Chapter 2
Pattern Classification Based
on Conventional Interpretation of MFI

Abstract Our aim is to design a pattern classifier using fuzzy relational calculus
(FRC) which was initially proposed by Pedrycz (Pattern Recognition 23 (1/2),
121-146, 1990). In the course of doing so, we first consider a particular inter-
pretation of the multidimensional fuzzy implication (MFI) to represent our
knowledge about the training data set. Subsequently, we introduce the notion of a
fuzzy pattern vector to represent a population of training patterns in the pattern
space and to denote the antecedent part of the said particular interpretation of the
MFI. We introduce a new approach to the computation of the derivative of the
fuzzy max-function and min-function using the concept of a generalized function.
During the construction of the classifier based on FRC, we use fuzzy linguistic
statements (or fuzzy membership function to represent the linguistic statement) to
represent the values of features (e.g., feature F; is small and F, is big) for a
population of patterns. Note that the construction of the classifier essentially
depends on the estimate of a fuzzy relation } between the input (fuzzy set) and
output (fuzzy set) of the classifier. Once the classifier is constructed, the nonfuzzy
features of a pattern can be classified. At the time of classification of the nonfuzzy
features of the test patterns, we use the concept of fuzzy masking to fuzzify the
nonfuzzy feature values of the test patterns. The performance of the proposed
scheme is tested on synthetic data. Finally, we use the proposed scheme for the
vowel classification problem of an Indian language.

2.1 Introduction

In real world pattern classification problems, fuzziness is connected with diverse
facets of cognitive activity of human being. The sources of fuzziness are related
to labels expressed in pattern space, as well as, labels of classes taken into
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16 2 Pattern Classification Based

account in classification procedures. Although a lot of scientific developments
have already been made in the area of pattern classification, existing techniques
of pattern classification remain inferior to the human classification processes
which perform extremely complex tasks. Hence, we attempt to develop a plau-
sible tool using fuzzy relational calculus (FRC) for modeling and mimicking the
cognitive process of human reasoning for pattern classification. The FRC
approach to pattern classification can take care uncertainties in feature values of
patterns under different conditions like measurement error, noise, etc. Though
there are several existing approaches to designing a classifier using the concept of
fuzzy set/fuzzy logic (Mori 1983; Mori and Laface 1980; Hirota 1988; Seif and
Aguilar-Martin 1980; Dubois and Jaulent 1985; Hirota et al. 1987; Huntsberger
et al. 1985; Kickert and Koppleaar 1986; Siy and Chen 1974; Shimura 1975;
Huntsberger et al. 1986; Lee 1972; Zadeh et al. 1975; Bortolan and Degani 1983;
Bortolan et al. 1988; Degani and Bortolan 1987a, b; Pedrycz 1985a, b, c;
Watanabe 1985; Kumar 1977; Saitta and Tarasso 1981; Woodbury and Clive
1974; Bezdek and Pal 1992; Simpson 1992), we have selected the concept
proposed by Pedrycz (1990) and suitably modified it to incorporate our new
concept of computation of the derivative of the fuzzy max—function and min—
function. To represent the knowledge about the training data set, we consider the
conventional interpretation of multidimensional fuzzy implication (MFI) (Sugeno
and Takagi 1983; Tsukamoto 1979). We introduce a novel notion of fuzzy pattern
vector as stated in Appendix-A to represent a population of patterns (a set of
patterns) in the pattern space. It represents the antecedent part of the said par-
ticular interpretation of the MFI to meaningfully carry out the task of pattern
classification using FRC. During the construction of the classifier based on FRC,
we use fuzzy linguistic statements (or fuzzy membership function to represent the
linguistic statement) to represent the values of features (e.g., feature F; is small
and F, is big) for a population of patterns (a set of patterns) represented by the
above said notion of Fuzzy pattern vector. Note that the construction of the
classifier essentially depends on the estimation of a fuzzy relation R between the
antecedent part and consequent part of the rules. As, for a given problem of
pattern classification and object recognition, there is no specific guideline to
select a particular logical operator, e.g., Mamani’s min operator, Zadeh’s arith-
metic rule etc. (Mizumoto 1985; Zadeh 1970) to translate a fuzzy implication to a
fuzzy relation we estimate it (the relation &), based on different learning scheme
using soft computing tools. Thus, in our entire treatment for classification and
recognition we replace logic by learning. The estimated R is the core of the
classifier (recognizer). Once the classifier is constructed, the nonfuzzy features of
a pattern can be classified. At the time of classification of the nonfuzzy features
of the test patterns, we use the concept of fuzzy masking to fuzzify the nonfuzzy
feature values of the test patterns. The performance of the proposed scheme is
tested on synthetic data. Finally, we use the proposed scheme for the vowel
classification problem of an Indian language.
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2.2 Statement of the Problem

For the present problem, let us consider the conventional interpretation of a MFI
[see Appendix-A, Eq. A.1 & A.2] as stated below;

a) if xis A and yis Bthenzis C
or
b) if xis A then yis B then zis C. (2.1)

The notion of a fuzzy pattern vector (see Appendix-A) represents the ante-
cedent clauses of (a) of (2.1) and locates a population of patterns P in the quan-
tized pattern space. Assume that the quantized pattern space consists of “c”
universes U;, U,, ..., U, in the form U = U; x U, x --- x U,, where each U;
represents the universe on the ith feature axis F;, i = 1, 2, ..., c.

Assume that D is a fuzzy relation [formed by the antecedent clauses of (a) of
(2.1)], which is a fuzzy set in quantized product space U, namely up: U — [0, 1].
Also, assume that there exists a set C,,,, of finite number of classes cy, ¢y, ..., ¢,
i.e., Ceuss = {c1,¢2,...,¢n}, by which the finite range of the pattern space is

covered. The consequent clause of a) of (2.1) is a fuzzy set C = 77, p.(¢;) /¢,

where 1.(C;) denotes the degree belongingness of the population of patterns P to
the class ¢;, for j = 1, 2, ..., n (see Example A.1 of Appendix-A). Therefore, by
considering the conventional interpretation of a MFI, the fuzzy set D formed by
the antecedent clauses of (a) of (2.1) is associated with the fuzzy set C which
represents the consequent clause of (a) of (2.1). Hence, there exists a relation
between D and C. More precisely, D and C are related via a certain relation &
(i.e.,DRC), which is presently unknown and has to be estimated, based on the
training data set, for the design of the classifier. Now, for the testing of the
classifier, we specify how C is derived from given D and estimated 8. We may
consider the fuzzy relational equation, namely, a direct equation

C = Do (2.2)

where 0 = max—¢ composition operator, where ¢ is a 7—norm operator.
Equation (2.2) can be rewritten, in terms of the membership function, in the
following form:

:uC(C]) = \/lleU[#D(u)tﬂR(u7cj)] forj=12, ..., n. (2:3)

This explicit form of (2.3) is needed for actual design study of the classifier.
Let us assume that the training set consists of ordered pairs

(Pla C2)7 (P27 C2)7 EER) (Pk7 Ck)
and the classifier relation is supposed to specify a system of equations

Cl :Dloﬂ?l, | = 1,2,3, ey k (24)
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then the fuzzy relation which satisfies (2.4) is given by

~ k
R=_, R (2.5)

But the above mentioned system of equations in (2.4) may not have a solution
(Pedrycz 1990). Hence, in this chapter we look for an approximate solution of the
system of fuzzy relation equations in (2.4).

2.3 Existing Method to Solve Fuzzy Relation Equation

The numerical solution of fuzzy relational equation has been proposed by several
researchers (Wang 1993; Pedrycz 1983, 1985a, b, 1988, 1991, 1995; Ikoma et al.
1993; Hellendoorn 1992; Dinola et al. 1991; Chakraborty 1985; Ovchinnikov and
Riera 1992; Gottwald 1994; Wangming 1986). In this section, we briefly review
the method proposed by Pedrycz (1983). We focus our attention on max—com-
position operator of fuzzy relational equations, which are defined on finite spaces

C = DoR (2.6)

where 0 = max—¢ composition operator, D and C are the fuzzy sets defined on
the universe of discourses U = {uj,uz, ..., upy} and Ceuss = {c1,¢2, ... Cn},
respectively, and R is the fuzzy relation on U X Cpy. Let 1y = (u;, ¢j/u;eU,
¢jeCelass), 1 = 1,2, ..., m, j = 1,2, ..., n; then, the fuzzy sets D and C and fuzzy
relation ¥ are as follows:

D = [pup(ui)] iy € F(U)

C = [uc(c))lixn € F(Cuelass) (2.7)

R = [M?R(rlfi)]mxy, S F(U X Cclass)~

If the universe U of the quantized pattern space consists of ‘c’ features, say F;,

i=12, ..., c, the D is a fuzzy set defined on the quantized product spaces of Uj,
Up, ..., U, that is U= U, X Uy X --- x U, where U; = {u},u,...,u;, } is the
universe of the ith feature axis F; with card (U;) = m;. Let D' be the fuzzy set on
Uy, ie., D' = [up(u)],,,, € F(U;) for i =1, 2, ..., ¢; then, card(U) = m =
[T;_; m: and w; is the ¢ tuple each of type u; = (u] ,ui, ..., uf [uf, € Up,p =
1,2, ..., ¢) and corresponding membership value belonging to D is determined by
(2.8) shown below;

/\p I{MDP MZ,} = ,uDl( )/\,uDz( ) /\NDL( )
(2) H {,uD,, (uy,) = up(u} ) pe (ug ),_,uD(.(ug)

where = ;;ﬁ(n,;pmk)(ip—l)mc, for each i, = 1,2, ..., m,
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Equation (2.6) can be put in the following form:

\/{uD Dtug(ri}, for, j = 1,2, (2.9)

where t is the t-norm operator.

Thus, from (2.8) and (2.9), where ¢ of (2.9) is one of the operators in {prod,
min}, we get following four types of problems:

Type I: by using (1) of (2.8) and # = prod of (2.9);

Type II: by using (2) of (2.8) and ¢+ = prod of (2.9);

Type III: by using (1) of (2.8) and + = min of. (2.9);

Type IV: by using (2) of (2.8) and r = min of (2.9).

Let E be the sum of the square of the error over p = 1,2, ..., n and is defined
by

E = Z,, Aueley) = ne(ey)}? (2.10)

where C is the calculated fuzzy set using (2.9), and C is the desired fuzzy set.

Now, the basic problem is to estimate = [up(r;)],,., via some given D
and C which minimize E defined in (2.10) and satisfying {usp(r;j) A (1 — ug(r;y))}
>0,VvVi=1,2,....mandj=1,2, ..., n

A general method to solve an optimization problem, defined above, is to solve a
set of equations, which form the necessary conditions for a minimum of the square
of the error defined in (2.10). Thus, we have [(OF)/(Opx (7;))],ixn = [0],nxn- NOW,
we discuss the applicability of Newton’s method and its simplification.

The Newton’s iterative scheme for finding the solution of & = [ug(r;j)],,», 18

(s+1) _ ) OF 9
1 (i) = ug(ry)® — o - | % =R (2.11)
! ! dun (ry)
where i = 1,2, ..., mandj = 1,2, ..., n- oy is the convergent factor and also is

an nonincreasing gain factor depending on the number of iteration. It can be
described as oy = 1/(2.0 +s*) - >0 is chosen empirically in order to achieve
good convergent properties and avoid significant oscillations in the iteration
procedure (Pedrycz 1983).

Now

OE
O (ry)

=2{uc(C) — ue(C))}Py (2.12)
where

_ aﬂc(cj)
Oug (i)’

(2.13)
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ie.,
0 m
Pj= ~ [\ {1 ()t (1)}
Opt (ry) -V =1
5 (2.14)
= ) Vo )} Vs e
for i=1,2, ..., mandj=1,2, ..., n.
If we consider -norm operator as “prod,” then the (2.9) is written as
peley) =\ {mp(w) - pp(ry)},  for, j=1,2, .., n (2.15)
and in this case P; in (2.14) is determined as (2.16), for i=1,2, ..., m and
j=12, .., n
P = pp(ui), if Vz;f'{:“D(”p) pp(rp) } < pp(ui) - g (ry) (2.16)
v 0, otherwise.

Again, if we consider #-norm operator as “min”, then (2.9) is written as

#C(Cj) = \/:n:l{:uD(ui) A H?R(rij)}v for, j=1,2, ..., n (217)

and in this case, P;; is determined as

i\ Asolp) A )} < o) A ()

py= 1, i (2.18)
and iy (u;) > g (ry)
0 otherwise

)

fori=1,2, ..., mandj=1,2, ..., n
Here, the derivative of the max—function and min-function in the (2.14),
(2.16), and (2.18), respectively are as follows:

0 1, ifw>a
o (wVa) = {O, ifw<a (2.19)
where a = /o {up (up)tup(ry) } and w = pup (i)t (ry) and
0 _J 1, ifz<b
&&Aw—{a 72 (2.20)

where b = up(u;) and z = pg(r;), which are piecewise differentiable and is
undefined at w = a for max-function in (2.19) and z = b for min-function in
(2.20). Thus, we get some problems in our numerical computation (Ikoma et al.
1993) which may be overcome by defining the derivatives at w = a and z = b,
respectively as follows
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0 _J 1, ifw>a
and
0 _J L ifz<b
a_Z(Z/\b)_{O, l.fZ>b. (222)

Both formulas for the computation of the derivatives of the max and min
functions, as mentioned above, return either O or 1 value of the derivatives. Such
two-valued results of the derivatives have some inherent difficulties, in connection
to the convergence of the solution as mentioned in (Ikoma et al. 1993). To
overcome such difficulties there are some propositions in (Ikoma et al. 1993). In
the following section, we will provide an alternative approach based on general-
ized functions (see Appendix-B).

The above method for solving fuzzy relational equations can be extended to
simultaneous fuzzy relational equations (Pedrycz 1983) as given below.

The simultaneous fuzzy relational equations for given total kK number of data in
the training set are as follows:

C,=DpR, I, =12, ... k (2.23)

and their membership functions are as follows

:uCI C/ \/l l{luDI t:uR(rl])} fOI'j = 1727 ce (224)
where [ = 1,2, ..., k, and

Dy = [pp, (i), € F(U)
G = [:“ (cj)]lxn € F(Celass) (2-25)
R= [:uSR( )]mxn € F(U X Cfl“”)

In this case, the error E is taken by summing over all the data set. Thus, (2.10) is
modified as follows:

k n
E= ; ;{ﬂc, (cp) =t (cp) ) (2.26)

satisfying {up (rj) A (1 — pp(rij))} >0,i = 1,2,...omandj = 1,2,..., n where C; is
the calculated fuzzy set using (2.24), and C is the desired fuzzy set. The iterative
scheme of (2.11) for finding the relation R remains the same. Only the expression
o in (2.11) could be modified as o, = 1/(2 x k + s*), which depends on the
number of data k.



22 2 Pattern Classification Based

2.4 Modified Approach to Solve Fuzzy Relational Equation

We modify the above said approach to solve the fuzzy relational equation (FRE)
by incorporating a rigorous treatment on the computation of the derivative
max-function and min-function indicated in the (2.21) and (2.22), respectively.

2.4.1 Derivative of Max-Function

Let the maximum value of i;, i = 1,2, ..., s be determined by a function called
max—function and defined by

hmax = j:] hi- (227)

Now, our intention is to calculate the derivative of max-function defined as above
with respect to one of its variables. Hence, we transfer the said max-function of
(2.27) into the following functional form

Gy, hy, hay -y by, M) = Y {H(hmax — hi) =1} + Ge =0 (2.28)

where H(hmax — h;) is the Heaviside function defined by

A 17 ifhmax > hi
H(hmax hl) - { 0’ Otherwise (229)
and G, is the number of Ajs, i = 1,2, ..., s that are equal to hy,x. Also, it is a
constant and independent of h;, i = 1,2, ..., s and hpax.
Now, by using implicit function theorem, we write
Ohmaxy  0G , 0G
= (2.30)

Oh, — Oh,' Ol

where r € {1,2, ..., s}.
We calculate the partial derivatives (0G)/(0h,) and (0G)/(Ohmax), using the
derivative of Heaviside function in (B6) of Appendix-B, as follows:

oG
= —0(hmax — hy 2.31
o o( ) (2.31)
oG s
T > 3(max — hi) (2.32)

where 6(*) is the Dirac delta function.
Using Egs. (2.31) and (2.32) in (2.30), we get
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6hmax _ 5(hmax - hr)
Oy 321y O(hmax — hi)
_ {anm ) ifhmax = hr

0, otherwise

(2.33)

where Ny, 2 number of terms h;, satisfying the condition Amay = h;, i = 1,2,
<y S 1.6, Nmax = D_i_; 0(hmax — hi), which never vanishes because at least one

of h;, si=1,2, ..., s must be equal t0 Ayax. SO (Ohmax)/(0h,) in (2.33) always
exists everywhere.

2.4.2 Derivative of Min-Function

Let the minimum value of h;, i = 1,2, ..., s can be determined by a function
called min-function and defined by

hmin = j:l hi- (234)

Now, our intention is to calculate the derivative of min-function defined as above
with respect to one of its variables. Hence, we transfer the said min—function
(2.34) in the following functional form:

L(hy by hs, oy hain) = {H(Bi = hin) = 1} + Lo = 0 (2.35)

where L, is the number of h;s, i=1,2, ..., sthat are equal to h,,,. Also itis a
constant independent of #;, i=1,2, ..., s and Ay,.
Now, by using the implicit function theorem, we write

Ohmin _ OL / oL
oh, ~ oh,' Ohm

(2.36)

where r € {1,2, ..., s}.
We calculate the partial derivatives (OL)/(0h,) and (OL)/(Ohmin), using the
derivative of Heaviside function in (B6) of Appendix-B, as follows:

oL

3 = Ok = i) (2.37)

oL ;
= = (ki = hunin). (2.38)
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Using (2.37) and (2.38) in (2.36), we get
ahmin 6(hr - hmin)

Ohy >0, O(hi — huin)

) 2.39
_ {Ni‘i“ ) lfhmin = hr ( )
0, otherwise
where Ny, & number of terms h;, i =1,2, ..., s, satisfying the condition

hmin = hi, 1.6, Nin = Y iy 6(hi — hmin), Which never vanishes because at least
one of h;s, i=1,2, ..., s must be equal to hpip. SO (Ohmin)/(0h,) in (2.39)
always exists everywhere.

Thus, from the above discussion, we understand that both the derivative of max
and min functions depend on the derivative of the Heaviside function which is

discussed, for general readability of the chapter, in the Appendix-B.

2.4.3 Modified Approach to the Computation of Derivative
of Fuzzy-Max and Fuzzy-Min Functions

For the implementation of the expression of the derivative of fuzzy max and fuzzy
-min functions, we approximate the Delta function using a finite pulse shown in
Fig. 2.1. The motivation behind the approximation of the Delta function by a finite
pulse is to incorporate the notion uncertainties built in the given data, which are all
attached with fuzzy membership functions, indicating their (data) degree of
possibilities to take part in any decision making process. Thus, if we approximate
the Delta function by a finite pulse with width 5, that means we try to take care of
the possibilities of all the data that fall within the range of f in our computation of
the derivative of a fuzzy-max and fuzzy-min functions. Using these approxima-
tions, we formulate the approximate derivative of the max and min functions,
respectively, as follows:

OMmax ' if hpax — e <f
Zmax o J Now? max r > )
oh, { 0, otherwise (2.40)
where Npax= number of terms /;, satisfying the condition Ay, — h; < f3, for
i=1,2, ..., s, and the parameter 5 controls the width of the pulse.
ahmin 1 lf hy — hpin < ﬁ
~ Nmin b} r min = .
oh, { 0, otherwise (2:41)

where Npin2= number of terms h;, satisfying the condition A; — hy, < f3, for
i=1,2, ... s.
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Fig. 2.1 Approximation of 3 (x)
Delta function 6 (x) &k
A
1
L[]
L]
)
2 3
'
Y > X
o€--pg->»

B = width of the pulse

Now, the expression in (2.13) can be written as

Py — Ouc(ey)  O{pup(ui)tun(ry)} (2.42)
O{ up (i)t (i} O (rs)
Comparing (2.27) with (2.15) we have Amw = pe(c;) and by = up(w;) -
up(ry), i=1,2, ..., m. Using (2.40) in the above (2.42) where t = ‘prod’ we
get the derivative, P; of (2.15) as

py— L5 ifne(e) — {mp(m) - ua(ry)} < B (2.43)
' 0, otherwise
where i = 1,2, ..., m and j= 1,2, ..., n. These results are used only for the

problems of Types and II of Sect. 2.2.

Comparing (2.34) with (2.17), we have hyin = up(ui) A up(rj). Now, there is
only one variable in /i, as given above so Nyin = 1 only when gy (u;) > ugp (r)-
Therefore, the derivative

Ohmin [ 1, ifup(u;) > pp(ry) (2.44)
6#%(”].) 0, otherwise .

Using (2.44) in (2.42) where t = ‘min’, we get the derivative, P; of (2.17) as

v ifuc(e) — {up(w) A pg(ry)} < B
Py =q and  pup(ui) > pig(ry) (2.45)
0 otherwise
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Table 2.1 Fuzzy sets D,]7 D,27 6‘,, I=1,2...... 8 for the fuzzy system
1 Membership values of fuzzy set

Dj D Ci

1 0.00 0.27 0.80 0.97 0.11 0.00 0.00 0.00 0.35 0.80 0.11
2 1.00 023 0.00 0.00 035 1.00  0.00 0.08 0.66 030 0.18
3 0.00 0.05 1.00 0.08 0.70 0.30 0.00 0.00 0.03 0.15 0.70
4 0.38 0.92 0.00 0.00 0.02 0.15 0.95 0.01 0.12 0.38 0.71
5 0.37 0.48 0.00 0.00 010 030 090 0.02 020 037 037
6 0.00 0.90 0.02 0.00 0.10 0.45 0.02 0.00 0.12 0.30 0.36
7 0.20 1.00 0.08 0.00 0.12 0.50 0.01 0.02 0.13 0.33 0.40
8 0.75 0.12 0.00 0.00 0.10 0.15 0.80  0.01 0.25 0.75 0.60
Table 2.2 Fuzzy sets D;, [ =1,2,...... 8 for type 1

1 Membership values of fuzzy set D,

1 000 000 000 000 027 011 000 000 08 0.11 0.00 0.00
2 000 035 100 000 0.00 023 023 000 0.00 000 000 0.00
3 000 000 000 000 005 005 005 0.00 0.08 070 030 0.00
4 000 002 015 038 000 002 015 092 000 000 0.00 0.00
5 000 010 030 037 0.00 010 030 048 0.00 0.00 0.00 0.00
6 000 000 000 000 000 010 045 0.02 0.00 0.02 0.02 0.02
7 000 0.12 020 001 000 0.12 050 001 000 0.08 0.08 0.01
8§ 000 010 015 075 0.00 0.10 0.12 012 000 0.00 0.00 0.00
where i =1,2, ..., m and j= 1,2, ..., n. These results are used only for the

problems of Types III and IV of Sect. 2.2.

2.4.4 Algorithm for the Estimation of R

This algorithm gives the step-by-step calculation of R using the modified
computational approach.

Step (1) Start with an initial trial values of R = [ugp(r;)],., such that
{ug(ry) A (1= pgp(ry))} 2 0.

Step (2) Set the width of the pulse f3, convergent factor k, the error threshold e,
and maximum number of iterations s,,,.. Set the initial iteration number s = 0.

Step (3) Set new iteration number s = s + 1.

Step (4) Using the given fuzzy data D; and C, evaluate C; by (2.23) and E by
(2.26).

Step (5) Evaluate (OE)/(Ouy(r;j)), in (2.12) using (2.43) (for the problems of
Types Il and IV) fori=1,2, ..., mand j= 1,2, ..., n and a,.

Step (6) Update the values of ug(r;) using the Newton’s iterative scheme [see

QD palry) " = () — - S R = R, where i = 1,2, ..., m and
R\ 7ij

j=12 ..., n



2.4 Modified Approach to Solve Fuzzy Relational Equation 27

Table 2.3 Fuzzy sets D;, [ =1,2,...... 8 for type 11

1 Membership values of fuzzy set D,

1 000 000 000 000 026 003 000 000 077 009 0.00 0.00
2 000 000 035 100 000 008 023 000 0.00 000 0.00 0.00
3 000 000 000 000 000 003 001 000 070 070 030 0.00
4 000 001 006 036 000 0.02 014 0.87 000 0.00 0.00 0.00
5 000 004 011 033 000 005 014 043 0.00 000 0.00 0.00
6 0.00 000 000 000 0.00 009 040 002 0.00 0.00 001 0.00
7 000 0.02 010 001 000 0.12 050 0.01 001 0.01 0.04 0.00
8§ 000 007 011 060 000 001 0.02 010 0.00 000 0.00 0.00

Step (7) Now test whether {p5(r;j) A (1 — up(r;))} >0 or not, for all i =
1,2, ..., mand j= 1,2, ..., n. If not, then construct a set of index pairs NF =
{G0)/{pp(ri) A (1 — pgp(ry))} <0, i=1,2, ..., m and j=1,2, ..., n}. Set
{Hp(rg) A (1= ()} =0, V(i) € NF.

Step (8) Repeat from Step 3 until E< € and/or s = Sy,

2.4.5 Illustration of the Modified Approach to the Estimation of R

We illustrate the modified method based on the data set (see Table 2.1) given by
Pedrycz (1983). Here, U = U; x U, card (U;) = m; =3, and card (U,) =
my = 4. Therefore, card (U) = m; x m, = 12. Now the membership values of D; €
F(U), given by the formula p, (u;) = (up) (uj ) A ,uDIz(uizz)), where i = 4(i; — 1) +
ir,iy = 1,2,3andi; = 1,2, 3,4, are shown in Table 2.2, and those of D, obtained by
the formula pp, (u;) = (1p; (u]) -,uD[z(uizz)), where i =4(iy — 1)+ i, i) = 1,2, 3,
and i, = 1,2,3,4 are shown in Table 2.3. We start with an initial trial values
pp(ri) =0, i=1,2, ...12 and j = 1,2,3,4. The value x = 10~* is chosen to
ensure good convergence properties. The width of the pulse is § = 0.05. The error
threshold is ¢ = 103, and the maximum number of iterations is s,,4, 500. The values
of the error, calculated every 25 steps of iterations, are displayed in Fig. 2.2. The
solutions of s, of the problems of Types I and IT of Sect. 2.2, are shown in Table 2.4.

2.5 Design of the Classifier Based on Fuzzy Relational
Calculus

In classifier design (see Fig. 2.3), two phases exist, namely, the learning phase
(training phase), where we estimate the fuzzy relation R based on the algorithm of
Sect. 2.4.4, and the testing phase (classification phase), where we test the
performance of the classifier using (2.3) which involves the expression R.
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Fig. 2.2 Squared error (E) against each 25 iteration (s)

Table 2.4 Solutions of relation R of problems type I and type II

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.02
0.08 0.67 0.30 0.18 0.08 0.67 0.30 0.14
0.01 0.33 1.00 0.80 0.02 0.43 1.00 1.00
0.00 0.02 0.04 0.01 0.00 0.03 0.03 0.01
0.01 0.05 0.05 0.04 0.01 0.02 0.03 0.03
0.01 0.21 0.67 0.80 0.02 0.26 0.70 0.83
0.01 0.09 0.19 0.78 0.02 0.12 0.43 0.82
0.00 0.44 1.00 0.07 0.00 0.45 1.00 0.14
0.00 0.02 0.04 1.00 0.00 0.01 0.03 1.00
0.00 0.01 0.01 0.05 0.00 0.00 0.01 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Type 1 Type 11

At the beginning of the training phase, we discretize (quantize) the individual
feature axis and the entire pattern space in the following way.

Determine the lower and upper bounds of the data of ith feature value. Let ]7 be
the j th data of the ith feature F;, and let d; be the length of segmentation along ith
feature axis.

Minimum of the data f/, j = 1,2, ... of the ith feature is f;, = min;(f/). Let

ri ., be the remainder when £, is divided by d; Therefore, the lower bound of the

ith feature axis is
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Fig. 2.3 Classifier based on fuzzy relational calculus
P ifri. =0
LB; = { mi A i S (2.46)
rin — Tmin» Otherwise.
This LB; is taken as the ith coordinate of the origin.
Again, maximum of the data f/,j=1,2, ... of the ith feature is fi =

is divided by d;. Therefore, the

max;(f{). Let rj,,, be the remainder when f7

upper bound of the ith feature axis is

L frlllqax’ l-.frlinax =0
UB; = { i+ (di =), otherwise. (247)

max max
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Table 2.5 Fuzzy sets in F (U;)

() Ml u'2 uim

Di uD} (u’l) ubi (u‘z) uDi ("‘inl)
D} uD (uh) uD (u) e . e D, (“in )
PG ) e ()

Let U; be the universe of discourse on the ith feature axis F;; then, U; has
m; = (UB; — LB;)/d; generic elements and these are u;:, j=12,..... , m; which
we define as follows

[LB;+ (j—1)-d;,LB; +j - d;)]

; forj=1,2,... (mj—1)
i )~y )
Y7\ LB+ (m— 1) - d;, UB)] (2.48)
forj =m;.
Let the universe on the ith feature axis U; = {u},u}, . ..,ul, }.. Let the Cartesian
product space of the universe U;, i — 1,2, ..., ¢ be U, ie., U= U, x Uy X
-x U, having elements each of type u; = (”1‘11’”1'227 . .,uf{_/ug)gU,,,p =

1,2,...,¢), where i = >~ I(Hf>p my)(i, — 1) + i, for each i, = 1,2, ..., m,,
p=12 ...,c

Now, we define k; fuzzy sets on U,, say, D;, j=1,2, ..., k; which are in shown
in Table 2.5. So there are k = II;_k; fuzzy If-Then rules as follows:

R If Fy is Djl] and F, is Djz2 and... F, is D, then C is C; € F(Ceiass), Where

c—1
=3 (M. kg)(p — 1) +je foreach j, = 1.2,..., k,, p = 1,2,..., ¢, and Cepags
p=1
is the universe of discourse constructed by all the classes in the pattern space, i.e.,
Cclass = {C] 3 C2y e e ey Cn}-

If D, is the fuzzy set which is a fuzzy pattern vector (see Definition 1.1) formed
by the antecedent clauses of the rule Ry, i.e., D; € F(U), then the membership
value of the belongingness of u; in D, is determined by (2.8). According to the
fuzzy implication method, we write R: F(U;) x F(U,) X --- x F(U,) —
F(Cclass)~

The membership value of the class ¢, € Ceqss Wwhen D}I is on U, sz is on U,
etc., is taken in the following way:

#e (Cp) = \/u,ec,,sz(D! D2 ...D" )(“Df(ui)) (2:49)
el Jc
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Table 2.6 Fuzzy sets in F (C,,s) for o€ min’, ‘prod’}

(0) D? D? D},

D] Cn Ci Cik,
D% Cy Cp .. o - Co,
D,]CI Ciy1 Ci2 e . . Cik,

where FZ (Djl] , Djzz, cen DJ‘) is the zone which represents the tip of the fuzzy pattern
vector (see Fig. A.1 in Appendix-A) and is constructed by the fuzzy sets
D}l, D}z, e Dj‘ of the rule R;, where j, = 1,2, ..., k,foreachp =1, 2, ..., c.

For two-dimensional (2-D) pattern space, we may construct the rules in the
compact form as shown in Table 2.6.

Rii: If Fy is Dill and F, is Di22, then C is C;;,eF (Ceuss) and the membership
value of each class ¢,,pe{1,2,...,n} of the fuzzy set C;,;,, where iy = 1, 2, ..., k;,
[ = 1, 2 will be determined by (2.49). Based on the generated fuzzy rules as stated
above, we estimate the fuzzy relation I at the end of training phase using the
algorithm of the Sect. 2.4.4. In the course of estimating R, if the error given by
(2.26) does not reach the desired threshold, even after a sufficient number of
iterations, we may have to modify the initial fuzzy if-then rules to represent our
knowledge about the training data set. On the other hand, after reaching the error
threshold, we cross-verify the quality of the estimated Jt by checking the classi-
fication score of the training data set (based on the fuzzy if-then rules which were
initially generated for estimating R). If the classification score of the training data
set (which are fuzzified by fuzzy masking at the time of testing) does not reach the
satisfactory threshold (say 80 % recognition score is set as threshold), we may
have to modify the initial fuzzy if-then rules to represent our knowledge about the
training data set. After satisfactory estimation of R, we switch over to the testing
phase (classification phase), where we consider the classification of data which
does not belong to the training data set.

At the testing phase (classification phase), we use (2.3), as stated in Sect. 2.1.
The features of the selected patterns are fuzzified using the concept of the fuzzy
masking. The classification results obtained from (2.3) produces a fuzzy set C =
>i_, uC(ci)/ci, which represents the degree of occurrence of each test pattern at
different classes in the quantized pattern space. We, thus, get a fuzzy classification
of a test pattern. To calculate the recognition score from the above result, we have
to go through a certain decision process. In the first stage of our decision process,
we increase the level of confidence by prescribing a a-cut of the fuzzy set C, i.e.,

Co = {ci/e(es) 2 2¢; € Cotuss}-

If C, =0 (empty set), then the given test pattern is not recognized by the
present classifier. Otherwise;
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it

"

Fig. 2.4 First synthetic data

hgt(©) =/ . neler).
Now, we get the set of recognized classes as
Classyecognize = {¢i/hgt(C) — pc(ci) <0,¢c; € Cu}

where 0 is a small threshold prescribed by the designer to capture the relative
change in membership values among the elements of the recognized classes
Classrecognize .

1. In case Class,ecognize 15 a singleton set, then the given test pattern is recognized
uniquely.,
2. Otherwise, multiple classifications of the given test pattern occur.

The notion multiple classification is very natural in the case of test patterns
occurring at overlapped classes. Such choice of multiple classifications sometimes
stands as a kind of grace, to take care of all uncertainties (e.g., uncertainties in the
representation knowledge about training patterns, uncertainties in the process of
fuzzification, through fuzzy masking, of the test patterns etc.) in our classification
process.

2.6 Effectiveness of the Proposed Method

To test the effectiveness of our design, as stated in Sect. 2.4, we consider the
classification of two synthetic data as shown in Figs. 2.4 and 2.5. At the time of
writing fuzzy If-Then rules for the classifier, we may consider complete cover of
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Fig. 2.5 Second synthetic 6
data

the pattern space (see Appendix-A), but as the consideration of complete cover of
the pattern space does not bring any significant change in classification score, for
practical purposes, without loss of generality, we consider partial cover of the
pattern space.

2.6.1 Classification of First Synthetic Data

For the data shown in Fig. 2.4, we choose length of segmentations d; = 0.5 = d,.
Therefore, we get LB; = 0 = LB, by (2.46) and UB|, = 6 = UB, by (2.47). Thus,
m; = (UB] — LB[)/dl = 12 and my = (UBZ — LBQ)/dz = 12.

1. For the Problem of Type I of Sect. 2.2 We define k; = 4 fuzzy sets on U, and
k, = 3 fuzzy sets on U, which are shown in Tables 2.7 and 2.8 respectively and

k = k; X k; = 12 fuzzy If-Then rules and their consequent parts are shown in
Table 2.9.

Now we start with initial trial values of uyp(ry;) =0, i =12,..., m and
j=12,.... n, k=103 B =005, ¢ =102 Smu =500 and terminate the
iteration scheme at S,,,,. The classification scores are shown in Table 2.10.

2. For the Problem of Type II of Sect. 2.2: We define k; = 4 fuzzy sets on U; and
ky = 4 fuzzy sets on U,, so we can find k = k; X k; = 16 fuzzy If-Then rules.
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Table 2.7 Fuzzy sets in F' (U,) for the first synthetic data for the problem of type I
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)

1

1

1

1

1

1

1

il ) U3 Uy us Us U ug u Uio Ui uj
D) 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
D! 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0
D!} 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0
D} 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3
Table 2.8 Fuzzy sets in F(U,) for the first synthetic data for the problem of type I
) wt W o i wg W w w5 wh  uh uh
D2 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
D3 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3 0.1 0.0 0.0
D3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.3
Table 2.9 Fuzzy sets in F (C,,,) for the first synthetic data for the problem of type I
Rule Antecedent part Consequent part
1 Fiand F, c [ c3 cy Cs Co
R, D! and D? 1.00 0.70 0.00 0.10 0.10 0.00
R, D} and D3 0.30 0.30 0.00 1.00 0.70 0.10
R; D! and D} 0.00 0.00 0.00 0.70 0.70 0.10
Ry D!} and D3 0.70 1.00 0.70 0.10 0.30 0.30
Rs D) and D3 0.30 0.70 0.70 0.70 1.00 1.00
Rs D! and D3 0.00 0.00 0.00 0.70 1.00 0.70
R D) and D? 0.10 1.00 1.00 0.10 0.30 0.30
Rg D! and D} 0.10 0.70 0.70 0.10 1.00 1.00
Rq D! and D} 0.00 0.00 0.00 0.10 0.70 1.00
Ry D} and D? 0.00 0.30 1.00 0.00 0.10 0.30
Ry, D} and D3 0.00 0.10 0.70 0.00 0.30 1.00
Ri> D} and D? 0.00 0.00 0.00 0.00 0.30 1.00

Table 2.10 Classification scores of first synthetic data for the problem of type I

From To Number of data  Recognition score (%)
A B C D E F
A 109 2 0 0 0 0 116 93.97
B 7 105 16 0 1 1 117 89.74
C 0 71 71 0 1 1 79 89.87
D 0 0 0o 77 10 9 89 86.52
E 0 28 0 1 135 98 151 89.40
F 0 2 0 0 64 111 115 96.52
Total 109 105 71 77 135 111 91.15
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Table 2.11 Classification scores of first synthetic data for the problem of type II

From To Number of data  Recognition score (%)

A B C D E F

A 114 6 0 5 4 4 116 93.28
B 10 110 18 2 3 3 117 94.02
C 0 73 73 0 1 1 79 92.41
D 0 0 0 79 12 11 89 88.76
E 0 28 0 3 137 117 151 90.73
F 0 3 1 0 65 113 115 98.26
Total 114 110 73 79 137 113 93.85
Now we start with initial trial values of ugp(r;) =0, i =12,..., m and

j=12..., n ki=10"> =005 &= 102 Spwx =500 and terminate the
iteration scheme at S,,,,. The classification scores are shown in Table 2.11.

2.6.2 Classification of Second Synthetic Data

For the data shown in Fig. 2.5, we choose length of segmentations d; = 0.5 = d5.
Therefore, we get, LB; = 0 = LB, by (2.46) and UB| = 6 = UB; by (2.47). Thus,
m; = (UBl— LBl)/dl =12 and my = (U32 —LBz)/dz =12. By (248), we get

Uy = {u},u5,...,u},}

Uy = {ud,u3, .. ,ul}.

For both of the problems of Types I and II of Sect. 2.2, we define x; = 3 fuzzy
sets on U; and x, = 4 fuzzy sets on U, so we can fmd k¥ = k; X K, = 12 fuzzy
If-Then rules.

Now, for both the problems, we start with initial trial values of ,u%(r,vj) =0,
i=12,...,mandj=12,....n k=107 =005, &= 10" S, = 500 and
terminate the iteration scheme at S,,,. The classification scores are shown in
Table 2.12.

2.7 Applications

After achieving satisfactory results on a synthetic set of data, we apply the
proposed design for the vowel classification problem of an Indian language,
namely Telugu.
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Table 2.12 Classification scores of second synthetic data

(a) Problem of Type I

From To Number of data Recognition score (%)
A B C

A 287 13 6 287 100.00

B 8 96 0 97 98.97

C 12 0 99 100 99.00

Total 287 96 99 99.59

(b) Problem of Type II

From To Number of data Recognition score (%)
A B C

A 283 43 38 287 98.61

B 2 96 0 97 98.97

C 3 0 99 100 99.00

Total 283 96 99 98.76

2.7.1 Experimental Results

A number of discrete phonetically balanced speech samples for the vowels of
Telugu language in CNC (consonant—vowel nucleus-consonant) form are selected.
A CNC combination is taken because the form of consonants connected to a vowel
is responsible for influencing the role and quality of vowels. These speech units are
recorded by five informants on an AKAI type recorder. The spectrographic analysis
has been done on Kay Sona-graph Model 7029-A, which is a very standard audio
frequency spectrum analyzer that produces a permanent record of the spectra of any
complex waveform in the range of 5 Hz to 16 kHz. For the present study of vowels,
the spectrographic representation of frequency versus time has been done for 800
Telugu words uttered by three male informants in the age group of 25-30 year
chosen from 15 educated persons. The total bandwidth of the system is 80 Hz to
8 kHz with a resolution of 300 Hz. The experiment deals with the formant
frequencies at the steady state of the Telugu vowels and their variations on different
consonantal context and for different speakers. The average positions (see
Table 2.13) of different Telugu vowels with respect to cardinal vowels and their
distribution in F,-F, frequency planes are considered (see Fig. 2.6). The present
investigation has been carried out with the Telugu vowels (listed in Table 2.13)
both short and long. It is well known that the first three formant frequencies carry
most of the information regarding the vowel quality. But for all practical purposes
of vowel classification, we can use the first two formant frequencies, i.e., F; and F,.

In the following, we discuss the classification results for Telugu vowels.

For the data shown in Fig. 2.6, we choose length of segmentations d; = 50 and
d, = 100. Therefore, we get, LB; = 200 and LB, = 600 by (2.46) and UB; = 850
and UB2 = 2600 by (247) Thus, m; = (UB] — LB])/d] =13 and my =
(UB, — LB»)/d, = 20. By (2.48), we get
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Table 2.13 Average formant frequencies of Telugu vowel

Phonetic symbol Average format frequencies (Hz)
F, F Fs

10/ 606 1,473 2,420
fa:/ 710 1,240 2,400
fiF/ 365 2,116 2,757
fi:/ 325 2,260 2,836
a4/ 370 1,066 2,500
fa:/ 348 923 2,543
et/ 517 1,796 2,633
le:/ 470 1,883 2,633
Jo/ 476 1,133 2,630
lo:/ 486 1,000 2,540
[ae/ 575 1,744 2,700

“Telegu vowels I Size | Frequency of occurrcnces
- -2
o 3 —3
=] 6—9
o 10 —14
(=] 15 and abuve

850 [~
800

700

600

300
200 1 1 1 L 1 1
600 900 1200 1500 1300 2100 2400 2600
F, IN Hz
Fig. 2.6 Telugu vowels
— o1 1
Ui = {uj,uy, ... u5}
_ 2 2 2
Uy = {uy,u5,...,u5}.

For both the problems of Types I and II of Sect. 2.2, we define k; = 5 fuzzy
sets on U; and x, = 7 fuzzy sets on U,, so we can fmd k¥ = x| X k, = 35 fuzzy
If-Then rules.
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Table 2.14 Classification scores of Telugu vowel for the problem of type I

From To Number of data  Recognition score (%)
a e i o u 0
a 82 4 0 29 0o 74 83 98.80
e 7 193 52 21 7 82 200 96.50
i 0 48 119 0 0 0 133 89.47
o 15 26 0 114 72 30 116 98.28
u 0 10 0 48 107 2 112 95.54
1 41 32 0 19 1 65 66 98.48
Total 82 193 119 114 107 65 95.77

Table 2.15 Classification scores of Telugu Vowel for the problem of type II

From To Number of data  Recognition score (%)
a e i [ u 0
a 82 4 0 29 0o 74 83 98.80
e 7 196 52 21 7 83 200 98.00
i 0 50 126 0 0 0 133 94.74
o 16 26 0 114 72 30 116 98.28
u 0 10 0 48 108 2 112 96.43
0 40 32 0 19 1 65 66 98.48
Total 82 196 126 114 108 65 97.32

Now, for both the problems, we start with initial trial values of ug(r;) =
0,1,2, ...,m and j=1,2,...,n,k =103, f=, 0.05, 6=10"2, Spax =
1000 and terminate the iteration scheme at S,,,,. The classification scores are
shown in Tables 2.14 and 2.15.

2.8 Comparative Study

In Table 2.16 we have compared the performance (in terms of recognition score)
of the present classifier with those of some existing ones. The results shown in
Table 2.16 indicate that the performance of the present design of the classifier is
comparable with those of some existing ones.

2.9 Conclusion

In this chapter, we consider a particular interpretation [i.e., (a) of (2.1)] of MFI and
introduce a notion of fuzzy pattern vector which represents the antecedent part of
the interpretation (a) of (2.1). The advantage of considering such notion is two-
fold. First, we can describe a population of training patterns by linguistic features.
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Table 2.16 Comparative study

Different types of classifier Recognition score (%)
First synthetic First synthetic First synthetic
data data data
(Fig. 2.4) (Fig. 2.5) (Fig. 2.6)
Bayesian 78.0 80.9 80.3
Support vector machine (SVM) 86.13 87.2 85
Conventional multilayer 88.15 78.0 90.0
perception (MLP)
Present method with 91.15 99.59 95.77
max—min operator
Present method with 93.85 98.76 97.32

max-product operator

Second, the notion of fuzzy pattern vector helps us formulate the consequent part
of (a) of (2.1) (see Example A.1 of Appendix-A). We develop a new approach to
the computation of the derivative of the fuzzy max/min function. A detail design of
pattern classifier based on FRC is developed and very promising results are
obtained. We compute the performance of the present classifier with those of some
existing classifiers and get satisfactory response. A neural net (Pao 1989) version
of the present design to estimate the fuzzy relation R (for classification problem)
would be the scope for future work. In the present design study we have only
considered the problems of Types I and II of Sect. 2.2. Similar results are also
obtainable for the problems of Types III and IV.
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