On the Computational Measurement of Intelligence Factors

José Hernandez-Orallo

Departament de Sistemes Informatics © Computacid
Universitat Politecnica de Valéncia
Cami de Vera s/n, 46022 Valéncia, Spain.
E-mail: jorallo@dsic.upv.es

ABSTRACT

In this paper we develop a computational framework for the mea-
surement of different factors or abilities which are usually found
in intelligent behaviours. For this, we first develop a scale for
measuring the complexity of an instance of a problem, depend-
ing on the descriptional complexity (Levin LT variant) of the
‘explanation’ of the answer to the problem. We centre on the
establishment of either deductive and inductive abilities, and we
show that their evaluation settings are special cases of the gen-
eral framework. Some classical dependencies between them are
shown and a way to separate these dependencies is developed.
Finally, some variants of the previous factors and other possi-
ble ones to be taken into account are investigated. In the end,
the application of these measurements for the evaluation of Al
progress is discussed.

KEYWORDS: Measurement of Intelligence, Problem

Complezity, Descriptional Complexity, Intelligence Factors.

1 INTRODUCTION

Are AT systems of today more intelligent than those of 40
years ago? Probably the answer is a clear yes, at least for
some of the current systems. However, another different
question is ‘How much more intelligent?’, and, even more,
in which aspects are they more intelligent?

In this paper we investigate a framework for the evalua-
tion of such a progress in different factors, extending in a
natural way the work endeavoured in [13] and [11], which
was specific developed for only some inductive factors. The
main aim of the extension should be to develop the less
number of factors as possible, by proposing general factors
instead of specific ones. Moreover, the framework would
make it possible to study their theoretical correlations, and
reducing, when possible, a factor to another. This leads
finally to a group of tests that can be adapted and imple-
mented for measuring different abilities of intelligent sys-
tems.

First of all, we must ascertain three issues for any evalu-
ation of the ability of solving a problem: to give a general
scale of a complexity of the problem, to settle the unques-
tionability of the solution to the problem and to establish
a way to know whether the subject has arrived to the solu-
tion.

Computational complexity scales problems according to
the time different kinds of machines require to solve them

in the general case by using the optimal algorithm possible.
However, most problems of interest in AT are NP-complete.
But, remarkably, some instances of NP-complete problems
are easier than instances of polynomial problems. This as-
sertion seems to be contradictory, since any instance has an
algorithm to solve that instance in linear or even constant
time (the program “if the input is x print the solution y”),
so there is apparently no reason for stating that an instance
can be easier than another. This has been shown to be false
up to an extent, because for some problems it is better
(shorter) to give a more general solution than the specific
solution for an instance of the problem. This has been for-
malised under the notion of “instance complexity” (see e.g.
[17]), which gives the shortest solution to an instance of a
problem provided it does not give a contradictory solution
for other instances of the same problem.

However, instance complexity is only of interest for large
instances of a considerable descriptional complexity (or for
sets of instances). Moreover, the difficulty of the problem
is not usually related to the descriptional complexity of the
solution. For instance, the descriptional complexity of the
answers given by a theorem prover (an accepter) are very
short, namely one bit to say ‘yes’ or ‘no’. In the same way,
the hardness of a prediction problem cannot be measured
by the descriptional complexity of the element predicted,
but rather by the complexity of the reason why the ele-
ment has been predicted. The idea is then to measure the
descriptional complexity of the ‘justification’ or ‘explana-
tion’ of the solution. Consequently, any cognitive skill can
be measured within this framework provided that problem
and solution can be computationally formalised.

The paper is organised as follows. After Section 2, where
some notation is introduced, Section 3 gives a general for-
mula of the hardness of the instance of a problem, by clari-
fying how to generalise the concept of ‘explanation’ of a so-
lution to a problem. Section 4 addresses the issue of special-
ising it for deductive abilities and discusses their measure-
ment. Section 5 does the same thing for inductive abilities,
but recognising that it is necessary to solve the unques-
tionability problem. Section 6 deals with their dependen-
cies and the possibility of taking other factors into account.
Section 7 discusses the applications of these measurements,
especially for the evaluation of automated reasoning and
machine learning systems. Section 8 closes the paper with
the results and open problems.

2 PRELIMINARIES

Let us choose any finite alphabet ¥ composed of symbols
(if not specified, ¥ = {0,1}). A string or object is any
element from X", with o being the composition operator,
usually omitted. By (a,b) we denote a standard recursive
bijective encoding of a and b, such that there is a one-to-
one correspondence between (a, b) and each pair (a,b). Note
that this usually takes more bits than aob. The empty string
is denoted by e. The term I(z) denotes the length or size of
z in bits and logn will always denote the binary logarithm
of n.

The complexity of an object can be measured in many
ways, one of them being its degree of randomness [15], which
turns out to be equal to its shortest description. Descrip-
tional Complexity, Algorithmic Information or Kolmogorov
Complexity was independently introduced by Solomonoff,
Kolmogorov and Chaitin to formalise this idea, and it has
been gradually recognised as a key issue in statistics, com-
puter science, Al and cognitive science [17][6].

The Kolmogorov Complexity of an object, defined as the
shortest description for it, usually denoted by C' (plain com-
plexity) or K (prefix-free complexity) turns out to be not
computable in general, due to the halting problem. One
solution for this is to incorporate time in the definition
of Kolmogorov Complexity. The most appropriate way to
weight space and time execution of a program, the formula
LTs(pz) = l(pz) + log 75(p=), where 7 is the number of
steps the machine 3 has taken until is printed by p,, was
introduced by Levin in the seventies (see e.g. [16]). Intu-
itively, every algorithm must invest some effort either in
time or demanding/essaying new information, in a relation
which approximates the function LT. The corresponding
complexity, denoted by Kt (see e.g. [17]) is a very practical
alternative to K.

3 PROBLEM COMPLEXITY AS
EXPLANATORY COMPLEXITY

Consider a problem instance m as a tuple (S,C,I, A, ¢)
where S is the context or working system where the problem
can be established, C is a Boolean function which repre-
sents a (syntactical) validity criterion, I is the presentation
of the instance, A is the answer and ¢ is a (semantical)
verifier'. The general problem is denoted by 7(-) as the tu-
ple (S, C, ¢).

We say that E is an explanation for the problem instance
m iff E is valid, i.e. C({S,I,E)) = true, and F is a means
to obtain the solution, i.e., ¢((S,I, E)) = A.

From here, it is easy to adapt the definition of Kt to
measure the hardness of a problem. Namely, the hardness
of a problem instance (S, C, I, A, ¢) is then defined as:

H(w) = min{LT(E|(S,C,I}): E is an explanation for 7} (1)

I Both C and ¢ could be joined in one function. We have pre-
ferred to separate them, because later it will be useful to dis-
tinguish between both parts of a correct solution, in order to
establish purer factors.

For instance, the hardness of a search problem is usually
estimated by the size of the search space. If the search prob-
lem is complex, it is necessary to say which branches have
been selected in order to arrive to the solution, or either a
long time is necessary to explore (and make backtracking)
to the misleading ones. It is the function LT which finds
a compromise between the information which is needed to
guide the search and the logarithm of the time that is also
needed to essay all the branches. On the other hand, if the
search problem is linear (one possible branch), it is very
easier to describe the problem (just follow the rules in the
only possible way). However, for very long derivations, the
inclusion of time can make hardness high too.

For the evaluation of a subject’s ability of solving a kind
of problem 7(-) it is necessary to generate a set of instances
of that problem of different hardness. In order to scale the
instances more properly, we introduce the concept of k-
solvability. An instance of a problem « = (S,C, I, A,) is
k-solvable iff k is the least positive integer number such
that:

H(r) < k- logI(I) (2)

The use of log () is justified by the fact that, once the
general problem is known, each instance must be ‘read’ an
this takes at least I(I) steps.

Once given a general scale of a complexity of any prob-
lem, it is then easy to make a test from the previous defi-
nition, provided that the unquestionability of the solution
to the problem is clear. Unquestionability can only be ad-
dressed depending on the kind of problem. We will see this
for deductive abilities and especially for inductive abilities
in the following sections. Finally, there is no way to know
whether the subject has arrived to the solution if the expla-
nation is not given (and usually the explanation is difficult
to check or the subject may not be able to express the expla-
nation in a comprehensible form). For instance, the subject
may have given the right solution but maybe due to wrong
derivations. Fortunately, in the case of multiple solutions,
this situation will be discardable in the global reckoning of
the test. In the case of few solutions, such as ‘yes’/‘no’, it is
then necessary to penalise the errors by using some formula
that takes into account the possibility of guessing the right
answer ‘by mistake’.

Another question is the time limit for making the test.
This may highly depend on the factor to be measured, and
whether there is a special interest in evaluating the ability
to solve a given problem or the ability to solve it quickly.
The selection of the time limit and the evaluation of the
score according to it could be very interesting for evaluating
resource-bounded rational systems.

Finally, we have not considered the possibility of multi-
ple correct explanations for the same solution, which would
suggest a modification of (1). Consider the situation of the
best explanation with LT = n, but several other expla-
nations of LT = n + 1. Intuitively, the existence of these
other explanations also affects the easiness of the solution.
However, this is very difficult to evaluate in practice be-

cause there are always infinite slight variations of the best
explanation (void steps, redundancies, etc.), so the previ-
ous situation is extremely frequent (if avoidable). It is then
assumed that for every k:

card{ E:LT(E)=kandC((S,I,E)) = true
and ¢((S,I,E)) = A; <<
card{ E:LT(E)=kandC((S,I,E)) =true } (3)

In other words, we assume that the proportion of valid
and correct explanations wrt. valid explanations is very
small.

Once a general framework is established, let us study
which deductive and inductive abilities are feasible and in-
teresting to be measured within it.

4 DEDUCTIVE ABILITIES

Apparently, deductive abilities are much easier to measure,
because there is no possible subjectivity about the correct
answer; given the premises and the way to operate with
them, only one answer is possible.

An instance of a deductive problem © = (S,C, I, A, ¢)
can be defined in terms of the previous framework in the
following way: S corresponds to the set of axioms or ax-
iomatic system, C' is a Boolean function which says what
is a valid application of the axioms?, I is the instance of
the deductive problem, A the answer and ¢ is a verifier,
ie., ¢((S,I,E)) = A, in this case, a verifier that checks
whether A is a result of applying a solution E to I in S.

In this case the explanation E is represented by a proof
in S stating that A; is a the result of I or, in other words,
a derivation from I to A;.

Example: Consider for instance an accepter that tells
whether a proposition is a theorem or not. Let S be the
axioms of arithmetic. Let C' a function that tells that a
derivation is valid according to the rules of application of
the axioms, and let I be the instance “Is Fermat’s famous
conjecture true?” (recently a theorem). Which is the hard-
ness of the solution A = ‘yes’? The descriptional complexity
of A (which is just yes) would say that the instance is very
easy, however its hardness given by H turns out to be the
LT of the proof with less LT.

Example: Consider instead the instance “solve 2+4-3”
which, also with a low complexity of A = 5, turns out to
be simple, because the derivation is easily describable from
(S,C,I). In general, any calculation is shortly describable,
so its hardness will depend solely on its temporal cost.

According to this example, we can distinguish some clas-
sical deductive problems that can be measured. In particu-
lar, the following factors are distinguished:

e Calculus Ability: in this special case, C only allows a
specific and deterministic application of the rules or ax-
ioms of S. In this case the search space is linear. As it

2 S and C are usually seen jointly, but its separation will allow
a thinner factorisation later on.

has been said before, its complexity is exclusively given
by the logarithm of the time which is needed from the
input I to the output A. This ability is not of much in-
terest to be measured nowadays, since it is better done
by computers than humans, and it would finally measure
the computational power of the subject / machine.

e Derivational Ability: in this case, C' only allows a varied
application of the rules or axioms of S. Consequently, the
search space is open. The complexity is then given by a
compromise between the logarithm of the time which is
needed to know that a branch leads to no solution, and
some information that may say which branches to take
(and which ones not to take).

e Accepter Ability (proving ability): It is a special case of
the previous ability, with the special feature that A can
only be ‘yes’ or ‘no’. Theoretically, there is no reason for
expecting that a subject may have a different result in
this problem that in the previous one.

The way to implement a concrete test for the previous abil-
ity is not complicated. For calculus ability, it is just nec-
essary to generate some derivations. Their length will de-
termine the time which is needed to follow them. On the
contrary, for the other two abilities, it is necessary to gener-
ate a possible derivation, and look that there are no shorter
equivalent derivations. This, in general, will be extremely
costly, growing exponentially according to the value of k-
solvability. Fortunately, there is no need for efficiency here.
A hard test can be generated during days, even weeks, and
then passed to several subjects.

5 INDUCTIVE ABILITIES

A sequential inductive problem 7 = (S,C, I, A,) can also
be defined in terms of the previous framework in the follow-
ing way: S corresponds to the background knowledge, I is a
sequential evidence (with [(I) = n), C is a Boolean function
which represents the hypothesis selection criterion (e.g. is it
the shortest one (or equivalent to it)? Is it the one with less
LT?), A is the prediction of the (n+ 1)th element of the se-
quence and ¢ is a verifier, i.e., ¢((S,I, E)) = A, in this case,
a verifier that checks whether A is the (n + 1)th element
given by the hypothesis with the background knowledge S
and also checks whether both cover I.

In this case the explanation E is represented by a ‘hy-
pothesis’ wrt. S that affirms that A is ‘what follows’ I or,
in other words, a prediction from I.

Example: Consider for instance a prediction problem.
Let S be a background knowledge, containing, among other
things, the order of the Latin alphabet. Let C' be a func-
tion that tells that a hypothesis is the best (or equiva-
lent) according to a selection criterion, and let I the in-
stance “aaabbbcccdddeeefffgggh”. Which is the hardness
of the solution A = ‘h’? The descriptional complexity (in
LT terms) of the hypothesis is again what is taken into
account.

The main question of evaluation of induction is that of
inquestionability. Even if the selection criterion is given,

two plausible explanations may differ slightly, and the se-
lection criterion would give that one is slightly better than
the other, but this would depend highly on the descrip-
tional mechanism used. In [13] and [11] this difficult prob-
lem is addressed, according to a comprehensive criterion,
a variant of the simplicity criterion based on Kolmogorov
Complexity in the style of Solomonoff [20], but ensuring
that the data is covered comprehensively, i.e. without ex-
ceptions. Accordingly, the simplest explanatory description,
denoted by SED(z|y), is defined in [11] as the simplest (in
LT terms) description which is comprehensive wrt. the data
x given the background knowledge y. To ensure unques-
tionability, the examples are selected such that there are
no alternative descriptions of similar complexity that give
a different description. Finally, there is a small possibility
that a good prediction is given by a ‘wrong’ explanation.
This probability may be neglected in the tests or corrected
by a penalising factor in the score of wrong results.

From here, partially independent factors can be measured
by using extensions of the previous framework. For instance,
inductive abilities, such as sequential prediction ability,
knowledge applicability, contextualisation and knowledge
construction ability can be measured in the following way:

e Sequential Prediction Ability: several unquestionable se-
quences of different k-solvability are generated. A test
for this ability has been generated in [13] and passed to
humans, jointly with a typical psychometrical test of in-
telligence. The correlation between the results of both
tests showed that this is one of the fundamental factors
of intelligence, which deserves more experimentation to
be done.

e Inductive Knowledge Applicability (or ‘crystallized intel-
ligence’): a background knowledge B and a set of unques-
tionable (with or without B, denoted by H(z;|B) and
H (z;) respectively) sequences x; are provided such that
H(z;|B) = H(z;) — u but still SED(z;|B) = SED(x;).
The difference of performance between cases with B and
without B is recorded. This test would actually measure
the application of the background knowledge depending
on two parameters: the complexity of B and the useful-
ness of B, measured by wu.

e Inductive Contextualisation: it is measured similarly as
knowledge applicability but supplying different contexts
Bi1, B, ..., By with different sequences z;; such that
H(z;¢|B:) = H(xi,)—wu. This multiplicity of background
knowledge (a new parameter T') distinguishes this factor
from the previous one.

e Inductive Knowledge Construction (or learning from
precedents): a set of sequences z; is provided such that
there exists a common knowledge or context B and a
constant u such that for H(z;|B) < H(z;) — u. A signif-
icant increase of performance must take place between
the first sequence and the later sequences. The parame-
ters are the same as the first case, the complexity of B
and the constant u.

It is obvious that these four factors should correlate, es-
pecially with the first one, which constitutes a necessary

condition for having a minimal score in the other factors.

6 DEPENDENCIES AND OTHER
FACTORS

Although there is a common (but argueable) view of in-
duction and deduction as inverse processes, they are not
inverse in the way they use computational resources. In
fact, any inductive process requires deduction to check the
hypotheses. Hence, obviously, inductive ability is influenced
by deductive ability. This has been usually recognised by IQ
tests, where deductive and inductive abilities usually cor-
relate. Due to this fact, inductive factors usually are the
main part of intelligence tests, because deductive abilities
are implicitly evaluated.

However, if we are looking for ‘pure’ factors the ques-
tion is whether there is a way to separate this deductive
‘contamination’ in inductive factors.

The idea is to provide ‘external’ deductive abilities when
measuring inductive factors, in order to ‘discount’ the de-
ductive effort that otherwise should be done. For this, given
a problem w(-) = (S,C, ¢) it is only necessary to provide
an ‘oracle’ which computes ¢ in constant time. The subject
must only guess models (hypotheses) and check them in the
oracle, by providing the hypothesis to it and comparing the
results with the evidence I. This would measure the ‘cre-
ative’ part of induction. In the following, let us denote by
‘purely’ inductive the corresponding factors to those high-
lighted in the previous section which result from providing
the oracle.

This resembles a ‘trial and error’ problem considering re-
ality acting as the oracle. The issue is how to implement this
in a feasible way, especially for evaluating complex agents
or even human beings. The best way, in our opinion, is the
construction of a ‘virtual’ world where the subject to be
evaluated can interact and essay its hypotheses with no ef-
fort.

In a similar way as the oracle for ¢, some difference could
be estimated if the validity verifier C is (also) given. Al-
though this would not be much representative for deduc-
tion, for induction it would discount the ability of working
with the selection criterion, which is an important trait of
induction, at least to see whether a ‘wrong’ selection crite-
rion is embeded in the system.

Nonetheless, deductive ability is also influenced by induc-
tive ability as long as the problems become harder. Some
lemmata or rules can be generated by an intelligent sub-
ject in order to help to shorten the proof from the premises
to the conclusion. This may explain why artificial prob-
lem solvers without inductive abilities have not been able
to solve complex problems, and this is especially clear in
Automatic Theorem Proving. Consequently, recent systems
are beginning to use ML techniques for improving perfor-
mance. Background knowledge could also be examined in
deduction, provided S includes the axioms but also some
useful properties. This finally gives similar factors as those
given for induction:

e Deductive Knowledge Applicability: how lemmata or
properties are used for a deductive problem.

e Deductive Contextualisation: the ability of using differ-
ent contexts for different problems.

e Deductive Knowledge Construction: this will measure the
increase of performance between first instances and last
ones.

Finally, we have given a measurement for sequential induc-
tion, and it seems interesting to evaluate non-sequential in-
duction as well, where an unordered set of elements is given
as evidence from an unknown function that maps whether
an element belongs to a set. In this case, the test could
give some possible values which might be members of the
set, although only one of them is really in it. Solomonoff
formalised deterministic (sequential) prediction [20] and re-
cently, has formalised non-sequential prediction [22]. This
problem is similar to the inductive problem of learning a
Boolean classifier and can be extended to the case of a gen-
eral classifier. To eliminate the deductive contamination of
the measurement of non-sequential induction, the ‘oracle’ ¢
should be a classifier, telling, given a hypothesis, to which
class the element belongs. The essay of an ‘oracle’ that ac-
cepts several elements at a time should be considered as
well.

Once the basic deductive and inductive factors have
been recognised, the question is whether there are many
other factors which are relevant to be measured. For in-
stance, memory or ‘memo-isation ability’ is a factor that
is knowledge-independent and it can be easily measured.
However, this factor is not very interesting for AI nowa-
days.

Other factors, such as analogical and abductive abilities
can be shown to be closely connected to inductive and de-
ductive abilities both theoretically and experimentally. A
first approach for measuring them has been attempted in
[13], and the test applied to human beings has shown the
correlation with inductive abilities.

However, not every factor is meaningful. Factors like
“playing chess well” are much too specific to be robust
to the subject’s background knowledge. However, it cannot
be discarded that some game-playing factor could measure
competitivity and interactivity abilities aside from deduc-
tive and inductive abilities.

Finally, we have considered individual tests which mea-
sure one factor. For measuring several factors at a time,
the exercises should be given one by one and, after each
guess, the subject should be given the correct answer (re-
wards and penalties can be used instead). This has two
advantages: there is no need for the subject to understand
natural language (or any language) to order to be explained
the purpose of the test, and there is no need to tell which
factor or purpose is to be measured in each part of the test.
There is also one disadvantage, deductive problems should
be posed in terms of ‘learn to solve’, and this may devirtu-
alise them.

7 APPLICATIONS

Modern AI systems are much more functional than sys-
tems from the sixties or the seventies. They solve problems
in an automated way that before required human interven-
tion. However, these complex problems are solved because
a methodical solution is found by the system’s designers,
not because most current systems are more intelligent than
preceding ones. Fortunately, the initial aim of being more
general is still represented by some subfields of AI: auto-
mated reasoning and machine learning.

Automated reasoning (more properly called Automatic
Theorem Proving) is addressing more complex problems by
the use of inductive techniques, while maintaing their gen-
eral deductive techniques. These systems, in fact, have been
used as the ‘rational core’ of many systems: knowledge-
based systems, expert systems, deductive databases, ... But,
remarkably, the evaluation of the growth of automated rea-
soning has not been established from the success of these
applications but from the increasingly better results on li-
braries of problems, such as the TPTP library [23]. How-
ever, there is no theoretical measurement about the com-
plexity of the problems which compose these libraries. In-
stead, some approximations, such as the number of clauses,
use of some lemmatas, etc., have been used. Following the
approach presented in this paper it would be interesting to
give a value of k — solvability of each of the instances of
these libraries.

In a similar way, machine learning has recently taken
a more experimental character and systems are evalu-
ated wrt. sets of problems. Except from general problems
(classes), where their complexity (or learnability) has been
established, there is no formal framework for giving a scale
for concrete instances.

In this new and beneficial interest in measurement, Bien
et al. [1] have defined a ‘Machine Intelligence Quotient’
(MIQ), or, more precisely, two MIQs, from ontological
and phenomenological (comparative) views. Any compar-
ison needs a reference, and the only reference of intelli-
gence is, for the moment, the human being. This makes
the approach very anthropocentric, like the Turing Test.
The ontological approach, however, is not based on compu-
tational principles but on a series of characteristics of in-
telligence that are defined on linguistical terms rather than
computational/mathematical ones, such as long-term learn-
ing, adaptation, recognition, optimization, etc.

The evaluations generally based on performance in some
specific problems highlight the difference between measur-
ing functionality and general intelligence. Although mea-
sures of performance can be very appropriate for specific
systems where functionality is clear, in general this would
not allow for the comparison of intelligence skills of different
systems devised for quite different goals. We share the view
that “it is time to begin to distinguish between general,
intelligent programs and the special performance systems”
[19]. How to define general and absolute characteristics of
intelligence computationally is more difficult but also more
attractive. In any way, in our opinion, the real progress in

the ‘intelligence’ of AI systems can only be measured in this
way.

8 CONCLUSIONS AND FUTURE
WORK

From a theoretical point of view, the framework presents a
formal, non-anthropomorphic and non-specific functional-
ity oriented measurement of intelligence factors. This clari-
fies the distinction among evolutionary-acquired knowledge,
life-acquired-knowledge and ‘liquid intelligence’ (or individ-
ual adaptability), or in Al terminology, among functional-
ity, performance and adaptability.

Among the problems for making these measurement reli-
able there is the selection of a reference machine. The eval-
uation of abilities with instances is dangerous because it
depends on constants. Since there is no apparent preference
for any descriptional mechanism, we plan to adapt these no-
tions for logic programming, because it is a paradigm that
has been used both for automated deduction and machine
learning (ILP) as well as other uses (abduction, theory re-
vision, ...), and, in our opinion, is not biased.

Several tests for different subfields of AI could be devised
following this paradigm, and the increasing scores for solv-
ing more and more complex (k-solvable) problems may be
a way to know how much intelligent AI systems are wrt.
previous generations systems.

REFERENCES

[1] Bien, Z., Kim Y. T. and Yang, S. H., “How to Measure
the Machine Intelligence Quotient (MIQ): Two Meth-
ods and Applications”, World Automation Congress
(WAC), TSI Press, Albuquerque, NM, 1998.

[2] Blum L. and Blum M., “Towards a Mathematical The-
ory of Inductive Inference”. Inf. and Control, 28:125—
155, 1975.

[3] Bradford P. G. and Wollowski, M., “A Formalization
of the Turing Test (The Turing Test as an Interactive
Proof System)”. SIGART Bulletin, 6(4), p. 10, 1995.

[4] Chaitin, G. J., “Godel’s Theorem and Information”.
Int. J. Theo. Phys., 21, 941-54, 1982.

[5] Eysenck, H. J., The Structure and Measurement of In-
telligence, Springer-Verlag, 1979.

[6] Gammerman, A. and Vovk, V. (eds.), Special Issue
on Kolmogorov Complexity, The Computer Journal,
42(4), 1999.

[7] Gold, E. M., “Language Identification in the Limit”,
Inform € Control, 10, 447-474, 1967.

[8] Harman, G., “The inference to the best explanation”,
Philos. Review, 74, 88-95, 1965.

[9] Herken, R., The universal Turing machine: a half-
century survey, Oxford Univ. Press, 1988, 2nd Ed.,
1994.

[10] Hernéndez-Orallo, J., “Computational Gain and Infer-
ence”, Collegium Logicum, 4, Springer, in press, 2000.
Hernéndez-Orallo, J., “Beyond the Turing Test”, to
appear in Journal of Logic, Language and Information,

Vol. 9 no. 4, 2000.

[11]

[12]

[13]

Herndndez-Orallo, J., “Computational Measures of In-
formation Gain and Reinforcement in Inference Pro-
cesses”, to appear in AI Communications, 2000.
Hernéndez-Orallo, J. and Minaya-Collado, N., “A For-
mal Definition of Intelligence Based on an Intensional
Variant of Kolmogorov Complexity” In Proc. of the
Intl. Symp. of Engin. of Intelligent Systems (EIS’98),
ICSC Press, 146-163. 1998.

Johnson, W. L., “Needed: A New Test of Intelligence”,
SIGART Bulletin, 3(4), 7-9, 1992.

Kolmogorov, A. N., “Three Approaches to the Quan-
titative Definition of Information”, Problems Inform.
Transmission, 1(1):1-7, 1965.

Levin, L. A., “Universal search problems”, Problems
Inform. Transm., 9, 265-6, 1973.

Li, M. and Vitdnyi, P., An Introduction to Kolmogorov
Complexity and its Applications, 2nd Ed., Springer-
Verlag, 1997.

Neisser, U., Boodoo, G., Bouchard, T. J., Boykin,
A. W., Brody, N., Ceci, S. J. Halpem, D. F., Lochlin,
J. C., Perloff, R., Sternberg, R. J. and Urbina, S., “In-
telligence: Knowns and Unknowns”, American Psychol-
ogist, 51, 77-101, 1996.

N. J. Nilsson, Eye on the Prize. AI Magazine, July
1995.

Solomonoff, R. J., “A formal theory of inductive in-
ference”, Inf. Control, 7, 1-22, March, 224-254, June,
1964.

Solomonoff, R. J., “Complexity-based induction
sytems: comparisons and convergence theorems”, IEEE
Trans. Inform. Theory, IT-24, 422438, 1978.
Solomonoff, R. J., “Two Kinds of Probabilistic Induc-
tion”, in the ‘Special Issue on Kolmogorov Complexity’,
The Computer Journal, 42(4), 256-259, 1999.
Suttner, C. B. and Sutcliffe, G., “The TPTP Problem
Library: CNF Release v1.2.1”, Journal of Automated
Reasoning, 21(2), 177-203, 1998.

Turing, A. M., “On computable numbers with an ap-
plication to the Entscheidungsproblem”, Proc. London
Math. Soc., series 2, 42, 230-65, 1936. Cor., Ibid, 43,
544-6, 1937.

Turing, A. M., “Computing Machinery and Intelli-
gence”, Mind, 59, 433-460, 1950.

