:12Þ

where

Pij ¼
olCðCjÞ
ol<ðrijÞ

; ð2:13Þ
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i.e.,

Pij ¼
o

ol<ðrijÞ
½
_m

p¼1
flDðupÞtl<ðrpjÞg�

¼ o

ol<ðrijÞ
½
_m

p 6¼i
flDðupÞtl<ðrpjÞgg � _flDðuiÞtl<ðrijÞg�

ð2:14Þ

for i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n:
If we consider t-norm operator as ‘‘prod,’’ then the (2.9) is written as

lCðcjÞ ¼
_m

i¼1
flDðuiÞ � l<ðrijÞg; for; j ¼ 1; 2; . . .; n ð2:15Þ

and in this case Pij in (2.14) is determined as (2.16), for i ¼ 1; 2; . . .; m and
j ¼ 1; 2; . . .; n:

Pij ¼
lDðuiÞ; if

Wm
p 6¼iflDðupÞ � l<ðrpjÞg� lDðuiÞ � l<ðrijÞ

0; otherwise:

�

ð2:16Þ

Again, if we consider t-norm operator as ‘‘min’’, then (2.9) is written as

lCðcjÞ ¼
_m

i¼1
flDðuiÞ ^ l<ðrijÞg; for; j ¼ 1; 2; . . .; n ð2:17Þ

and in this case, Pij is determined as

Pij ¼ 1;
if

_m

p 6¼i

flDðupÞ ^ l<ðrpjÞg� lDðuiÞ ^ l<ðrijÞ

and lDðuiÞ� l<ðrijÞ
0; otherwise

8
>>><

>>>:

ð2:18Þ

for i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n:
Here, the derivative of the max—function and min-function in the (2.14),

(2.16), and (2.18), respectively are as follows:

o

ow
ðw _ aÞ ¼ 1; if w [ a

0; if w\a

�

ð2:19Þ

where a ¼
Wm

p 6¼iflDðupÞtl<ðrpjÞg and w ¼ lDðuiÞtl<ðrijÞ and

o

oz
ðz ^ bÞ ¼ 1; if z\b

0; if z [ b

�

ð2:20Þ

where b ¼ lDðuiÞ and z ¼ l<ðrijÞ, which are piecewise differentiable and is
undefined at w = a for max-function in (2.19) and z = b for min-function in
(2.20). Thus, we get some problems in our numerical computation (Ikoma et al.
1993) which may be overcome by defining the derivatives at w = a and z = b,
respectively as follows
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o

ow
ðw _ aÞ ¼ 1; if w� a

0; if w\a

�

ð2:21Þ

and

o

oz
ðz ^ bÞ ¼ 1; if z� b

0; if z [ b

�

: ð2:22Þ

Both formulas for the computation of the derivatives of the max and min
functions, as mentioned above, return either 0 or 1 value of the derivatives. Such
two-valued results of the derivatives have some inherent difficulties, in connection
to the convergence of the solution as mentioned in (Ikoma et al. 1993). To
overcome such difficulties there are some propositions in (Ikoma et al. 1993). In
the following section, we will provide an alternative approach based on general-
ized functions (see Appendix-B).

The above method for solving fuzzy relational equations can be extended to
simultaneous fuzzy relational equations (Pedrycz 1983) as given below.

The simultaneous fuzzy relational equations for given total k number of data in
the training set are as follows:

Cl ¼ Dlo<; l; ¼ 1; 2; . . .; k ð2:23Þ

and their membership functions are as follows

lCl
ðcjÞ ¼

_m

i¼1
flDl
ðuiÞtl<ðrijÞg; for j ¼ 1; 2; . . .; n ð2:24Þ

where l ¼ 1; 2; . . .; k; and

Dl ¼ ½lDl
ðuiÞ�1�m 2 FðUÞ

Cl ¼ ½lCl
ðcjÞ�1�n 2 FðCclassÞ

< ¼ ½l<ðrijÞ�m�n 2 FðU � CclassÞ:
ð2:25Þ

In this case, the error E is taken by summing over all the data set. Thus, (2.10) is
modified as follows:

E ¼
Xk

l¼1

Xn

p¼1

flCl
ðcpÞ � l~Cl

ðcpÞg2 ð2:26Þ

satisfying fl<ðrijÞ ^ ð1� l<ðrijÞÞg� 0, i = 1,2,…,m and j = 1,2,…, n where Cl is

the calculated fuzzy set using (2.24), and ~C is the desired fuzzy set. The iterative
scheme of (2.11) for finding the relation < remains the same. Only the expression
as in (2.11) could be modified as as ¼ 1=ð2� k þ skÞ; which depends on the
number of data k.
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2.4 Modified Approach to Solve Fuzzy Relational Equation

We modify the above said approach to solve the fuzzy relational equation (FRE)
by incorporating a rigorous treatment on the computation of the derivative
max-function and min-function indicated in the (2.21) and (2.22), respectively.

2.4.1 Derivative of Max-Function

Let the maximum value of hi; i ¼ 1; 2; . . .; s be determined by a function called
max—function and defined by

hmax ¼
_s

i¼1
hi: ð2:27Þ

Now, our intention is to calculate the derivative of max-function defined as above
with respect to one of its variables. Hence, we transfer the said max-function of
(2.27) into the following functional form

Gðh1; h2; h3; . . .; hs; hmaxÞ �
Xs

i¼1
fHðhmax � hiÞ � 1g þ Ge ¼ 0 ð2:28Þ

where Hðhmax � hiÞ is the Heaviside function defined by

Hðhmax � hiÞ ¼
1; if hmax [ hi

0; otherwise

�

ð2:29Þ

and Ge is the number of h0is; i ¼ 1; 2; . . .; s that are equal to hmax. Also, it is a
constant and independent of hi; i ¼ 1; 2; . . .; s and hmax.

Now, by using implicit function theorem, we write

ohmax

ohr
¼ oG

ohr
=

oG

ohmax

ð2:30Þ

where r 2 f1; 2; . . .; sg:
We calculate the partial derivatives ðoGÞ=ðohrÞ and ðoGÞ=ðohmaxÞ; using the

derivative of Heaviside function in (B6) of Appendix-B, as follows:

oG

ohr
¼ �dðhmax � hrÞ ð2:31Þ

oG

ohmax

¼
Xs

i¼1
dðhmax � hiÞ ð2:32Þ

where d(*) is the Dirac delta function.
Using Eqs. (2.31) and (2.32) in (2.30), we get
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ohmax

ohr
¼ dðhmax � hrÞPs

i¼1 dðhmax � hiÞ

¼
1

Nmax
; if hmax ¼ hr

0; otherwise
:

� ð2:33Þ

where Nmax , number of terms hi, satisfying the condition hmax ¼ hi; i ¼ 1; 2;
. . .; s i.e., Nmax ¼

Ps
i¼1 dðhmax � hiÞ; which never vanishes because at least one

of h
0
i; si ¼ 1; 2; . . .; s must be equal to hmax. So ðohmaxÞ=ðohrÞ in (2.33) always

exists everywhere.

2.4.2 Derivative of Min-Function

Let the minimum value of hi; i ¼ 1; 2; . . .; s can be determined by a function
called min-function and defined by

hmin ¼
^s

i¼1
hi: ð2:34Þ

Now, our intention is to calculate the derivative of min-function defined as above
with respect to one of its variables. Hence, we transfer the said min—function
(2.34) in the following functional form:

Lðh1; h2; h3; . . .; hs; hminÞ �
Xs

i¼1
fHðhi � hminÞ � 1g þ Le ¼ 0 ð2:35Þ

where Le is the number of h
0

is; i ¼ 1; 2; . . .; s that are equal to hmin. Also it is a
constant independent of hi; i ¼ 1; 2; . . .; s and hmin.

Now, by using the implicit function theorem, we write

ohmin

ohr
¼ � oL

ohr
=

oL

ohmin

ð2:36Þ

where r 2 f1; 2; . . .; sg:
We calculate the partial derivatives ðoLÞ=ðohrÞ and ðoLÞ=ðohminÞ; using the

derivative of Heaviside function in (B6) of Appendix-B, as follows:

oL

ohr
¼ dðhr � hminÞ ð2:37Þ

oL

ohmin

¼ �
Xs

i¼1
dðhi � hminÞ: ð2:38Þ
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Using (2.37) and (2.38) in (2.36), we get

ohmin

ohr
¼ dðhr � hminÞPs

i¼1 dðhi � hminÞ

¼
1

Nmin
; if hmin ¼ hr

0; otherwise

� ð2:39Þ

where Nmin , number of terms hi; i ¼ 1; 2; . . .; s; satisfying the condition
hmin ¼ hi; i.e., Nmin ¼

Ps
i¼1 dðhi � hminÞ; which never vanishes because at least

one of h
0
is; i ¼ 1; 2; . . .; s must be equal to hmin. So ðohminÞ=ðohrÞ in (2.39)

always exists everywhere.
Thus, from the above discussion, we understand that both the derivative of max

and min functions depend on the derivative of the Heaviside function which is
discussed, for general readability of the chapter, in the Appendix-B.

2.4.3 Modified Approach to the Computation of Derivative
of Fuzzy-Max and Fuzzy-Min Functions

For the implementation of the expression of the derivative of fuzzy max and fuzzy
-min functions, we approximate the Delta function using a finite pulse shown in
Fig. 2.1. The motivation behind the approximation of the Delta function by a finite
pulse is to incorporate the notion uncertainties built in the given data, which are all
attached with fuzzy membership functions, indicating their (data) degree of
possibilities to take part in any decision making process. Thus, if we approximate
the Delta function by a finite pulse with width b, that means we try to take care of
the possibilities of all the data that fall within the range of b in our computation of
the derivative of a fuzzy-max and fuzzy-min functions. Using these approxima-
tions, we formulate the approximate derivative of the max and min functions,
respectively, as follows:

ohmax

ohr
	

1
Nmax

; if hmax � hr � b
0; otherwise

�

ð2:40Þ

where Nmax, number of terms hi, satisfying the condition hmax � hi� b; for
i ¼ 1; 2; . . .; s; and the parameter b controls the width of the pulse.

ohmin

ohr
	

1
Nmin

; if hr � hmin� b
0; otherwise

�

ð2:41Þ

where Nmin, number of terms hi, satisfying the condition hi � hmin� b; for
i ¼ 1; 2; . . .; s:
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Now, the expression in (2.13) can be written as

Pij ¼
olCðcjÞ

oflDðuiÞtl<ðrijg
� oflDðuiÞtl<ðrijÞg

ol<ðrijÞ
: ð2:42Þ

Comparing (2.27) with (2.15) we have hmax ¼ lCðcjÞ and hi ¼ lDðuiÞ �
l<ðrijÞ; i ¼ 1; 2; . . .; m: Using (2.40) in the above (2.42) where t : ‘prod’ we
get the derivative, Pij of (2.15) as

Pij ¼
lDðuiÞ
Nmax

; iflCðcjÞ � flDðuiÞ � l<ðrijÞg� b
0; otherwise

�

ð2:43Þ

where i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n: These results are used only for the
problems of Types and II of Sect. 2.2.

Comparing (2.34) with (2.17), we have hmin ¼ lDðuiÞ ^ l<ðrijÞ: Now, there is
only one variable in hmin as given above so Nmin ¼ 1 only when lDðuiÞ� l<ðrijÞ:
Therefore, the derivative

ohmin

ol<ðrijÞ
¼ 1; if lDðuiÞ� l<ðrijÞ

0; otherwise

�

ð2:44Þ

Using (2.44) in (2.42) where t : ‘min’, we get the derivative, Pij of (2.17) as

Pij ¼
1

Nmax
iflCðcjÞ � flDðuiÞ ^ l<ðrijÞg� b

and lD uið Þ� l< rij

� �

0 otherwise

8
<

:
ð2:45Þ

Fig. 2.1 Approximation of
Delta function d (x)
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where i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n: These results are used only for the
problems of Types III and IV of Sect. 2.2.

2.4.4 Algorithm for the Estimation of <

This algorithm gives the step-by-step calculation of < using the modified
computational approach.

Step (1) Start with an initial trial values of <ð0Þ ¼ ½l<ðrijÞ�m�n such that
fl<ðrijÞ ^ ð1� l<ðrijÞÞg� 0:

Step (2) Set the width of the pulse b, convergent factor j, the error threshold e,
and maximum number of iterations smax. Set the initial iteration number s = 0.

Step (3) Set new iteration number s ¼ sþ 1:
Step (4) Using the given fuzzy data Dl and ~Cl; evaluate Cl by (2.23) and E by

(2.26).
Step (5) Evaluate ðoEÞ=ðol<ðrijÞÞ; in (2.12) using (2.43) (for the problems of

Types III and IV) for i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n and as.
Step (6) Update the values of l<ðrijÞ using the Newton’s iterative scheme [see

(2.11)], l<ðrijÞ sþ1ð Þ ¼ l<ðrijÞ sð Þ � a � oE
ol< rijð Þ j< ¼ <

sð Þ;where i ¼ 1; 2; . . .; m and

j ¼ 1; 2; . . .; n:

Table 2.1 Fuzzy sets D1
l ; D2

l ;
~Cl; l ¼ 1; 2. . .. . .8 for the fuzzy system

1 Membership values of fuzzy set

D1
l D2

l
~Cl

1 0.00 0.27 0.80 0.97 0.11 0.00 0.00 0.00 0.35 0.80 0.11
2 1.00 0.23 0.00 0.00 0.35 1.00 0.00 0.08 0.66 0.30 0.18
3 0.00 0.05 1.00 0.08 0.70 0.30 0.00 0.00 0.03 0.15 0.70
4 0.38 0.92 0.00 0.00 0.02 0.15 0.95 0.01 0.12 0.38 0.71
5 0.37 0.48 0.00 0.00 0.10 0.30 0.90 0.02 0.20 0.37 0.37
6 0.00 0.90 0.02 0.00 0.10 0.45 0.02 0.00 0.12 0.30 0.36
7 0.20 1.00 0.08 0.00 0.12 0.50 0.01 0.02 0.13 0.33 0.40
8 0.75 0.12 0.00 0.00 0.10 0.15 0.80 0.01 0.25 0.75 0.60

Table 2.2 Fuzzy sets Dl; l ¼ 1; 2; . . .. . .8 for type I

1 Membership values of fuzzy set Dl

1 0.00 0.00 0.00 0.00 0.27 0.11 0.00 0.00 0.80 0.11 0.00 0.00
2 0.00 0.35 1.00 0.00 0.00 0.23 0.23 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.08 0.70 0.30 0.00
4 0.00 0.02 0.15 0.38 0.00 0.02 0.15 0.92 0.00 0.00 0.00 0.00
5 0.00 0.10 0.30 0.37 0.00 0.10 0.30 0.48 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.10 0.45 0.02 0.00 0.02 0.02 0.02
7 0.00 0.12 0.20 0.01 0.00 0.12 0.50 0.01 0.00 0.08 0.08 0.01
8 0.00 0.10 0.15 0.75 0.00 0.10 0.12 0.12 0.00 0.00 0.00 0.00
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Step (7) Now test whether fl<ðrijÞ ^ ð1� l<ðrijÞÞg� 0 or not, for all i ¼
1; 2; . . .; m and j ¼ 1; 2; . . .; n: If not, then construct a set of index pairs NF ¼
fði; jÞ=fl<ðrijÞ ^ ð1� l<ðrijÞÞg\0; i ¼ 1; 2; . . .; m and j ¼ 1; 2; . . .; n}. Set
fl<ðrijÞ ^ ð1� l<ðrijÞÞg ¼ 0; 8ði; jÞ 2 NF:

Step (8) Repeat from Step 3 until E\ 2 and/or s ¼ smax:

2.4.5 Illustration of the Modified Approach to the Estimation of <

We illustrate the modified method based on the data set (see Table 2.1) given by
Pedrycz (1983). Here, U ¼ U1 � U2; card (U1) = m1 = 3, and card (U2) =

m2 = 4. Therefore, card (U) = m1 9 m2 = 12. Now the membership values of Dl 2
FðUÞ; given by the formula lDl

ðuiÞ ¼ ðlD1
l
ðu1

i1
Þ ^ lD2

l
ðu2

i2
ÞÞ; where i ¼ 4ði1 � 1Þ þ

i2; i1 ¼ 1; 2; 3 and i2 ¼ 1; 2; 3; 4; are shown in Table 2.2, and those of Dl obtained by
the formula lDl

ðuiÞ ¼ ðlD1
l
ðu1

i1
Þ � lD2

l
ðu2

i2
ÞÞ; where i ¼ 4ði1 � 1Þ þ i2; i1 ¼ 1; 2; 3;

and i2 ¼ 1; 2; 3; 4 are shown in Table 2.3. We start with an initial trial values
l<ðrijÞ ¼ 0; i ¼ 1; 2; . . .12 and j ¼ 1; 2; 3; 4: The value j = 10-4 is chosen to
ensure good convergence properties. The width of the pulse is b ¼ 0:05: The error
threshold is e ¼ 10�3; and the maximum number of iterations is smax 500. The values
of the error, calculated every 25 steps of iterations, are displayed in Fig. 2.2. The
solutions of<s, of the problems of Types I and II of Sect. 2.2, are shown in Table 2.4.

2.5 Design of the Classifier Based on Fuzzy Relational
Calculus

In classifier design (see Fig. 2.3), two phases exist, namely, the learning phase
(training phase), where we estimate the fuzzy relation < based on the algorithm of
Sect. 2.4.4, and the testing phase (classification phase), where we test the
performance of the classifier using (2.3) which involves the expression <.

Table 2.3 Fuzzy sets Dl; l ¼ 1; 2; . . .. . .8 for type II

1 Membership values of fuzzy set Dl

1 0.00 0.00 0.00 0.00 0.26 0.03 0.00 0.00 0.77 0.09 0.00 0.00
2 0.00 0.00 0.35 1.00 0.00 0.08 0.23 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.70 0.70 0.30 0.00
4 0.00 0.01 0.06 0.36 0.00 0.02 0.14 0.87 0.00 0.00 0.00 0.00
5 0.00 0.04 0.11 0.33 0.00 0.05 0.14 0.43 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.09 0.40 0.02 0.00 0.00 0.01 0.00
7 0.00 0.02 0.10 0.01 0.00 0.12 0.50 0.01 0.01 0.01 0.04 0.00
8 0.00 0.07 0.11 0.60 0.00 0.01 0.02 0.10 0.00 0.00 0.00 0.00
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At the beginning of the training phase, we discretize (quantize) the individual
feature axis and the entire pattern space in the following way.

Determine the lower and upper bounds of the data of ith feature value. Let f i
j be

the j th data of the ith feature Fi, and let di be the length of segmentation along ith
feature axis.

Minimum of the data f i
j ; j ¼ 1; 2; . . . of the ith feature is f i

min ¼ minjðf i
j Þ. Let

ri
min be the remainder when f i

min is divided by di Therefore, the lower bound of the
ith feature axis is

Fig. 2.2 Squared error (E) against each 25 iteration (s)

Table 2.4 Solutions of relation < of problems type I and type II

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.02
0.08 0.67 0.30 0.18 0.08 0.67 0.30 0.14
0.01 0.33 1.00 0.80 0.02 0.43 1.00 1.00
0.00 0.02 0.04 0.01 0.00 0.03 0.03 0.01
0.01 0.05 0.05 0.04 0.01 0.02 0.03 0.03
0.01 0.21 0.67 0.80 0.02 0.26 0.70 0.83
0.01 0.09 0.19 0.78 0.02 0.12 0.43 0.82
0.00 0.44 1.00 0.07 0.00 0.45 1.00 0.14
0.00 0.02 0.04 1.00 0.00 0.01 0.03 1.00
0.00 0.01 0.01 0.05 0.00 0.00 0.01 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Type I Type II
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LBi ¼
f i
min; if ri

min ¼ 0
f i
min � ri

min; otherwise:

�

ð2:46Þ

This LBi is taken as the ith coordinate of the origin.
Again, maximum of the data f i

j ; j ¼ 1; 2; … of the ith feature is f i
max ¼

maxjðf i
j Þ: Let ri

max be the remainder when f i
max is divided by di. Therefore, the

upper bound of the ith feature axis is

UBi ¼
f i
max; if ri

max ¼ 0
f i
max þ ðdi � ri

maxÞ; otherwise:

�

ð2:47Þ

Fig. 2.3 Classifier based on fuzzy relational calculus
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Let Ui be the universe of discourse on the ith feature axis Fi; then, Ui has
mi ¼ ðUBi � LBiÞ=di generic elements and these are ui

j; j ¼ 1; 2; . . .. . .; mi which
we define as follows

ui
j ¼

½LBi þ ðj� 1Þ � di; LBi þ j � diÞ�
for j ¼ 1; 2; . . .; ðmi � 1Þ
½LBi þ ðmi � 1Þ � di;UBi�
for j ¼ mi:

8
>><

>>:
ð2:48Þ

Let the universe on the ith feature axis Ui ¼ fui
1; u

i
2; . . .; ui

mi
g:. Let the Cartesian

product space of the universe Ui; i � 1; 2; . . .; c be U, i.e., U ¼ U1 � U2 �
� � � � Uc having elements each of type ui ¼ ðu1

i1
; u2

i2
; . . .; uc

ic
=up

ipeUp; p ¼
1; 2; . . .; cÞ; where i ¼

Pc�1
p¼1ðPc

l [ pmlÞðip � 1Þ þ ic for each ip ¼ 1; 2; . . .; mp;

p ¼ 1; 2; . . .; c:
Now, we define ki fuzzy sets on Ui, say, Di

j; j ¼ 1; 2; . . .; ki which are in shown
in Table 2.5. So there are k ¼ Pc

j¼1kj fuzzy If–Then rules as follows:

Rl: If F1 is D1
j1

and F2 is D2
j2

and… Fc is Dc
jc

, then C is Cl 2 FðCclassÞ; where

l ¼
Pc�1

p¼1
ðPc

q [ pkqÞðjp � 1Þ þ jc for each jp = 1,2,…, kp, p = 1,2,…, c, and Cclass

is the universe of discourse constructed by all the classes in the pattern space, i.e.,
Cclass ¼ fc1; c2; . . .; cng:

If Dl is the fuzzy set which is a fuzzy pattern vector (see Definition 1.1) formed
by the antecedent clauses of the rule Rl, i.e., Dl 2 FðUÞ; then the membership
value of the belongingness of ui in Dl is determined by (2.8). According to the
fuzzy implication method, we write <: FðU1Þ � FðU2Þ � � � � � FðUcÞ !
FðCclassÞ:

The membership value of the class cp 2 Cclass when D1
j1

is on U1, D2
j2

is on U2,
etc., is taken in the following way:

lCl
ðCpÞ ¼

_

ui2cp \FZðD1
j1
;D2

j2
;...;Dc

jc
ÞðlDl

ðuiÞÞ ð2:49Þ

Table 2.5 Fuzzy sets in F (Ui)

(*) ui
1 ui

2 . . . . . . . . . ui
mi

Di
1 lDi

1 ui
1

� �
lDi

1 ui
2

� �
. . . . . . . . . lDi

1 ui
mi

� �

Di
2 lDi

2 ui
1

� �
lDi

2 ui
2

� �
. . . . . . . . . lDi

2 ui
mi

� �

..

. ..
. ..

. ..
. ..

.

Di
ki

lDi
ki

ui
1

� �
lDi

ki
ui

2

� �
. . . . . . . . . lDi

ki
ui

mi

� �
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where FZðD1
j1
;D2

j2
; . . .;Dc

jc
Þ is the zone which represents the tip of the fuzzy pattern

vector (see Fig. A.1 in Appendix-A) and is constructed by the fuzzy sets
D1

j1
; D2

j2
; . . .; Dc

jc
of the rule Rl, where jp = 1, 2, …, kp for each p = 1, 2, …, c.

For two-dimensional (2-D) pattern space, we may construct the rules in the
compact form as shown in Table 2.6.

Ri1i2 : If F1 is D1
i1

and F2 is D2
i2
; then C is Ci1i2eFðCclassÞ and the membership

value of each class cp; pef1; 2; . . .; ng of the fuzzy set Ci1i2 ; where il = 1, 2, …, kl,
l = 1, 2 will be determined by (2.49). Based on the generated fuzzy rules as stated
above, we estimate the fuzzy relation < at the end of training phase using the
algorithm of the Sect. 2.4.4. In the course of estimating <, if the error given by
(2.26) does not reach the desired threshold, even after a sufficient number of
iterations, we may have to modify the initial fuzzy if–then rules to represent our
knowledge about the training data set. On the other hand, after reaching the error
threshold, we cross-verify the quality of the estimated < by checking the classi-
fication score of the training data set (based on the fuzzy if–then rules which were
initially generated for estimating <). If the classification score of the training data
set (which are fuzzified by fuzzy masking at the time of testing) does not reach the
satisfactory threshold (say 80 % recognition score is set as threshold), we may
have to modify the initial fuzzy if–then rules to represent our knowledge about the
training data set. After satisfactory estimation of <, we switch over to the testing
phase (classification phase), where we consider the classification of data which
does not belong to the training data set.

At the testing phase (classification phase), we use (2.3), as stated in Sect. 2.1.
The features of the selected patterns are fuzzified using the concept of the fuzzy
masking. The classification results obtained from (2.3) produces a fuzzy set C ¼
Pn

i¼ 1 lCðciÞ=ci; which represents the degree of occurrence of each test pattern at
different classes in the quantized pattern space. We, thus, get a fuzzy classification
of a test pattern. To calculate the recognition score from the above result, we have
to go through a certain decision process. In the first stage of our decision process,
we increase the level of confidence by prescribing a a-cut of the fuzzy set C, i.e.,

Ca ¼ fci=lCðciÞ� a; ci 2 Cclassg:

If Ca ¼ 0 (empty set), then the given test pattern is not recognized by the
present classifier. Otherwise;

Table 2.6 Fuzzy sets in F (Cclass) for o2‘min’, ‘prod’}

(o) D2
1 D2

1 . . . . . . . . . D2
k2

D1
1 C11 C12 . . . . . . . . . C1k2

D1
2 C21 C22 . . . . . . . . . C2k2

..

. ..
. ..

. ..
. ..

.

D1
k1

Ck11 Ck12 . . . . . . . . . Ck1k2
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hgt Cð Þ ¼
_

ci2Ca
lCðciÞ:

Now, we get the set of recognized classes as

Classrecognize ¼ fci=hgtðCÞ � lCðciÞ� h; ci 2 Cag

where h is a small threshold prescribed by the designer to capture the relative
change in membership values among the elements of the recognized classes
Classrecognize:

1. In case Classrecognize is a singleton set, then the given test pattern is recognized
uniquely.,

2. Otherwise, multiple classifications of the given test pattern occur.

The notion multiple classification is very natural in the case of test patterns
occurring at overlapped classes. Such choice of multiple classifications sometimes
stands as a kind of grace, to take care of all uncertainties (e.g., uncertainties in the
representation knowledge about training patterns, uncertainties in the process of
fuzzification, through fuzzy masking, of the test patterns etc.) in our classification
process.

2.6 Effectiveness of the Proposed Method

To test the effectiveness of our design, as stated in Sect. 2.4, we consider the
classification of two synthetic data as shown in Figs. 2.4 and 2.5. At the time of
writing fuzzy If–Then rules for the classifier, we may consider complete cover of

Fig. 2.4 First synthetic data
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the pattern space (see Appendix-A), but as the consideration of complete cover of
the pattern space does not bring any significant change in classification score, for
practical purposes, without loss of generality, we consider partial cover of the
pattern space.

2.6.1 Classification of First Synthetic Data

For the data shown in Fig. 2.4, we choose length of segmentations d1 = 0.5 = d2.
Therefore, we get LB1 ¼ 0 ¼ LB2 by (2.46) and UB1 ¼ 6 ¼ UB2 by (2.47). Thus,
m1 = (UB1 - LB1)/d1 = 12 and m2 = (UB2 - LB2)/d2 = 12.

1. For the Problem of Type I of Sect. 2.2 We define k1 = 4 fuzzy sets on U1 and
k2 = 3 fuzzy sets on U2 which are shown in Tables 2.7 and 2.8 respectively and
k ¼ k1 � k2 ¼ 12 fuzzy If–Then rules and their consequent parts are shown in
Table 2.9.

Now we start with initial trial values of l<ðrijÞ ¼ 0; i = 1,2,…, m and
j = 1,2,…, n, k = 10-3, b = 0.05, e = 10-2, Smax ¼ 500 and terminate the
iteration scheme at Smax. The classification scores are shown in Table 2.10.

2. For the Problem of Type II of Sect. 2.2: We define k1 = 4 fuzzy sets on U1 and
k2 = 4 fuzzy sets on U2, so we can find k ¼ k1 � k2 ¼ 16 fuzzy If–Then rules.

Fig. 2.5 Second synthetic
data
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Table 2.7 Fuzzy sets in F (U1) for the first synthetic data for the problem of type I

(*) u1
1 u1

2 u1
3 u1

4 u1
5 u1

6 u1
7 u1

8 u1
9 u1

10 u1
11 u1

12

D1
1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

D1
2 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0

D1
3 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0

D1
4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3

Table 2.8 Fuzzy sets in F(U2) for the first synthetic data for the problem of type I

ð
Þ u2
1 u2

2 u2
3 u2

4 u2
5 u2

6 u2
7 u2

8 u2
9 u2

10 u2
11 u2

12

D2
1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

D2
2 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0

D2
3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3

Table 2.9 Fuzzy sets in F (Cclass) for the first synthetic data for the problem of type I

Rule Antecedent part Consequent part

l F1 and F2 c1 c2 c3 c4 c5 c6

R1 D1
1 and D2

1 1.00 0.70 0.00 0.10 0.10 0.00

R2 D1
1 and D2

2 0.30 0.30 0.00 1.00 0.70 0.10

R3 D1
1 and D2

3 0.00 0.00 0.00 0.70 0.70 0.10

R4 D1
2 and D2

1 0.70 1.00 0.70 0.10 0.30 0.30

R5 D1
2 and D2

2 0.30 0.70 0.70 0.70 1.00 1.00

R6 D1
2 and D2

3 0.00 0.00 0.00 0.70 1.00 0.70

R7 D1
3 and D2

1 0.10 1.00 1.00 0.10 0.30 0.30

R8 D1
3 and D2

2 0.10 0.70 0.70 0.10 1.00 1.00

R9 D1
3 and D2

3 0.00 0.00 0.00 0.10 0.70 1.00

R10 D1
4 and D2

1 0.00 0.30 1.00 0.00 0.10 0.30

R11 D1
4 and D2

2 0.00 0.10 0.70 0.00 0.30 1.00

R12 D1
4 and D2

3 0.00 0.00 0.00 0.00 0.30 1.00

Table 2.10 Classification scores of first synthetic data for the problem of type I

From To Number of data Recognition score (%)

A B C D E F

A 109 2 0 0 0 0 116 93.97
B 7 105 16 0 1 1 117 89.74
C 0 71 71 0 1 1 79 89.87
D 0 0 0 77 10 9 89 86.52
E 0 28 0 1 135 98 151 89.40
F 0 2 0 0 64 111 115 96.52
Total 109 105 71 77 135 111 91.15
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Now we start with initial trial values of l<ðrijÞ ¼ 0; i = 1,2,…, m and
j = 1,2,…, n, ji = 10-3, b = 0.05, e = 10-2, Smax ¼ 500 and terminate the
iteration scheme at Smax. The classification scores are shown in Table 2.11.

2.6.2 Classification of Second Synthetic Data

For the data shown in Fig. 2.5, we choose length of segmentations d1 ¼ 0:5 ¼ d2:
Therefore, we get, LB1 ¼ 0 ¼ LB2 by (2.46) and UB1 ¼ 6 ¼ UB2 by (2.47). Thus,
m1 ¼ ðUB1� LB1Þ=d1 ¼ 12 and m2 ¼ ðUB2 � LB2Þ=d2 ¼ 12: By (2.48), we get

U1 ¼ fu1
1; u

2
2; . . .; u1

12g
U2 ¼ fu2

1; u
2
2; . . .; u2

12g:

For both of the problems of Types I and II of Sect. 2.2, we define j1 ¼ 3 f _uzzy
sets on U1 and j2 = 4 fuzzy sets on U2 so we can fmd j = j1 9 j2 = 12 fuzzy
If–Then rules.

Now, for both the problems, we start with initial trial values of l<ðrijÞ ¼ 0;
i = 1,2,…, m and j = 1,2,…, n, j = 10-3, b = 0.05, e = 10-2, Smax = 500 and
terminate the iteration scheme at Smax. The classification scores are shown in
Table 2.12.

2.7 Applications

After achieving satisfactory results on a synthetic set of data, we apply the
proposed design for the vowel classification problem of an Indian language,
namely Telugu.

Table 2.11 Classification scores of first synthetic data for the problem of type II

From To Number of data Recognition score (%)

A B C D E F

A 114 6 0 5 4 4 116 93.28
B 10 110 18 2 3 3 117 94.02
C 0 73 73 0 1 1 79 92.41
D 0 0 0 79 12 11 89 88.76
E 0 28 0 3 137 117 151 90.73
F 0 3 1 0 65 113 115 98.26
Total 114 110 73 79 137 113 93.85
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2.7.1 Experimental Results

A number of discrete phonetically balanced speech samples for the vowels of
Telugu language in CNC (consonant–vowel nucleus-consonant) form are selected.
A CNC combination is taken because the form of consonants connected to a vowel
is responsible for influencing the role and quality of vowels. These speech units are
recorded by five informants on an AKAI type recorder. The spectrographic analysis
has been done on Kay Sona-graph Model 7029-A, which is a very standard audio
frequency spectrum analyzer that produces a permanent record of the spectra of any
complex waveform in the range of 5 Hz to 16 kHz. For the present study of vowels,
the spectrographic representation of frequency versus time has been done for 800
Telugu words uttered by three male informants in the age group of 25–30 year
chosen from 15 educated persons. The total bandwidth of the system is 80 Hz to
8 kHz with a resolution of 300 Hz. The experiment deals with the formant
frequencies at the steady state of the Telugu vowels and their variations on different
consonantal context and for different speakers. The average positions (see
Table 2.13) of different Telugu vowels with respect to cardinal vowels and their
distribution in F1–F2 frequency planes are considered (see Fig. 2.6). The present
investigation has been carried out with the Telugu vowels (listed in Table 2.13)
both short and long. It is well known that the first three formant frequencies carry
most of the information regarding the vowel quality. But for all practical purposes
of vowel classification, we can use the first two formant frequencies, i.e., F1 and F2.

In the following, we discuss the classification results for Telugu vowels.
For the data shown in Fig. 2.6, we choose length of segmentations d1 = 50 and

d2 = 100. Therefore, we get, LB1 = 200 and LB2 = 600 by (2.46) and UB1 = 850
and UB2 = 2600 by (2.47). Thus, m1 = (UB1 - LB1)/d1 = 13 and m2 =

(UB2 - LB2)/d2 = 20. By (2.48), we get

Table 2.12 Classification scores of second synthetic data

(a) Problem of Type I

From To Number of data Recognition score (%)

A B C

A 287 13 6 287 100.00
B 8 96 0 97 98.97
C 12 0 99 100 99.00
Total 287 96 99 99.59

(b) Problem of Type II

From To Number of data Recognition score (%)

A B C

A 283 43 38 287 98.61
B 2 96 0 97 98.97
C 3 0 99 100 99.00
Total 283 96 99 98.76
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U1 ¼ fu1
1; u

1
2; . . .; u1

13g
U2 ¼ fu2

1; u
2
2; . . .; u2

20g:

For both the problems of Types I and II of Sect. 2.2, we define j1 = 5 fuzzy
sets on U1 and j2 = 7 fuzzy sets on U2, so we can fmd j = j1 9 j2 = 35 fuzzy
If–Then rules.

Fig. 2.6 Telugu vowels

Table 2.13 Average formant frequencies of Telugu vowel

Phonetic symbol Average format frequencies (Hz)

F1 F2 F3

/q/ 606 1,473 2,420
/a:/ 710 1,240 2,400
/i‘/ 365 2,116 2,757
/i:/ 325 2,260 2,836
/ua/ 370 1,066 2,500
/u:/ 348 923 2,543
/e‘/ 517 1,796 2,633
/e:/ 470 1,883 2,633
/oa/ 476 1,133 2,630
/o:/ 486 1,000 2,540
/ae/ 575 1,744 2,700
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Now, for both the problems, we start with initial trial values of l<ðrijÞ ¼
0; 1; 2; . . .; m and j ¼ 1; 2; . . .; n; j; ¼ 10�3; b ¼; 0:05; e ¼ 10�2; Smax ¼
1000 and terminate the iteration scheme at Smax. The classification scores are
shown in Tables 2.14 and 2.15.

2.8 Comparative Study

In Table 2.16 we have compared the performance (in terms of recognition score)
of the present classifier with those of some existing ones. The results shown in
Table 2.16 indicate that the performance of the present design of the classifier is
comparable with those of some existing ones.

2.9 Conclusion

In this chapter, we consider a particular interpretation [i.e., (a) of (2.1)] of MFI and
introduce a notion of fuzzy pattern vector which represents the antecedent part of
the interpretation (a) of (2.1). The advantage of considering such notion is two-
fold. First, we can describe a population of training patterns by linguistic features.

Table 2.15 Classification scores of Telugu Vowel for the problem of type II

From To Number of data Recognition score (%)

a e i o u q

a 82 4 0 29 0 74 83 98.80
e 7 196 52 21 7 83 200 98.00
i 0 50 126 0 0 0 133 94.74
o 16 26 0 114 72 30 116 98.28
u 0 10 0 48 108 2 112 96.43
q 40 32 0 19 1 65 66 98.48
Total 82 196 126 114 108 65 97.32

Table 2.14 Classification scores of Telugu vowel for the problem of type I

From To Number of data Recognition score (%)

a e i o u d

a 82 4 0 29 0 74 83 98.80
e 7 193 52 21 7 82 200 96.50
i 0 48 119 0 0 0 133 89.47
o 15 26 0 114 72 30 116 98.28
u 0 10 0 48 107 2 112 95.54
d 41 32 0 19 1 65 66 98.48
Total 82 193 119 114 107 65 95.77
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Second, the notion of fuzzy pattern vector helps us formulate the consequent part
of (a) of (2.1) (see Example A.1 of Appendix-A). We develop a new approach to
the computation of the derivative of the fuzzy max/min function. A detail design of
pattern classifier based on FRC is developed and very promising results are
obtained. We compute the performance of the present classifier with those of some
existing classifiers and get satisfactory response. A neural net (Pao 1989) version
of the present design to estimate the fuzzy relation < (for classification problem)
would be the scope for future work. In the present design study we have only
considered the problems of Types I and II of Sect. 2.2. Similar results are also
obtainable for the problems of Types III and IV.
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