Ultrafast Monte Carlo for Statistical Summations

Michael P. Holmes, Alexander G. Gray, and Charles Lee Isbell, Jr.
College Of Computing
Georgia Institute of Technology
Atlanta, GA 30327
{mph, agray, isbell}@cc.gatech.edu

Abstract

Machine learning contains many computational bottlenecks in the form of nested
summations over datasets. Computation of these summations is typically O(n?)
or higher, which severely limits application to large datasets. We present a multi-
stage stratified Monte Carlo method for approximating such summations with
probabilistic relative error control. The essential idea is fast approximation by
sampling in trees. This method differs from many previous scalability techniques
(such as multi-tree methods) in that its error is stochastic, but we derive conditions
for error control and demonstrate that they work. Further, we give a theoretical
sample complexity for the method that is independent of dataset size, and show
that this appears to hold in experiments, where speedups reach as high as 104,
many orders of magnitude beyond the previous state of the art.

1 Introduction

Many machine learning methods have computational bottlenecks in the form of nested summations
that become intractable for large datasets. A variety of objective functions and gradients involve
computations of this sort, including the cross-validated objective functions of kernel methods and
leave-one-out cross-validation in general. We formalize the general class of nested summations and
present a new multi-stage Monte Carlo method for approximating any problem in the class with
probabilistic relative error control. Key to the efficiency of this method is the use of tree-based data
stratification, i.e. sampling in trees. We give a theoretical analysis of the error guarantees and sample
complexity of the method, with the intriguing result that its runtime depends not on the size of the
datasets on which it operates, but on statistical features such as variance, which can be controlled
through techniques such as stratification. We present experiments validating these theoretical results.

Previous approaches to scalable approximations of this kind fall into roughly two groups: 1) methods
that run non-accelerated algorithms on subsets of the data, typically without error bounds, and 2)
multi-tree methods with deterministic error bounds. The former are of less interest due to the lack
of error control, while the latter are good when exact error control is required, but have built-in
overconservatism that limits speedup, and are difficult to extend to new problems. Multi-stage Monte
Carlo offers much larger speedup, generality that makes it simple to adapt to new problems, and
rigorous probabilistic error control. While there are non-summative problems to which the standard
multi-tree methodology is applicable and our Monte Carlo method is not, our method appears to
give orders of magnitude greater speedup on problems where both methods can be used.

The main contributions of this work are: formulation of the general class of nested summations;
multi-stage application of Monte Carlo principles to this problem class; derivation of error guaran-
tees for iterative multi-stage Monte Carlo; sample complexity bounds independent of dataset size; a
stratification approach based on spatial partitioning trees; application to kernel regression and kernel
conditional density estimation; and the demonstration of speedups as high as 10** on datasets with
points numbering in the millions (many orders of magnitude faster than the previous state of the art).

2 Problem definition and previous work

Good examples of the type of nested summations we address are the least-squares cross-validation
scores used for bandwidth optimization in nonparametric kernel methods such as kernel regression
(KR), kernel density estimation (KDE), and kernel conditional density estimation (KCDE):

s _lz 2y Kl —z5l])y;
T 2\ T LKl -)

S Ezl # xK x —x;||) Kn(]|lz — xk x—i Kin(||lxi — x4
ko nZ((ang/ e e PO 0)
lz (Z#i D oki Ko (| — 2511 Ky (| — @kl]) [Ky (Y — 95) Ky (y — yr)dy

n 2 iri 2oni Ko ([— 5 [[) Ky (|2 — k]
Zj;ﬁiK’Q(Hxi_xjH)Khl(yi_yj)>

2 i Kna ([|lzi — z51))

SKkcDE

i

—2

These nested sums have quadratic and cubic computation times that are intractable for large datasets.
We would like a method for quickly approximating these and similar computations in a simple and
general way. We begin by formulating an inductive generalization of the problem class:

B(X.) — Z f(Xe, X5))]
i€l (X,)
G(XC) - B(XC) | Z f(Xcﬂ Gl (X67Xi>7 GZ (XC7X1'), e) . (2)
i€I(X,)

B represents the base case, in which a tuple of constant arguments X. may be specified and the tuple
of variable arguments &’; is indexed by a set I, which may be a function of X.. For instance, in each
of the innermost leave-one-out summations of Sk g, X, is the single point z; while I(X,) indexes
all single points other than z;. Note that || is the number of terms in a summation of type B, and
therefore represents the base time complexity. Whenever I consists of all k-tuples or leave-one-out
k-tuples, the base complexity is O(n*), where n is the size of the dataset.

The inductive case G is either: 1) the base case B, or 2) a sum where the arguments to the summand
function are X, and a series of nested instances of type G. In Sk p the outermost summation is
an example of this. The base complexity here is |I| multiplied by the maximum base complexity
among the nested instances, e.g. if, as in Sk g, [is all single points and the most expensive inner G
is O(n), then the overall base complexity is O(n?).

Previous work. Past efforts at scaling this class of computation have fallen into roughly two groups.
First are methods where data is simply subsampled before running a non-accelerated algorithm.
Stochastic gradient descent and its variants (e.g. [1]) are prototypical here. While these approaches
can have asymptotic convergence, there are no error guarantees for finite sample sizes. This is not
show-stopping in practice, but the lack of quality assurance is a critical shortcoming. Our approach
also exploits the speedup that comes from sampling, but provides rigorous relative error guarantees
and is able to automatically determine the necessary sample sizes to provide those guarantees.

The other main class of acceleration methods consists of those employing “higher order divide and
conquer” or multi-tree techniques that give either exact answers or hard error bounds (e.g. [2, 3, 4]).
These approaches are applicable to a broad class of “generalized n-body problems” (GNPs), and
feature the use of multiple spatial partitioning structures such as kd-trees or ball trees to decompose
and reuse portions of computational work. While the class of GNPs has yet to be formally defined,
the generalized summations we address are clearly related and have at least partial overlap.

The standard multi-tree methodology has three significant drawbacks. First, although it gives deter-
ministic error bounds, the bounds are usually quite loose, resulting in overconservatism that prevents
aggressive approximation that could give greater speed. Second, creating a new multi-tree method
to accelerate a given algorithm requires complex custom derivation of error bounds and pruning
rules. Third, the standard multi-tree approach is conjectured to reduce O(nP) computations at best
to O(n'°8P). This still leaves an intractable computation for p as small as 4.

In [5] the first of these concerns began to be addressed by employing sample-based bounds within
a multi-tree error propagation framework. The present work builds on that idea by moving to a
fully Monte Carlo scheme where multiple trees are used for variance-reducing stratification. Er-
ror is rigorously controlled and driven by sample variance, allowing the Monte Carlo approach to
make aggressive approximations and avoid the overconservatism of deterministic multi-tree meth-
ods, yielding greater speedups by many orders of magnitude. Our Monte Carlo approach handles
the class of recursive summations in full generality, making it easy to specialize to new problems.
Lastly, the computational complexity of our method is not directly dependent on dataset size, which
means it can address high degrees of nesting that would make the standard multi-tree approach in-
tractable. The main tradeoff is that Monte Carlo error bounds are probabilistic, though the bound
probability is a parameter to the algorithm. Thus, we believe the Monte Carlo approach is superior
for all situations that can tolerate minor stochasticity in the approximated output.

In summary, this work makes the following contributions: formulation of the class of generalized
nested data summations; derivation of recursive Monte Carlo algorithms with rigorous error guar-
antees for this class of computation; derivation of sample complexity bounds showing no explicit
dependence on dataset size; variance-driven tree-based stratified sampling of datasets, which allows
Monte Carlo approximation to be effective with small sample sizes; empirical demonstration of
speedups as high as 10'4 on datasets numbering in the millions. It is the combination of all these
elements that enables our method to perform so far beyond the previous state of the art.

3 Single-stage Monte Carlo

We first derive a Monte Carlo approximation for the base case of a single-stage, flat summation, i.e.
Equation 1. The basic results for this simple case (up to and including Algorithm 1 and Theorem 1)
mirror the standard development of Monte Carlo as in [6] or [7], with some modification to accom-
modate our particular problem setup. We then move beyond to present novel sample complexity
bounds and extensions of the single-stage results to the multi-stage and multi-stage stratified cases.
These extensions allow us to efficiently bring Monte Carlo principles to bear on the entire class of
generalized summations, while yielding insights into the dependence of computational complexity
on sample statistics and how tree-based methods can improve those statistics.

To begin, note that the summation B (X,) can be written as nE[f;] = nuy, where n = |I| and the
expectation is taken over a discrete distribution Py that puts mass % on each term f; = f(X., X;).
Our goal is to produce an estimate B that has low relative error with high probability. More precisely,
for a specified € and a, we want | B — B| < ¢|B| with probability at least 1 — cv. This is equivalent
to estimating pp by jiy such that |ty — py| < €|py|. Let fiy be the sample mean of m samples
taken from P;. From the Central Limit Theorem, we have asymptotically fif ~» N(uy, 6]% /m),
where &J% is the sample variance, from which we can construct the standard confidence interval:
ity — pg| < zq/26¢/+/m with probability 1 — a. In the 1 — « fraction of cases where i lies in
this bound, our relative error condition is implied by z,/267/v/m < €|uy|. We also have |uf| <
|fif| + 2a/26¢/+/m. Combining these, we can ensure our target relative error by requiring that

20207 /v/m < €(|fig| + 24207 /+/m), Which rearranges to:
(1-¢57

2 ,EL?@ ’
Equation 3 gives an empirically testable condition that guarantees the target relative error level
with probability 1 — «, given that iy has reached its asymptotic distribution N (i, 6)20 /m). This
suggests an iterative sampling procedure in which m starts at a value m,,;, chosen to make the

normal approximation valid, and then is increased until the condition of Equation 3 is met. This
procedure is summarized in Algorithm 1, and we state its error guarantee as a theorem.

m > 22/2

3)

€

Theorem 1. Given My, large enough to put iy in its asymptotic normal regime, with probability
at least 1 — o Algorithm 1 approximates the summation S with relative error no greater than e .

Proof. We have already established that Equation 3 is a sufficient condition for € relative error with
probability 1 — «.. Algorithm 1 simply increases sample size until this condition is met. O

Algorithm 1 Iterative Monte Carlo approximation for flat summations.

MC-Approx(S, X, €, &, Mmin) addSamples(samples, Mneeded, S, Xe)

samples < 0, Mueceded < Mmin for i = 1 t0 mpeeded

repeat X; — rand(S.I)
addSamples(samples, Mneeded, S, Xe) samples — samples U S.f (X, X;)
m, fif, 67 — calcStats(samples) end for
Mihresh < Zcx/2 p Uf/:uf calcStats(samples)
mneeded < Mthresh — m «— count(samples)

until m > Mmynresn i — avg(samples)

return |S.1|fiy 63 « var(samples)

return m, fiy, &?

Sample Complexity. Because we are interested in fast approximations, Algorithm 1 is only useful if
it terminates with m significantly smaller than the number of terms in the full summation. Equation 3
gives an empirical test indicating when m is large enough for sampling to terminate; we now provide
an upper bound, in terms of the distributional properties of the full set of f;, for the value of m at
which Equation 3 will be satisfied.

Theorem 2. Given m,;, large enough to put iy and Gy in their asymptotic normal regimes, with
probability at least 1 — 2ac Algorithm 1 terminates with m < O(Uf + \MI A/ baf — 1)
o

Proof. The termination condition is driven by &2 / [y, s0 we proceed by bounding this ratio.
First, with probability 1 — o we have a lower bound on the absolute value of the sample mean:
lig| > lugl — 2ay26y/+/m. Next, because the sample variance is asymptotically distributed as
N (0]20, (peay — aj%) /m), where pua5 is the fourth central moment, we can apply the delta method
to infer that 64 converges in distribution to N (o, (ptay — a;%) / 40?m). Using the normal-based
confidence interval, this gives the following 1 — « upper bound for the sample standard deviation:

Gp < 0f + Zajoy/Haf — U;% /(20 7y/m). We now combine these bounds, but since we only know

that each bound individually covers at least a 1 — « fraction of outcomes, we can only guarantee
they will jointly hold with probability at least 1 — 2q, giving the following 1 — 2« bound:

\ Haf —o4
Gp _ OfF Zap2 gafrf

gl = gl = za2 Tk

Combining this with Equation 3 and solving for m shows that, with probability at least 1 — 2«, the
algorithm will terminate with m no larger than:

2 |
“aj2 0f | 0f w_ L fo Loy (20-9 Jmar g
2¢ |yl |/~Lf| sl € |/~Lf| € o 0

Three aspects of this bound are salient. First, computation time is liberated from dataset size. This
is because the sample complexity depends only on the distr{'b.utional featqres (a;, fp, and pig J.c) Qf
the summation terms, and not on the number of terms. For i.i.d. datasets in particular, these distri-
butional features are convergent, which means the sample or computational complexity converges
to a constant while speedup becomes unbounded as the dataset size goes to infinity.

Second, the bound has sensible dependence on o /|is| and jisf /0. The former is a standard
dispersion measure known as the coefficient of variation, and the latter is the kurtosis. Algorithm 1
therefore gives greatest speedup for summations whose terms have low dispersion and low kurtosis.
The intuition is that sampling is most efficient when values are concentrated tightly in a few clusters,
making it easy to get a representative sample set. This motivates the additional speedup we later gain
by stratifying the dataset into low-variance regions.

Finally, the sample complexity bound indicates whether Algorithm 1 will actually give speedup for
any particular problem. For a given summation, let the speedup be defined as the total number of
terms n divided by the number of terms evaluated by the approximation. For a desired speedup 7,
we need n > TMpound, Where Mpoung 1S the expression in Equation 4. This is the fundamental
characterization of whether speedup will be attained.

Algorithm 2 Iterative Monte Carlo approximation for nested summations.

MC-Approx: as in Algorithm 1 addSamples(samples, Mneeded, S, Xc)
calcStats: as in Algorithm 1 for i = 1t0 Mneeded
X; — rand(S.I)
approxrArgs «— map(MC-Approx(x, X. o X;, %), (S.G;))
samples «— samples U S.f(X., approzArgs)
end for

4 Multi-stage Monte Carlo

We now turn to the inductive case of nested summations, i.e. Equation 2. The approach we take
is to apply the single-stage Monte Carlo algorithm over the terms f; as before, but with recursive
invocation to obtain approximations for the arguments G;. Algorithm 2 specifies this procedure.

Theorem 3. Given M,y large enough to put iy in its asymptotic normal regime, with probability
at least 1 — o Algorithm 2 approximates the summation S with relative error no greater than e .

Proof. We begin by noting that the proof of correctness for Algorithm 1 rests on 1) the ability to
sample from a distribution Py whose expectation is py = % >, fi» and 2) the ability to invoke the
CLT on the sample mean fi ¢ in terms its variance &J% /m. Given these properties, Equation 3 follows

as a sufficient condition for relative error no greater than e with probability at least 1 — . We
therefore need only establish that Algorithm 2 samples from a distribution having these properties.

For each sampled f;, let Gj be the approximation for each argument G;. We assume each G ; has
been approximated from sufficiently many samples as to be in an asymptotic CLT regime. Because

the éj are recursively approximated by Algorithm 2, this is an inductive hypothesis, with the re-
mainder of the proof showing that if the hypothesis holds for recursive invocations, it also holds for
the outer invocation. The base case, where all invocations must bottom out, is the type-B summation

already handled in Theorem 1. Let C;m = (Gml, émg, ...) be the vector of G ; values after each éj
has been estimated from m; samples, and let G be the vector of true G; values. Since each compo-

nent G converges in distribution to N(G}, ai/mj), Gy satisfies G, ~ N(G,3,,). We leave the
detailed entries of the covariance ¥, unspecified, except to note that its j jth element is 0]2- /m, and

that its off-diagonal elements may be non-zero if the G ; are generated in a correlated way (this can
be used as a variance reduction technique).

Given the asymptotic normality of G, the same arguments used to derive the multivariate delta
method can be used, with some modification, to show that f;(G,,) ~ N (fi(G), Vf(g)EmV}P(Q)).
Thus, asymptotically, fi(ém) is normally distributed around its true value with a variance that de-
pends on both the gradient of f and the covariance matrix of the argument vector G

This being the case, uniform sampling of the f; is equivalent to sampling from a probability distri-
bution Py giving weight % to the normal distribution of each f;. The expectation of f; over Py is
{5, and since the algorithm uses a simple sample mean the CLT does apply. Given enough samples
to put the sample mean in its CLT regime, Equation 3 holds as an error criterion, and Algorithm 2
simply increases the sample size until the criterion is met. O

Note that the variance over Py works out to 53 = 0% + 2 37, 02, where 0 = V (G)%,,, VF (G).
In other words, the variance with recursive approximation is the exact variance UJ% plus the average
of the variances o2 of the approximated f;. Likewise one could write an expression for the kurtosis
ftar. Because we are still dealing with a sample mean, Theorem 2 still holds in the nested case.

Corollary 2.1. Given my,;, large enough to put iy and Gy in their asymptotic normal regimes,

2 ~ =
with probability at least 1 — 2« Algorithm 2 terminates with m < O(—é + =L ’?f — 1).
! f

Fa
W lgl

Note that the 1 — o confidences and e relative error bounds of the interior approximations G'j do
not pass through or compound in the overall estimator /is: their influence appears in the variance
o? of each sampled f;, which in turn contributes to the overall variance &}%, and the error from &? is
independently controlled by the outermost sampling procedure.

Algorithm 3 Iterative Monte Carlo approximation for nested summations with stratification.

MC-Approx: as in Algorithm 1 addSamples(strata, samples, Mpeeded, S, Xe)
needPerStrat = optAlloc(samples, strata, Mneeded)
calcStats(strata, samples) for s = 1 to strata.count
m «— count(samples) ms = needPerStrat|s]
ﬂg — stratAvg(strata, samples) for i = 1 to ms
63 « stratVar(strata, samples) X; — rand(stratals))
return m, fiy, 67 approxArgs «— map(MC-Approx(*, X, o X;,), (S.G;))
samples[s] < samples[s] U S.f(X., approxArgs)
end for
end for

5 Variance Reduction

With Algorithm 2 we have coverage of the entire generalized summation problem class, and our
focus turns to maximizing efficiency. As noted above, Theorem 2 implies we need fewer samples
when the summation terms are tightly concentrated in a few clusters. We formalize this by spatially
partitioning the data to enable a stratified sampling scheme. Additionally, by use of correlated
sampling we induce covariance between recursively estimated summations whenever the overall
variance can be reduced by doing so. Combining these techniques with recursive Monte Carlo
makes for an extremely fast, accurate, and general approximation scheme.

Stratification. Stratification is a standard Monte Carlo principle whereby the values being sampled
are partitioned into subsets (strata) whose contributions are separately estimated and then combined.
The idea is that strata with higher variance can be sampled more heavily than those with lower
variance, thereby making more efficient use of samples than in uniform sampling. Application of
this principle requires the development of an effective partitioning scheme for each new domain of
interest. In the case of generalized summations, the values being sampled are the f;, which are not
known a priori and cannot be directly stratified. However, since f is generally a function with some
degree of continuity, its output is similar for similar values of its arguments. We therefore stratify the
argument space, i.e. the input datasets, by use of spatial partitioning structures. Though any spatial
partitioning could be used, in this work we use kd-trees modified to split along the dimension of
highest variance, since we seek variance reduction. The approximation procedure runs as it did
before, except that the sampling and sample statistics are modified to make use of the trees. Trees
are expanded in greedy fashion up to a user-specified number of nodes, guided by a heuristic of
expanding next the node with largest size times average per-dimensional variance. This heuristic
will later be justified by the variance expression for the stratified sample mean. The approximation
procedure is summarized in Algorithm 3, and we now establish its error guarantee.

Theorem 4. Given M,y large enough to put iy in its asymptotic normal regime, with probability
at least 1 — o Algorithm 3 approximates the summation S with relative error no greater than e .

Proof. 1dentical to Theorem 3, but we need to establish that 1) the sample mean remains unbiased
under stratification, and 2) the CLT still holds under stratification. These turn out to be standard
properties of the stratified sample mean and variance (see [7]):

fis = Diilj (5)
J

2 2&2' v 2
6f, =mYy p =3 267, (6)
;T

where j indexes the strata, fi; and 632. are the sample mean and variance of stratum j, p; is the
fraction of summation terms in stratum j, and g; is the fraction of samples drawn from stratum j.
Algorithm 3 modifies the addSamples subroutine to sample in stratified fashion, and computes the
stratified sample mean and variance in calcStats. Since these estimators satisfy the two conditions
necessary for the error guarantee, this establishes the theorem. O

In [7] it is shown that O']%S < O')2c, i.e. stratification never increases variance, and that any refine-
ment of a stratification can only reduce ofcs. Although the sample allocation fractions ¢; can be

chosen arbitrarily, 0]205 is minimized when ¢; o p;o;. With this optimal allocation, O'J%S reduces
to %(Z i p;o;)%. This motivates our kd-tree expansion heuristic, as described above, which tries
to first split the nodes with highest p;o;, i.e. the nodes contributing the most to the variance under

optimal allocation. While we never know the o exactly, Algorithm 3 uses the sample estimates 6
at each stage to approximate the optimal allocation (this is the optAlloc routine).

Finally, the Theorem 2 sample complexity still holds for the CLT-governed stratified sample mean.
Corollary 2.2. Given M,y large enough to put fiys and &y in their asymptotic normal regimes,

2
9f

with probability at least 1 — 2o Algorithm 3 terminates with m < O(ey ﬁm /‘f;‘[s — 1).
¥ fs

Correlated Sampling. The variance of recursively estimated f;, as expressed by V (G)Emva.(g),
depends on the full covariance matrix of the estimated arguments. If the gradient of f is such that the
variance of f; depends negatively (positively) on a covariance o, we can reduce the variance by
inducing positive (negative) covariance between G; and G,. Covariance can be induced by sharing
sampled points across the estimates of G; and G, assuming they both use the same datasets. In
some cases the expression for f;’s variance is such that the effect of correlated sampling is data-
dependent; when this happens, it is easy to try and check whether it helps. All experiments presented
here were benefited by correlated sampling on top of stratification.

6 Experiments

We present experimental results in two phases. First, we compare stratified multi-stage Monte Carlo
approximations to exact evaluations on tractable datasets. We show that the error distributions con-
form closely to our asymptotic theory. Second, having verified accuracy to the extent possible,
we run our method on datasets containing millions of points in order to show 1) validation of the
theoretical prediction that runtime is roughly independent of dataset size, and 2) many orders of
magnitude speedup (as high as 10'*) relative to exact computation. These results are presented for
two dataset-method pairs: kernel regression on a dataset containing 2 million 4-dimensional redshift
measurements used for quasar identification, and kernel conditional density estimation on an n-body
galaxy simulation dataset containing 3.5 million 3-dimensional locations. In the KR case, the fourth
dimension is regressed against the other three, while in KCDE the distribution of the third dimension
is predicted as a function of the first two. In both cases we are evaluating the cross-validated score
functions used for bandwidth optimization, i.e. Sk g and Skcpg as described in Section 2.

Error Control. The objective of this first set of experiments is to validate the guarantee that relative
error will be less than or equal to € with probability 1 — . We measured the distribution of error on
a series of random data subsets up to the highest size for which the exact computation was tractable.
For the O(n?) Sk g, the limit was n = 10K, while for the O(n?) Skcpg it was n = 250. For each
dataset we randomly chose and evaluated 100 bandwidths with 1 — o = 0.95 and € = 0.1. Figure 1
shows the full quantile spreads of the relative errors. The most salient feature is the relationship
of the 95% quantile line (dashed) to the threshold line (solid) at ¢ = 0.1. Full compliance with
asymptotic theory would require the dashed line never to be above the solid. This is basically the
case for KCDE,' while the KR line never goes above 0.134. The approximation is therefore quite
good, and could be improved if desired by increasing m,;,;,, or the number of strata, but in this case
we chose to trade a slight increase in error for an increase in speed.

Speedup. Given the validation of the error guarantees, we now turn to computational performance.
As before, we ran on a series of random subsets of the data, this time with n ranging into the millions.
At each value of n, we randomly chose and evaluated 100 bandwidths, measuring the time for each
evaluation. Figure 2 presents the average evaluation time versus dataset size for both methods. The
most striking feature of these graphs is their flatness as n increases by orders of magnitude. This is
in accord with Theorem 2 and its corollaries, which predict sample and computational complexity
independent of dataset size. Speedups? for KR range from 1.8 thousand at n = 50K to 2.8 million
at n = 2M. KCDE speedups range from 70 million at n = 50K to 10'# at n = 3.5M. These results
are many orders of magnitude better than any previous state of the art.

!The spike in the max quantile is due to a single outlier point.
2All speedups are relative to extrapolated runtimes based on the O() order of the exact computation.

I 99%-max

I 29%-max

I 90%-99%
75%-90%
50%-75%
25%-50%
10%-25%

I 1%-10%

I in-1%

= = =050

0.2
25%-50%
10%-25%

I 1%-10%

015 N min-1%

== =050

e err0r = 0.1

10" = 0.1

relative error
relative error

o
[

0.05

0]
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 50 100 150 200 250
dataset size dataset size

Figure 1: Error distribution vs. dataset size for KR (left), and KCDE (right).

4000 6000

5000 r|

w
S
S
=)

4000 (|

3000 r|

2000 r|

1000 r|

avg. computation time (ms)
= N
)]
S]
] 3
avg. computation time (ms)

oH

0

L L L L ~1000 L L L
0 500,000 1,000,000 1,500,000 2,000,000 0 1,000,000 2,000,000 3,000,000

dataset size dataset size

Figure 2: Runtime vs. dataset size for KR (left), and KCDE (right). Error bars are one standard deviation.

7 Conclusion

We have presented a multi-stage stratified Monte Carlo method for approximating a broad class of
generalized summations. These summations are related to generalized n-body problems, and are
common in machine learning. We developed theory for this Monte Carlo method that predicts: 1)
relative error no greater than e with probability at least 1 — «, for user-specified € and «, and 2) sam-
ple and computational complexity independent of dataset size. We present experiments validating
these theoretical guarantees on real datasets, where we accelerate intractable kernel cross-validation
scores by factors up to 10'4. This performance goes many orders of magnitude beyond the previ-
ous state of the art. In addition to applications, future work will likely include automatic selection
of stratification granularity, additional variance reduction techniques, and further generalization to
other computational bottlenecks such as linear algebraic operations.

References
[1] Nicol N. Schraudolph and Thore Graepel. Combining conjugate direction methods with stochastic approx-
imation of gradients. In Workshop on Artificial Intelligence and Statistics (AISTATS), 2003.

[2] Alexander G. Gray and Andrew W. Moore. N-body problems in statistical learning. In Advances in Neural
Information Processing Systems (NIPS) 13, 2000.

[3] Mike Klaas, Mark Briers, Nando de Freitas, and Arnaud Doucet. Fast particle smoothing: If i had a million
particles. In International Conference on Machine Learning (ICML), 2006.

[4] Ping Wang, Dongryeol Lee, Alexander Gray, and James M. Rehg. Fast mean shift with accurate and stable
convergence. In Workshop on Artificial Intelligence and Statistics (AISTATS), 2007.

[5] Michael P. Holmes, Alexander G. Gray, and Charles Lee Isbell Jr. Fast nonparametric conditional density
estimation. In Uncertainty in Artificial Intelligence (UAI), 2007.

[6] Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, 1981.

[7] Paul Glasserman. Monte Carlo methods in financial engineering. Springer-Verlag, 2004.

