Computational Complexity and Feasibility of Fuzzy Data
Processing: Why Fuzzy Numbers, Which Fuzzy Numbers, Which
Operations with Fuzzy Numbers

H.T. Nguyen
Department of
Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, USA

hunguyen@nmsu.edu

M. Koshelev
V. Kreinovich
O. Kosheleva
University of Texas
El Paso, TX 79968, USA
{mkosh,vladik }@cs.utep.edu

R. Mesiar
Department of Mathematics
Slovak Technical University
813 68 Bratislava, Slovakia

mesiar@vox.svf.stuba.sk

olga@ece.utep.edu

Abstract

In many real-life situations, we cannot di-
rectly measure or estimate the desired quan-
tity r. In these situations, we measure or es-
timate other quantities ry,...,r, related to
r, and then reconstruct r from the estimates
for r;. This reconstruction is called data pro-
cessing.

Often, we only have fuzzy information about
r;. In such cases, we have fuzzy data pro-
cessing. Fuzzy data means that instead of
a single number 7;, we have several numbers
that describes the fuzzy knowledge about the
corresponding quantity. Since we need to
process more numbers, the computation time
for fuzzy data processing is often much larger
than for the usual non-fuzzy one. It is, there-
fore, desirable to select representations and
processing algorithms that minimize this in-
crease and thus, make fuzzy data processing
feasible.

In this paper, we show that the necessity to
minimize computation time explains why we
use fuzzy numbers, and describes what oper-
ations we should use.

1 Formulation of the problem

1.1 Why data processing

In many real-life situations, we cannot directly mea-
sure or estimate the desired quantity r. For example,
we cannot directly measure the distance to a star or
the amount of oil in a well.

In these situations, we measure or estimate other quan-
tities rq,...,r, related to r, and then reconstruct r
from the estimates for r;. This reconstruction is called
data processing.

1.2 Fuzzy data processing

In many real-life applications, we have to deal with
quantities r; whose values we do not know precisely,
and instead, we only have expert (fuzzy) knowledge
about these values. This knowledge is usually de-
scribed in terms of membership functions p;(x) that
assign to every real number & the expert’s degree of
belief y;(x) € [0, 1] that the actual (unknown) value of
the quantity r; is equal to .

We want to use the expert (fuzzy) knowledge about
the values r1,...,r, of some quantities to predict the
value of some quantity r that is related to r;. In this
paper, we will consider the simplest case when “re-
lated” means that we know the exact form of the de-
pendency r = f(ry,...,r,) between r; and r, and the
only uncertainty in r is caused by the uncertainty in
the values of r;.

In such situations, we must transform the fuzzy knowl-
edge about the values r; into a fuzzy knowledge about
r = f(r1,...,rn). This transformation is called fuzzy
data processing.

It is usually implemented by using eztension principle

(see, e.g., [10]):
()& . &pin(n)),
(1)

pr(z) = sup

T1,.. T f(21,. @)=

where & is an “and”-operation (t-norm).

1.3 Fuzzy data processing takes longer than
non-fuzzy one

Fuzzy data means that for each ¢, instead of a single
number r;, we have several numbers that describes the
fuzzy knowledge about the corresponding quantity.

Since we need to process more numbers, the computa-
tion time for fuzzy data processing is often much larger
than for the usual non-fuzzy one.

In some cases, formulas are still rather easy to imple-
ment: e.g., if f(r1,...,ry) is a linear function, t-norm
is a product, and we use Gaussian membership func-

tions

pi(x) = exp(—(x — a;:)*/(0:)*).
In this case, for p,(x), we also get a Gaussian member-
ship function, with easily computable ¢ and ¢. E.g.,
for f(ri,r2) = r1 + ra, we have

. 01(01)_2 + az(Uz)_2
(01)7 + (02)72

and (0)72 = (¢1)72 + (01)72 [10], [23]. These are

computationally very simple formulas to implement.

There are simple formulas for several other cases (see,
e.g., [10] and references therein).

However, in general, fuzzy data processing can be com-
putationally complicated. It it, therefore, desirable to
select representations and processing algorithms that
minimize this increase and thus, make fuzzy data pro-
cessing feasible.

1.4 Additional computational problem:
defuzzification

If the result r goes to an expert, then 1t is better to
give the expert all possible choices # with their degree
of possibility ().

However, in many real-life situations, the result of data
processing goes to an automatic decision-maker (e.g.,
controller); in such situations, we need to defuzzify the
membership function p,(z), i.e., transform it into a
single number z that is, in some reasonable sense, rep-
resentative of this membership function. This defuzzi-
fication requires additional computation steps. so, if
we want to save computation time, we must choose as
simple a defuzzification procedure as possible.

Several defuzzification procedures are known, the sim-
plest of them is the one that goes back to the first pa-
pers of Zadeh: we choose a value Z from which p,(z)
takes the largest possible value. So, we must choose
fuzzy sets and operations in such a way that at least
this simplest defuzzification should be computation-
ally feasible.

1.5 What we are planning to do

In this paper, we show that the necessity to minimize
computation time explains why we use fuzzy numbers,
and describes what operations we should use.

2 Why fuzzy numbers

2.1 Main idea

Even if there is no fuzzy data processing involved,
there is still a need for defuzzification. So, before
we consider any fuzzy data processing algorithms,
we must select membership functions in such a way
that will make defuzzification computationally doable.
At least, the above-described simplest defuzzification

must be computationally doable, in which we pick a
value Z for which p(x) takes the largest possible value.

We will show that this very natural requirement im-
plies that we should restrict ourselves to membership
functions that attain maximum in exactly one point
Z. This conclusion justifies the use of fuzzy numbers
in fuzzy data processing.

Comment. It is a known experimental fact in numer-
ical mathematics (see, e.g., [5], [6], [7], [8], [9]) that
in general, it is easier to find a point (#1,...,2,), in
which a given function f(zy,...,#,) attains its max-
imum, when there is only one such point, and much
harder when there are several. There are several theo-
retical results that explain these experiments; see, e.g.,
[15], [16], [17], [18], [19], [20], [21], [22]. In this paper,
we show that these results are true if instead of ar-
bitrary functions, we only consider membership func-
tions.

2.2 Definitions and known result

We are interested in computing the real number & at
which a given membership function p(z) attains its
maximum. In the computer, all we have is rational
numbers. What does it mean to “compute a real num-
ber”? It is natural to say that a real number is com-
putable if we can compute its rational approximation
with an arbitrary given accuracy. This definition and
its analysis can be found, e.g., in [1], [2]):

Definition 1. A real number x is called constructive
(or computable) if there exists an algorithm (program)
that transforms an arbitrary integer k into a rational
number zp that is 2= F—close to «. It is said that this
algorithm computes the real number x.

Comment.

e When we say that a constructive real number is
given, we mean that we are given an algorithm
that computes this real number.

e Similarly, we can define a constructive function
from real numbers to real numbers, as a function
that, given a computable real number z, computes
f(z) with an arbitrary accuracy.

The following result is known (see, e.g., [16], [18], [11],
[12]):

Proposition. There exists an algorithm that is appli-
cable to an arbitrary computable function f(x1,...,2,)
on a computable bor X = [x7, 2] x ... x [z, x}]
that attains its mazimum on X at exactly one point
z=(x1,...,2,), and computes this point x.

2.3 New result

If we allow the possibility that maximum is attained at
two points instead of one, then the problem of comput-
ing this maximum becomes algorithmically decidable:

Theorem 1. No algorithm is possible that is applica-
ble to any computable membership function p(x) that
is different from 0 on an interval [z~ x%] and that at-
tains 1ts maximum at exactly two points, and returns
these two points.

This result explains why fuzzy numbers should be
used, because for a fuzzy number whose membership
function is strictly increasing then strictly decreasing,
the maximum is attained at exactly one point.

2.4 Proof

The proof of Theorem 1 uses the fact that it is algo-
rithmically impossible to tell whether a real number «
from the interval [—0.5,0.5] is equal to 0 or not (see,

e.g., [1], [2])-

We will prove this Theorem by reduction to a contra-
diction. Assume that such an algorithm U exists. So,
U is applicable to an arbitrary computable function
that attains its maximum at exactly two points, and
returns exactly these points. As an example of such
a polynomial, let’s take go(r) = max(0,1 — f2(x)),
where

fal@) = (r = 1—a®) - (x = 140" ((x +1)* + 0?),

and « 1s some constructive real number from the in-

terval [—0.5,0.5].

One can easily check that g,(z) is indeed a member-
ship function (i.e., a function whose values belong to
the interval [0, 1]), and that the only way for this func-
tion to attain the largest possible value 1 is to have

falz) = 0.

It is easy to check that for every «, the polynomial
fa(x) has exactly two roots (i.e., points « for which
fa(z) = 0). Indeed, fu(x) is the product of three
factors, so fo(x) = 0 if and only if one of these factors
is equal to 0. We will consider two cases:

o If @ = 0, then fo(z) = (z — 1)? - (z + 1)?, so
fa(z) =0 if either z = 1, or 2 = —1.

o If o # 0, then the third factor is positive, so for
fa(x) to be 0, one of the first two factors must be
equal to 0. In other words, the roots are & = 1—ao?
and z = 14 a?.

Now, we can get the desired contradiction: for every
constructive number «, we can apply U to the polyno-
mial go(#) and get the maxima (i.e., the roots of the
polynomial f,(z)) with an arbitrary accuracy. Let’s
compute them with the accuracy 1/4. Depending on
whether o = 0 or not, we have two cases:

e If & = 0, then one of the roots is —1, so the (1/4)-
approximation to this root will be a negative ra-
tional number.

e If a # 0, then both roots are > 1 — (1/2)% = 3/4,

hence, their (1/4)—approximations are greater

than 0.

So, if one of the approximations i1s negative, then o =
0, else & # 0. Hence, based on U, we can construct
the following algorithm V that would check whether a
constructive real number « is equal to 0 or not:

e apply U to go(2), and compute both roots with
accuracy 1/4;

e if both resulting approximations are positive, re-
turn the answer “a # 07, else return the answer
49 ”
a=0".

But we have already mentioned that such an algorithm
is impossible. So, our initial assumption (that an al-
gorithm U exists) was wrong. The theorem is proven.

3 Which operations with fuzzy
numbers

3.1 Possible choices

According to our description of fuzzy data process-
ing, the only choice we face is the choice of selecting
a t-norm (“and”-operation). There are many possi-
ble t-norms to choose from; the most well-known and
the most widely used ones are the two operations con-
tained in the original paper by Zadeh [31] that started
the fuzzy logic:

e a&b = min(a, b);
o akb=a-b.

3.2 At first glance, we should choose
minimum

If our only goal was only to compute ad&eb for two given
numbers a and b, then, to minimize computation time,
we should choose minimum min(a,): indeed, on most
computers, minimum is a fast hardware-supported op-
eration (for precise formulation and proof of this con-
clusion, see, e.g., [24]).

3.3 In reality, minimum may not necessarily
be optimal

Our actual goal is, however, more complicated: to
compute the function as described by the formula (1).
Of course, if we simply follow this formula, 1.e., if we:

e find all possible tuples (x1,...,2y,), for which

flaey, ... mn) =
o compute py(21)& ... &y (2,) for each such tuple,
and then

e find the largest of these values,

then the only way to minimize the computation time
is to minimize the time spent on computing &, i.e., use
min.

However, for fuzzy numbers, many faster methods of
computing (1) are known, see, e.g., [23], [10], [4], [13],
[14].

With these indirect faster methods, it may happen
that minimum no longer leads to the fastest computa-
tions.

It turns out that which t-norm is the fastest depends
on the function f(z1,...,z,). We will start our analy-
sis by considering linear functions f(xy,...,z,), then
go to quadratic ones.

3.4 What does it mean to compute a
membership function?

Our goal is to compute the membership function
pr(x). Before we start our analysis, let us re-visit the
question of what it means to compute a membership
function.

e In general, for arbitrary membership functions, it
means (as we have mentioned earlier) that we are
able, given x, to compute the value p,.(x) for this
x with an arbitrary accuracy.

e However, from the practical viewpoint, we are in-
terested not so much in knowing the value p,(z)
for a single given x, but rather in describing all
values x for which the corresponding membership
value exceeds a certain level «. This set (called
a-cut) gives the user an indication of what val-
ues of r are possible with this possibility level.
When a membership function corresponds to a
fuzzy number, then for every « € (0, 1], the a-cut
is an interval [~ («), 77 («)]. From this viewpoint,
to compute a membership function means to be
able, for every given «, to compute the endpoints
of this interval.

Comment. When we use min(a, b) as a t-norm, then we
can deduce, from the extension principle (1), a simple
formula for computing the desired interval:

[r=(a), r¥ ()] =
Flry (@), rf (@), [(@), it ()] =
{fer, - wn) |2 € [(@), rf ()]}
where [r7 (@), r («)] denotes an a-cut of the member-

o
ship function uz(x); this formula was first proposed
and proven in [28] (see also [29]).

3.5 At second glance, we should also choose
minimum (case of linear data processing
algorithms)

Let us start with linear data processing algorithms
fler, ..o mp) =121+ ...+ en -y + o

3.5.1 Minimum

If we use minimum min as a t-norm, then, for this
linear function, the above interval formula leads to the

following expression:
[r=(a), 7 (a)] =
e [(@), ()] + 6o,

where
e c [z, xT]is equal to [c-27,c-zT]if ¢ > 0 and
tofe-xt,c-27]if ¢ < 0; and
o [rr af]+. Ao wt] =
[¢7 +.. . 4o o+ +xt]

This is an easy-to-compute expression.

3.5.2 Product

If we use product as a t-norm, then the simplest possi-
ble computations happen when we use Gaussian mem-
bership functions, i.e., functions of the form exp(—P)
for some quadratic function P (see, e.g., [23]). So,
for every 4, p;(#;) = exp(—F;(x;)) for some quadratic
function z;. Let us see how for these functions, we can
compute the endpoints of the desired interval for r.

According to the extension principle, pr(z) > o if
and only if there exist values x1,...,x, for which
fler,...,2n) = x and ul(xl) c in(xg) > a.
The upper endpoint r*(«) is, therefore, the largest
value x for which there eXlst x1,...,%y such that
fler, ..) = « and py(zr) - ... pn(xn) > «. In
other words, this upper endpoint is a solution to the
conditional optimization problem:

flzy, ..., 2y) — max (2)
under the condition that
pi(xe) o pn(Tn) > . (3)

Substituting the exponential expressions for p;(#;)
into this inequality (3), we can reformulate its left-
hand side as

exp(—Pi(x1)) ... exp(—Pn(zn)) = exp(—2),

where we denoted z = Py(x1) 4+ ...+ Po(xy). Hence,
the inequality (3) is equivalent to exp(—z) > «. The
function exp(—=z) is strictly decreasing and therefore,
this inequality is, in its turn, equivalent to z < A,
where we denoted A = —In(«). Thus, 7t («) is a solu-
tion of the following conditional optimization problem:
(2) under the condition

Standard methods of calculus enable us to easily solve
this problem: Namely, the maximum of f(z1,...,2,)
in the closed domain (4) is attained:

e either in the interior point of this domain (in
which case it is a global maximum),

e or on the border of this domain.

Since a linear function does not have global maxima,
the maximum must be attained on the border, 1.e.,
when

Pi(z1)+ ...+ Po(xy) = A (5)

The resulting conditional optimization problem can be
then easily solved by Lagrange multiplier method, as
a global maximum of a function

F(zy,...,2n) =
fler, oo mn) + A (Pr(z) + ...+ Po(za)), (6)

where the Lagrange multiplier A can be determined
from the condition (5).

The function F(#q,...,2,) is quadratic, hence, its
derivatives are linear expressions and therefore, we can
find its global minimum by solving the system of linear
equations 0F/0xz; = 0,1 <i < n.

Similarly, the lower endpoint r~(«) of the desired in-
terval can be obtained as a solution of a similar prob-
lem in which we minimize f(z1,...,%,) instead of
maximizing it.

3.5.3 Comparison

For linear data processing algorithms, both the use of
minimum and the use of the algebraic product lead
to feasible fuzzy data processing algorithms. As can
be seen from the example of addition (given above),
formulas for minimum are usually slightly less compli-
cated and require fewer computation time.

This conclusion is in good agreement with the previ-
ous conclusion about the comparative computational
complexity of min(a, b) and a - b.

Interestingly, for non-linear data processing algo-
rithms, we have a reverse situation:

3.6 For quadratic data processing algorithms,
we have an unexpected result: product is
computationally easier than minimum

Let us now consider the simplest non-linear data pro-
cessing functions f(z1,...,2,), i.e., quadratic ones.
This time, we will start with the product.

3.6.1 Product

If we use product as a t-norm, and if we use Gaussian
membership functions, then, similarly to the previous
section, we can find both the lower and the upper end-
points r~(«) and 7 («) of the desired interval by find-
ing the global minimum and maximum of a quadratic
function (6). Similarly to the previous section, we can
therefore conclude that this computation can be done
by a feasible algorithm. Thus, we can make the follow-
ing conclusion:

Theorem 2. When we use algebraic product as
a t-norm, and when all membership functions are
Gaussian, then for quadratic data processing functions
flar, ... 2n), fuzzy data processing can be done by a
feasible algorithm.

3.6.2 Minimum

For minimum, the situation is quite different. The
problem here is equivalent to computing the inter-

val range of a given quadratic function f(z1,...,2,)
over given intervals [r] («), 7 ()], ..., [r; (), 7} (a)].

This problem is known to be computationally in-
tractable (NP-hard) ([30], [22]; for a brief intro to this
notion see the appendix). Thus, we can make the fol-
lowing conclusion:

Theorem 3. When we use minimum as a t-
norm, then for quadratic data processing functions
flar, ... wy), fuzzy data processing is NP-hard.

3.7 Conclusion

If we want to minimize the computation time of fuzzy
data processing, then:

e If we need no data processing at all, or if we only
need linear data processing, then it i1s better to
use minimum as a t-norm.

e If we need non-linear data processing, then, for
Gaussian membership functions, it is better to use
the algebraic product.

adh = adh =
min(a,b) | a-b
No data feasible, | feasible
processing slightly slightly
easier more
* complicated
Linear feasible, | feasible
data slightly slightly
processing easier more
* complicated
Quadratic NP-hard | feasible
data *
processing
(Gaussian
membership
functions
Comment. A similar simplicity result holds if we

use, instead of the product, an arbitrary strictly
Archimedean t-norm. Each such t-norm has the form
a&b = g(g(a) + g=1(b)) for some strictly decreas-
ing function g(x). In this case, instead of a Gaussian
membership functions, we will have to use the mem-
bership functions of the type p(z) = g(P(x)) for some
quadratic function P(z). The fact that these results
are the same is a particular case of the general trans-

formation principle which is described, e.g., in [27].

Acknowledgments.

This

work was supported in part by NASA under

cooperative agreement NCCW-0089, by NSF grants
No. DUE-9750858, EEC-9322370, and CDA-9522207,
and by the Future Aerospace Science and Technol-
ogy Program (FAST) Center for Structural Integrity of
Aerospace Systems, effort sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Com-
mand, USAF, under grant number F49620-95-1-0518.

The authors are very grateful to the anonymous refer-
ees for valuable comments.

References

(1]
[2]
[3]

M. J. Beeson, Foundations of constructive math-
ematics, Springer-Verlag, N.Y., 1985.

E. Bishop, D. S. Bridges, Constructive Analysis,
Springer, N.Y., 1985.

M. E. Garey and D. S. Johnson, Computers
and intractability: a guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

K. Hirota and M. Sugeno, Industrial Applica-
tions of Fuzzy Technology in the World, World
Scientific, Singapore, 1996.

R. B. Kearfott, Some tests of generalized bisec-
tion, ACM Trans. Math. Softw., 1987, Vol. 13,
pp. 197-220.

R. B. Kearfott, Interval arithmetic techniques
in the computational solution of nonlinear sys-
tems of equations: Introduction, examples, and
comparisons, In: Computational solution of non-
linear systems of equations, Proc. SIAM-AMS
Summer Semin., Ft. Collins/CO (USA) 1988,
American Math. Society, Providence, RI, Lec-
tures in Appl. Math. 1990, Vol. 26, pp. 337-357.

R. B. Kearfott, Interval Newton/generalized bi-
section when there are singularities near roots,
Ann. Oper. Res., 1990, Vol. 25, No. 1-4, pp. 181-
196.

R. B. Kearfott, Preconditioners for the interval
Gauss-Seidel method, SIAM J. Numer. Anal.,
1990, Vol. 27, No. 3, pp. 804-822.

R. B. Kearfott, Rigorous global search: continu-
ous problems, Kluwer, Dordrecht, 1996.

G. Klir and B. Yuan, Fuzzy sets and fuzzy logic:
theory and applications, Prentice Hall, Upper
Saddle River, NJ, 1995.

U. Kohlenbach. Theorie der Majorisierbaben . . .,
Ph.D. Dissertation, Frankfurt am Main, 1990.

U. Kohlenbach, Effective moduli from effective
uniqueness proofs. An unwinding of de La Vallée

Poussin’s proof for Chebycheff approximation,
Annals for Pure and Applied Logic, 1993, Vol.
64, No. 1, pp. 27-94.

[13]

[14]

[21]

O. Kosheleva et al., Fast Implementations of
Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT), Proceedings of the 1996
IEFEE International Conference on Fuzzy Sys-
tems (New Orleans, September 8-11, 1996) Vol.
3, 1958-1964.

O. Kosheleva, S. D. Cabrera, G. A. Gib-
son, and M. Koshelev, Fast Implementations of
Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT), Fuzzy Sets and Systems, 1997,
Vol. 91, No. 2, pp. 269-277.

V. Kreinovich, Complezity measures: com-
putability and applications, Master Thesis,
Leningrad University, Department of Mathemat-
ics, Division of Mathematical Logic and Con-
structive Mathematics, 1974 (in Russian).

V. Kreinovich, Uniqueness implies algorithmic
computability, Proceedings of the jJth Student
Mathematical Conference, Leningrad University,
Leningrad, 1975, pp. 19-21 (in Russian).

V. Kreinovich, Reviewer’s remarks in a review of
D. S. Bridges, Constrictive functional analysis,
Pitman, London, 1979; Zentralblatt fur Mathe-
matik, 1979, Vol. 401, pp. 22-24.

V. Kreinovich, Categories of space-time models,
Ph.D. dissertation, Novosibirsk, Soviet Academy
of Sciences, Siberian Branch, Institute of Math-
ematics, 1979, (in Russian).

V. Kreinovich, Unsolvability of several algorith-
mically solvable analytical problems, Abstracts

Amer. Math. Soc., 1980, Vol. 1, No. 1, p. 174.

V. Ya. Kreinovich, Philosophy of Optimism:
Notes on the possibility of using algorithm theory
when describing historical processes, Leningrad
Center for New Information Technology “Infor-
matika”, Technical Report, Leningrad, 1989 (in
Russian).

V. Kreinovich and R. B. Kearfott, “Computa-
tional complexity of optimization and nonlinear
equations with interval data”, Abstracts of the
Sizteenth Symposium on Mathematical Program-
ming with Data Perturbation, The George Wash-
ington University, Washington, D.C., 26-27 May
1994.

V. Kreinovich, A. Lakeyev, J. Rohn, and P.
Kahl, Computational complexity and feasibility
of data processing and interval computations,
Kluwer, Dordrecht, 1997 (to appear).

V. Kreinovich, C. Quntana, and L. Reznik,
Gaussian membership functions are most ade-
quate in representing uncertainty in measure-
ments, Proceedings of NAFIPS’92: North Amer-
tean Fuzzy Information Processing Society Con-
ference, Puerto Vallarta, Mexico, December 15—
17, 1992, NASA Johnson Space Center, Hous-
ton, TX, 1992, pp. 618-625.

[24] V. Kreinovich and D. Tolbert, Minimizing com-
putational complexity as a criterion for choos-
ing fuzzy rules and neural activation functions
in intelligent control, In: M. Jamshidi el al
(eds.), Intelligent Automation and Soft Comput-
wng. Trends in Research, Development, and Ap-
plications. Proceedings of the First World Au-
tomation Congress (WAC’94), August 14-17,
1994, Mawi, Hawaw, TSI Press, Albuquerque,
NM, 1994, Vol. 1, pp. 545-550.

[25] H. R. Lewis and C. H. Papadimitriou, Flements
of the Theory of Computation, Prentice-Hall,
Inc., New Jersey, 1981.

[26] J. C. Martin, Introduction to languages and the
theory of computation, McGraw-Hill, N.Y., 1991.

[27] R. Mesiar, “A note to the T-sum of L-R fuzzy
numbers” | Fuzzy sets and systems, 1996, Vol. 79,
No. 2, pp. 259-261.

[28] H. T. Nguyen, A note on the extension princi-
ple for fuzzy sets, J. Math. Anal. and Appl. 64
(1978) 359-380.

[29] H. T. Nguyen and V. Kreinovich, Nested Inter-
vals and Sets: Concepts, Relations to Fuzzy Sets,
and Applications, In: R. B. Kearfott et al (eds.),
Applications of Interval Computations, Kluwer,

Dordrecht, 1996, pp. 245-290.

[30] S. A. Vavasis, Nonlinear optimization: complez-
ity 1ssues, Oxford University Press, N.Y., 1991.

[31] L. Zadeh, Fuzzy sets, Information and control,
1965, Vol. 8, pp. 338-353.

4 Appendix: The notions of feasibility
and NP-hardness — brief
introduction

4.1 What does “feasible” mean? the main
idea

Some algorithms are not feasible. In theory of
computation, it is well known that not all algorithms
are feasible (see, e.g., [3], [25], [26]): whether an algo-
rithm is feasible or not depends on how many compu-
tational steps it needs.

For example, if for some input z of length len(z) = n,
an algorithm requires 2" computational steps, then for
an input of a reasonable length n &~ 300, we would need
2390 computational steps. Even if we use a hypothet-
ical computer for which each step takes the smallest
physically possible time (the time during which light
passes through the smallest known elementary par-
ticle), we would still need more computational steps
than can be performed during the (approximately 20
billion years) lifetime of our Universe.

A similar estimate can be obtained for an arbitrary
algorithm whose running time ¢(n) on inputs of length
n grows at least as an exponential function, i.e., for

which, for some ¢ > 0, {(n) > exp(c-n) for all n. As
a result, such algorithms (called ezponential-time) are
usually considered not feastble.

Comment. The fact that an algorithm is not feasible,
does not mean that it can never be applied: it simply
means that there are cases when its running time will
be too large for this algorithm to be practical; for other
inputs, this algorithm can be quite useful.

Some algorithms are feasible. On the other hand,
if the running time grows only as a polynomial of n
(i.e., if an algorithm is polynomial-time, then the algo-
rithm is usually quite feasible.

Existing definition of feasibility: the main idea.
As a result of the above two examples, we arrive at the
following idea: An algorithm U is called feasible if and
only if it is polynomial-teme, i.e., if and only if there
exists a polynomial P(n) such that for every input x
of length len(z), the computational time #;;(z) of the
algorithm ¢ on the input # is bounded by P(len(x)):
tu(z) < P(len(w)).

In most cases, this idea works. In most practi-
cal cases, this idea adequately describes our intuitive
notion of feasibility: polynomial-time algorithms are
usually feasible, and non-polynomial-time algorithms
are usually not feastble.

This idea is not perfect, but it is the best we can
do. Although in most cases, the above idea adequately
describes the intuitive notion of feasibility, the reader
should be warned that this idea is not perfect: in some
(very rare) cases, it does not work (see, e.g., [3], [25],

[26]):

e Some algorithms are polynomial-time but not fea-
sible: e.g., if the running time of an algorithm is
10390 . n, this algorithm is polynomial-time, but,
clearly, not feasible.

e Vice versa, there exist algorithms whose compu-
tation time grows, say, as exp(0.000...01-len(z)).
Legally speaking, such algorithms are exponential
time and thus, not feasible, but for all practical
purposes, they are quite feasible.

It is therefore desirable to look for a better formaliza-
tion of feasibility, but as of now, “polynomial-time” 1s
the best known description of feasibility.

4.2 When is a problem tractable?

What would be an ideal solution. At first glance,
now, that we have a definition of a feasible algo-
rithm, we can describe which problems are tractable
and which problems are intractable: If there exists a
polynomial-time algorithm that solves all instances of
a problem, this problem is tractable, otherwise, it is
intractable.

Sometimes, this ideal solution is possible. In
some cases, this ideal solution is possible, and we either

have an explicit polynomial-time algorithm, or we have
a proof that no polynomial-time algorithm is possible.

Alas, for many problems, we do not know. Un-
fortunately, in many cases, we do not know whether a
polynomial-time algorithm exists or not. This does not
mean, however, that the situation is hopeless: instead
of the missing ideal information about intractability,
we have another information that is almost as good:

What we have instead of the ideal solution.
Namely, for some cases, we do not know whether the
problem can be solved in polynomial time or not, but
we do know that this problem is as hard as practical
problems can get: if we can solve this problem eas-
ily, then we would have an algorithm that solves all
problems easily, and the existence of such universal
solves-everything-fast algorithm is very doubtful. We
can, therefore, call such “hard” problems intractable.
Formally, these problems are called NP-hard.

In order to formulate this notion in precise terms, we
must describe what we mean by a problem, and what
we mean by the ability to reduce other problems to
this one.

4.3 How can we define a general practical
problem?

What is a practical problem: informal idea.
What is a practical problem? When we say that there
is a practical problem, we usually mean that:

e we have some information (we will denote its com-
puter representation by z), and

e we know the relationship R(z,y) between the
known information x and the desired object y.

In the computer, everything is represented by a bi-
nary sequence (i.e., sequence of 0’s and 1’s), so we will
assume that x and y are binary sequences.

Two examples of problems. In this section, we
will trace all the ideas on two examples, one taken from
mathematics and one taken from physics. Readers who
do not feel comfortable with one of the example (say,
with a physical one) are free to simply skip it.

e (Example from mathematics) We are given a
mathematical statement x. The desired object
y is either a proof of x, or a “disproof” of z (i.e.,
a proof of “not xz”). Here, R(x,y) means that y
is a proof either of #, or of “not z”.

e (Example from physics) « is the results of the ex-
periments, and the desired y is the formula that
fits all these data. Imagine that we have a series of
measurements of voltage and current: e.g., con-
sists of the following pairs (x(lk),x(zk)), 1<k <
10: (1.0,2.0),(2.0,4.0),...,(10.0,20.0); we want
to find a formula that is consistent with these ex-
periments (e.g., y is the formula x5 = 2 - 21).

Solution must be checkable. For a problem to be
practically meaningful, we must have a way to check
whether the proposed solution is correct. In other
words, we must assume that there exists a feasible al-
gorithm that checks R(z,y) (given # and y). If no such
feasible algorithm exists, then there is no criterion to
decide whether we achieved a solution or not.

Solution must not be too long. Another require-
ment for a real-life problem 1s that in such problems,
we usually know an upper bound for the length len(y)
of the description of y. In the above examples:

e In the mathematical problem, a proof must be not
too huge, else it is impossible to check whether it
is a proof or not.

e In the physical problem, it makes no sense
to have a formula z2 = f(z1,Cy,...,Cap)
with, say, 40 parameters to describe the results

(l‘(ll), x(zl)), e (J:(llo), J:(zlo)) of 10 experiments.

In all cases, it is necessary for a user to be able to read
the desired solution symbol-after-symbol, and the time
required for that reading must be feasible. In the pre-
vious section, we have formalized “feasible time” as a
time that is bounded by some polynomial of len(z).
The reading time is proportional to the length len(y)
of the answer y. Therefore, the fact the reading time
is bounded by a polynomial of len(z) means that the
length of the output y is also bounded by some polyno-
mial of len(z), i.e., that len(y) < Pr(len(x)) for some
polynomial Pp,.

So, we arrive at the following formulation of a problem:

Definition. By a general practical problem (or prob-
lem from the class NP), we mean a pair (R, Pr),
where R(x,y) is a feasible algorithm that transforms
two binary sequences into a Boolean value (“true” or
“false”), and Pr, is a polynomial.

Definition. By an instance of a (general) problem
(R, Pr), we mean the following problem:

GIVEN: a binary sequence x.

GENERATE either y such that R(x, y) is true and
len(y) < Pr(len(z)), or, if such a y does not exist,
a message saying that there are no solutions.

For example, for the general mathematical problem
described above, an instance would be: given a state-
ment, find its proof or disproof.

Comments. Problems for which there is a feasible al-
gorithm that solves all instances are called tractable, or
“problems from the class P”. It is widely believed that
not all problems are easily solvable (i.e., that NP#£P),
but it has never been proved.

One way to solve an NP problem is to check R(z,y)
for all binary sequences y with len(y) < Pr(len(x)).
This algorithm requires exponential time (2Fren(@)))
and is therefore, not feasible.

